
FireStream: Sensor Stream Processing for Monitoring Fire Spread

Venkatesh Raghavan1, Elke Rundensteiner1, John Woycheese,2 Abhishek Mukherji1
1Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA 01609

2Department of Fire Protection Engineering, Worcester Polytechnic Institute, Worcester, MA 01609
{venky, rundenst, jpw, mukherab} @wpi.edu

Abstract

This demonstration presents FireStream, a sensor stream
processing system which provides services for run-time de-
tection, monitoring and visualization of fire spread in intel-
ligent buildings that can be of great benefit to first respon-
ders. Our system can effectively handle large heterogeneous
sensor streams using shared window execution and dynamic
participant handling to yield a high-ary MJoin solution.

1. Introduction

Increasingly, modern buildings are equipped with build-
ing control systems and fire alarm control panels that mon-
itor sensors for the safety of the occupants. The sheer num-
ber of sensors to be analyzed results in copious data streams
that must be evaluated continuously to provide information
such as fire location, growth, and spread.

In this demonstration, we present FireStream, a collabo-
rative effort between Computer Science and Fire Protection
Engineering. Our system employs a fire spread monitor-
ing solution that integrates data-centric declarative queries
with clustering alternatives. Our research focus is to detect
fire events and track the spread of the fire over time and
integrate heterogeneous sensor types for analysis. Sensors
placed at key location are assumed to have minimum pro-
cessing capabilities and the data streams generated by them
are processed outside the sensor-network by our engine.

FireStream provides a rich set of queries of interest in the
study of fire behavior. This, along with the established data
library of over 200 actual fire experiments conducted at lab-
oratories such as NIST/BFRL and the Department of Fire
Protection Engineering at WPI, establishes the first bench-
mark for stream processing and monitoring of fires.

2. System Architecture

Our proposed framework, as illustrated in Figure 1, has,
in essence, three core components: theExecution Engine,
Data Librariesand theGraphical User Interface. Execu-
tion Engine makes use ofPhenomenon Matching Logicand

Monitoring and Tracking Algorithmsto detect events and
monitor the fire spread (Section 3). We maintain three data
libraries: theSpatial Store, to record structural elements
and sensor locations required for spatial analysis, theSen-
sor Store, a collection of metadata pertinent to sensors such
as thresholds and calibrations, and thePhenomenon Repos-
itory, a set of patterns representing different classes of fire
extracted from analysis of real fire dataset. TheGraphical
User Interfaceprovides the users a tool to submit queries
and visualize results.

Figure 1. FireStream Framework Architecture

3. Salient Features

Location-Aware Stream Processing. Our system is
supplemented with meta-knowledge about the placement of
the sensors within the environment. This allows our higher-
order query operators to obtain relative distances between
sensors via spatial query support, such as nearest-neighbor
and spatial-overlap queries. This information is vital to in-
corporate environmental information for direct fire paths
that are influenced by factors such as corridors and walls.

Phenomenon Matching Logic. Phenomenon matching
for tracking events or trends requires comparison of a mul-
titude of data streams to identify patterns; detection of cou-
pled, discrete events; or combinations of both. Various real
test datasets [1] are analyzed to extract patterns and form



a rich repository of different phenomena and their charac-
teristics. The patterns are stored as a two-level inverted in-
dex representing the firetypes by a representative sequence
of patterns, which are further divided into n-snippets. N-
snippets are our numerical equivalent to n-grams for text-
based pattern matching. An incremental strategy gathering
statistics about sequence of matched patterns enables iden-
tification of phenomena. A feedback mechanism supple-
ments the match operator to select future potential matches.
Finally, the matching logic is scaled to multiple sensors to
enhance trend tracking.

Dynamic Participants Handling. The sheer number
of input streams makes tracking queries focus on scalabil-
ity. Tracking queries involve cluster evaluations of moving
events such as fire or smoke clusters. Stream participants
that are involved in the query result change dynamically,
as sensors are included/removed with the movement of the
cluster. Recent research has focused on how to efficiently
evaluate continuous queries with predetermined stream par-
ticipants, for instance, multi-joins [5, 3].FireStreamreac-
tively decides which input data streams must be involved
in the join operation, based on membership criterion speci-
fied by the query (e.g., spatial proximity, sensor types, etc.),
contrary to [2] which makes use of a probabilistic model
that identifies sensors that record identical discrete phe-
nomenons at a similar frequency to determine participant.

Interactive Query Plan Architecture. FireStream sup-
ports two means of communication between operators,
namely using data streams and control streams. A data
stream passes sensor data or partially computed results. It
may be interleaved with punctuations [4] that define a data
pattern for the particular slice of the stream. A control
stream carries control messages between operators such as
altering sampling frequencies, changing local parameters,
and activating or de-activating operators. By default, every
operator that is connected by a data stream is also connected
by a bi-directional control stream. Operators also have the
ability to broadcast control messages to all the operators in-
volved in the query through theExecution Engine. This
feature is critical in effectively tuning the sampling rateof
the sensors and to control the number of participants of the
join operation.

4. Demonstration Scenarios

FireStream makes use of the digital library called
Experimental Data for Fire Science (EDaFS), developed
at WPI [1], that maintains a rich collection of about 200
actual burn experiments conducted at BFRL/NIST, some of
which are used to demonstrate our system. We use VRML
(Virtual Reality Modeling Language) to generate the 3-D
representations of the buildings and sensors (Figure 2).

Figure 2. VRML Modeling of the Test Arena

Ambient Condition Assessment

• Visually represent the user queries as an algebra tree.

• Display results such as moving averages during stand-
by mode, when there are no fire or smoke events.

• Report resources utilization parameters such as data
arrival rates, CPU and memory consumption fluctua-
tions.

Sensor Event Detection

• Detect and categorize fire events by matching windows
of live sensor readings against patterns stored in the
repository.

• Visualize in-alarm sensors and their spatially adjacent
sensors to avoid false alarms and ascertain the accu-
racy of the match result.

• Represent the match result using graphical tools.

Fire Spread Monitoring

• Demonstrate fire scenarios such as arson, where sev-
eral fires are ignited, or small and large scale fires.

• Visualize various clusters such as smoke and heat that
aid in monitoring fire growth and spread.

References

[1] Experimental Database for Fire Science, available at:
http://edafs2.wpi.edu:8050/edafs/.

[2] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid, A. Helal,
I. Kamel, and M. F. Mokbel. Nile-pdt: A phenomenon de-
tection and tracking framework for data stream management
systems. InVLDB, pages 1295–1298, 2005.

[3] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pi-
elech, and N. Mehta. Cape: Continuous query engine with
heterogeneous-grained adaptivity. InVLDB Demo, pages
1353–1356, 2004.

[4] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploit-
ing punctuation semantics in continuous data streams.TKDE,
15(3):555–568, 2003.

[5] S. Wang, E. A. Rundensteiner, S. Ganguly, and S. Bhatna-
gar. State-slice: New paradigm of multi-query optimization
of window-based stream queries. InVLDB, pages 619–630,
2006.


