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Abstract. An important issue in data integration is the integration of
semantically equivalent but schematically heterogeneous data sources.
Declarative mechanisms supporting powerful source restructuring for
such databases have been proposed in the literature, such as the SQL
extension SchemaSQL. However, the issue of incremental maintenance
of views defined in such languages remains an open problem.

We present an incremental view maintenance algorithm for schema-re-
structuring views. Our algorithm transforms a source update into an in-
cremental view update, by propagating updates through the operators of
a SchemaSQL algebra tree. We observe that schema-restructuring view
maintenance requires transformation of data into schema changes and
vice versa. Our maintenance algorithm handles any combination of data
updates or schema changes and produces a correct sequence of data up-
dates, schema changes, or both as output. In experiments performed on
our prototype implementation, we find that incremental view mainte-
nance in SchemaSQL is significantly faster than recomputation in many
cases.

1 Introduction

Information sources, especially on the Web, are increasingly independent from
each other, being designed, administered and maintained by a multitude of au-
tonomous data providers. Nevertheless, it becomes more and more important to
integrate data from such sources [13, 11]. Issues in data integration include the
heterogeneity of data and query models across different sources, called model
heterogeneity [3] and incompatibilities in schematic representations of differ-
ent sources even when using the same data model, called schema heterogene-
ity [13, 11]. Much work on these problems has dealt with the integration of
schematically different sources under the assumption that all “data” is stored in
tuples and all “schema” is stored in attribute and relation names. We now relax
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this assumption and focus on the integration of heterogeneous sources under the
assumption that schema elements may express data and vice versa.

One recent promising approach at overcoming such schematic heterogene-
ity are schema-restructuring query languages, such as SchemaSQL, an SQL-
extension devised by Lakshmanan et al. [11, 12]. Other proposals include IDL by
Krishnamurthy et al. [9] and HiLog [2]. These languages, in particular Schema-
SQL, support querying schema (such as lists of attribute or relation names) in
SQL-like queries and also to use sets of values obtained from data tuples as
schema in the output relation. This extension leads to more powerful query
languages, effectively achieving a transformation of semantically equivalent but
syntactically different schemas [11] into each other.

Previous work on integration used either SQL-views, if the underlying schema
agreed with what was needed in the view schema [14], or translation programs
written in a programming language to reorganize source data [3]. We propose to
use views defined in schema-restructuring languages in a way analogous to SQL-
views. This makes it possible to include a larger class of information sources into
an information system using a query language as the integration mechanism.
This concept is much simpler and more flexible than ad-hoc “wrappers” that
would have to be implemented for each data source. It is also possible to use or
adapt query optimization techniques for such an architecture.

However, such an integration strategy raises the issue of maintaining schema-
restructuring views, which is an open problem. As updates occur frequently in
any database system, view maintenance is an important topic [1]. View mainte-
nance in a restructuring view is different from SQL view maintenance, due to the
disappearance of the distinction between data and schema, leading to new classes
of updates and update transformations. In this paper, we present the first in-
cremental maintenance strategy for a schema-restructuring view language, using
SchemaSQL as an example.

1.1 Motivating Example

Consider the two relational schemas in Fig. 1 that are able to hold the same infor-
mation and can be mapped into each other using SchemaSQL queries. The view
query restructures the input relations on the left side representing airlines into
attributes of the output relations on the right side representing destinations. The
arrow-operator (->) attached to an element in the FROM-clause of a Schema-
SQL-query allows to query schema elements, giving SchemaSQL its meta-data
restructuring power. Standing by itself, it refers to “all relation names in that
database”, while attached to a relation name it means “all attribute names in
that relation”.

SchemaSQL is also able to transform data into schema. For example, data
from the attribute Destination in the input schema is transformed into rela-
tion names in the output schema, and vice versa attribute names in the input
(Business and Economy) are restructured into data.

Now consider an update to one of the base relations in our example. Let
a tuple t(Destination = Berlin, Business = 1400, Economy = 610) be added to



BA create view

|Destination Business|Economy CITY(Class, AIRLINE) AS a LOND(;)': A

Paric 1200 600 select CLASS,FLIGHT.CLASS | 35_5 | | |

Condon 1100 475 from |Busmess |1100|nu/l
-> AIRLINE, |Economy| 475/500

LH = AIRLINE FLIGHT, =
|Destination|Business|Economy| AIRLINE™> CLASS, PARIS
— 0 =55 FLIGHT.Destination CITY |Class | BA| LH|
where
London 1180 500 CLASS<>’Destination’ and | Economy| 600| 700|

FLIGHT.CLASS <= 1100;

Fig. 1. A Schema-Restructuring Query in SchemaSQL.

the base table LH (a data update). The change to the output would be the
addition of a new relation Berlin (a schema change) with the same schema as
the other two relations. This new relation would contain one tuple t(Type =
Economy, BA = null,LH = 610). In this example, a data update is transformed
into a schema change, but all other combinations are also possible. The effect
of the propagation of an update in such a query depends on numerous factors,
such as the input schema, the view definition, the set of unique values in the
attribute Destination across all input relations (city names), and the set of input
relations (airline codes). For example, the propagation would also depend on
whether other airlines offer a flight to Berlin in the Economy-class, since in that
case the desired view relation already exists.

1.2 Contributions

We propose to use schema-restructuring query languages to define views over re-
lational sources and we solve several new problems that arise, using SchemaSQL
as an example. We observe that, due to the possible transformation of “schema”
into “data” and vice-versa, we must not only consider data updates (DUs) for
SchemaSQL, but also schema changes (SCs). A consequence is that, as shown
in this paper, using the standard approach of generating query expressions that
compute some kind of “delta” relation A between the old and the new view
after an update is not sufficient, since the schema of A would not be defined.
Our algorithm in fact transforms an incoming (schema or data) update into a
sequence of schema changes and/or data updates on the view extent.

The contributions of this work are as follows: (1) we identified the new prob-
lem of schema-restructuring view maintenance, (2) we gave an algebra-based so-
lution to the problem, (3) we proved this approach correct, (4) we implemented
a prototype and assessed performance experimentally.

This work is different from previous approaches in view maintenance since
the problem of view maintenance of schema-restructuring views is fundamentally
different from the traditional view maintenance problem, as we argue in Sec. 3.2.



1.3 Outline of Paper

Section 2 reviews some background on SchemaSQ@QL, in particular the algebra
operators used in SchemaSQ@QL evaluation. Section 3 explains our view mainte-
nance strategy and Section 4 gives an outline of a proof for our approach. Finally,
Sections 5 and 6 give related work and conclusions, respectively.

2 Background

2.1 SchemaSQL

In relational databases it is possible to store equivalent data in different schemas
that are incompatible when queried in SQL [13]. However, for information in-
tegration purposes it is desirable to combine data from such heterogeneous
schemas. SchemaSQL is an SQL derivative designed by Lakshmanan et al. [11]
which can be used to achieve schema-restructuring transformations of relational
databases. In [12], Lakshmanan et al. describe an extended algebra and alge-
bra execution strategies to implement a SchemaS@QL query evaluation system.
It extends the standard SQL algebra which uses operators such as o(R), m(R),
and R > S by adding four operators named UNITE, FOLD, UNFOLD, and SPLIT
originally introduced by Gyssens et al. [6] as part of their “Tabular Algebra”.
Lakshmanan et al. show that any SchemaSQL query can be translated into this
extended algebra.

SchemaSQL Algebra Operators We will give an overview over the four op-
erators introduced in [12]. Due to space consideration, we will not give precise
mathematical definitions but rather refer to our Technical Report [8]. Addition-
ally, Lakshmanan’s original definition has a slight ambiguity in the FOLD/UNFOLD-
operator pair that we clarified below. The original SchemaSQL proposal can be
supported as well, with slight changes in the update propagation scheme.

Examples for the four operators defined in this section can be found in Fig. 2.
We will refer to the input relation of each operator as R and to the output relation
as Q.

The Unite-Operator is defined on a set of k relations R* = {Ry,..., Ri}
with attribute name a, as an argument. The operator assumes input relations
with identical schema and has as output one new relation ). @ is constructed
by taking the union of all input relations and adding a new attribute A, whose
values are the relation names of the input relations. In Fig. 2, the UNITE-operator
is defined over the set of relations BA, LH and has the attribute name Airline as
its argument.

The Fold-Operator works on a relation R in which a set of attributes
must have the same domain. We denote the set of names of these attributes as
A* ={ay,...,a,}. The operator takes as arguments the names of the pivot and
data attributes a, and aq in its output relation. Furthermore, we require the
attribute set A* to satisfy a uniqueness constraint in order to avoid ambiguities
in the operator (this requirement is not explicit in [12]).



BA LONDON

|Destination|Business|Economy| |Type | BA| LH|
Paris 1200 600 Business {1100 nu//|
London 1100 475 Economy| 475/500]
LH PARIS
[Destination|Business|Economy| [Type | BA[LH]
|Paris | 1220| 700| |Economy| 600|700|
U )
‘SPLIT Destination ‘
U 1)
TMP_REL_0001 TMP_REL_0004
|Airline|Destination|Business|Economy] |Type  [Destination] BA| LH]
BA Paris 1200 600 Business [London 1100|{ null
BA  |London 1100 475 Economy|Paris 600|700
LH Paris 1220 700 Economy|London 475|500
U )
FoLp Type, Price,{Business,Economy} ‘ UNFOLD Airline, Price ‘
I ()
TMP_REL_0002
[Airline]Type  |Destination|Price] TMP_REL_0003
BA  |Business Paris[ 1200 |Air|ine|Type |Destination|Price|
BA Business London|1100 BA Business London|1100
BA  |Economy Paris| 600 BA  |Economy Paris| 600
BA  |Economy London| 475 BA  |Economy London| 475
LH Business Paris| 1220 LH Economy Paris| 700
LH Economy| Paris| 700

STANDARD-SQL-Operator
select *
—| from tmp_rel_0002 —
where price <= 1100;

Fig. 2. An Example Using All Four SchemaSQL Operators UNITE, FOLD, UNFOLD,
SPLIT.



The operator then takes all data values from the set A* of related attributes,
and sorts them into one new attribute a4, introducing another new attribute
ap that holds the former attribute names. To motivate the above uniqueness
constraint, note that its violation would require us to introduce multiple tuples
in the output relation that differ only in their attribute ay. The semantics of
such tuples are not clear in a real-world application.

In Fig. 2, the FoLD-operator is defined on relation TMP_REL_0001 and has
the arguments a, = Type, aq = Price, A* = {Business,Economy}.

The Unfold-Operator is the inverse of FOLD. It is defined on a relation
R and takes two attribute names ap, aq from R as arguments. We call A, the
pivot attribute and Ay the data attribute. We also define A* as the set of distinct
values in A,.

The schema of @) then consists of all attributes in R except the data and pivot
attribute, plus one attribute for each distinct data value in the pivot attribute.
Each tuple ¢’ in @ is constructed by taking a tuple ¢ in R and filling each new
attribute A; with the value from attribute Ay in a tuple from R that has the
name a; as value in A, (assuming an implicit conversion between names and
values as required above). The new attributes all have the domain Dy of the old
attribute Ag.

In Fig. 2, the UNFOLD-operator is defined over relation TMP_REL_0003 and
takes as its arguments a, = Airline and a4 = Price. The operator produces output
by taking tuples from TMP_REL_0003, and filling the attributes representing
airlines with values from the data attribute Price in TMP_REL_0003, matching
attribute names in the output relation with the values of the pivot attribute
Airline in the input relation.

The Split-Operator is the inverse of the UNITE-operator. It takes as its
argument the attribute name a,. We define A* as the set of unique values in A,
similar to the UNFOLD-case. SPLIT then transforms a single relation R into a set
of k = |Ap| relations with the schema of R except for the pivot attribute A,. We
require that A, does not have NULL-values. SPLIT then breaks relation R into
k relations with the same schema, with the new relation names the k distinct
values from R’s attribute A,.

In Fig. 2, the SpLIT-operator is defined over relation TMP_REL_0004, takes
as its only argument a, = Destination, and produces 2 tables names LONDON
and PARIS.

SchemaSQL Query Evaluation Similar to traditional SQL evaluation, [12]
proposes a strategy for SchemaSQL query evaluation that first constructs and
then processes an algebra query tree, leading to an efficient implementation of
SchemaSQL query evaluation over an SQL database system. In order to evaluate
a SchemaSQL query, an algebra expression using standard relational algebra
plus the four operators introduced above is constructed. This expression is of
the following form [12]:

V' = SPLIT,(UNFOLDy ¢ (T 3(0 cond (FOLD, f,, 5 (UNITEL(R1)) X ... x (1)
FOLDe,, f,gm (UNITER (R:))))))



with attribute names a, b, ¢, e;, f;, hi, the sets of attribute names d and g;, and
selection predicates cond determined by the query. Any of the four SchemaSQL
operators may not be needed for a particular query and would then be omit-
ted from the expression. R;...R,, are base relations or, in the case that the
expression contains a UNITE-operator, sets of relations with equal schema.

The algebraic expression for our running example (Fig. 1) is:

V' = SPLITpestination (UNFOLD Ajrline, Price (OPrice<1100( (2)

FOLDType, Price, {Business,Economy}(UNITEAirIine(BA'LH)))))

This algebraic expression is then used to construct an algebra tree whose nodes
are any of the four SchemaSQL operators or a “Standard-SQL”-operator (includ-
ing the 7, o, and x-operators of the algebra expression) with standard relations
“traveling” along its edges. The query is then evaluated by traversing the algebra
tree and executing a query processing strategy for each operator, analogous to
traditional SQL query evaluation.

3 The SchemaSQL Update Propagation Strategy

3.1 Classes of Updates and Transformations

The updates that can be propagated through SchemaSQL views can be grouped
into two categories: Schema Changes (SC) and Data Updates (DU). Schema
changes are: add-relation(n, S), delete-relation(n), rename-relation(n,n’) with
relation names n,n’ and schema S and add-attribute(r, a), delete-attribute(r,a),
rename-attribute(r, a,a’) with r the name of the relation R that the attribute
named a belongs to, a’ the new attribute name in the rename-case, and the
notation otherwise as above. Data updates are any changes affecting a tuple
(and not the schema of the relation), i.e., add-tuple(r,t), delete-tuple(r,t), update-
tuple(r,t,t’)), with ¢ and t' tuples in relation R with name r. Note that we
consider update-tuple as a basic update type, instead of breaking it down into
a delete-tuple and an add-tuple. An update-tuple update consists of two tuples,
one representing an existing tuple in R and the other representing the values of
that tuple after the update. This allows to keep relational integrity constraints
valid that would otherwise be violated temporarily.

3.2 SchemaSQL Update Propagation vs. Relational View
Maintenance

Update propagation in SchemaSQL-views, as in any other view environment,
consists in recording updates that occur in the input data and translating them
into updates to the view extent. In incremental view maintenance for SQL [16, 5],
many update propagation mechanisms have been proposed. Their common fea-
ture is that the new view extent is obtained by first computing extent differences
between the old view V and the new view V' and then adding them to or sub-
tracting them from the view, i.e., V! = (VAVV)U AV, with VV denoting some



set of tuples computed from the base relations that needs to be deleted from the
view and AV some set that needs to be added to the view [16].

In SchemaSQ@L, this mechanism leads to difficulties. If SchemaSQL views
must propagate both schema and data updates, the schema of AV or VV does
not necessarily agree with the schema of the output relation V. But even when
considering only data updates to the base relations, the new view V’ may have
a different schema than V. That means the concept of set difference between
the tuples of V’ and V is not even meaningful. Thus, we must find a way to
incorporate the concept of schema changes. For this purpose, we now introduce
a data structure 0 which represents a sequence of n data updates DU and schema
changes SC.

Definition 1 (defined update). Assume two sets DU and SC which represent
all possible data updates and schema changes, respectively. A change ¢ € DU U
SC is defined (or wvalid) on a given relation R if one of the following
conditions holds:

— if ¢ € DU, the schema of the tuple added or deleted must be equal to the
schema of R.

— if c € SC, the object c is applied to (an attribute or relation) must exist (for
delete- and update-changes) or must not exist (for add-changes) in R.

Definition 2 (valid update sequence). A sequence of updates (c1,...,cn)
with ¢; € DUUSC, denoted by OR, is called valid for R if for alli (1 <i<n),
¢; is defined on the relation RU~Y obtained by applying c1,...,ci—1 to R.

For simplicity, we will also use the notation dw to refer to a valid update
sequence to the output table of an algebra operator w. Note that these definitions
naturally extend to views, since views can also be seen as relational schemas. For
an example, consider propagation of update add-tuple(’Berlin’,1400,610)
to LH in Fig. 4 (p. 11). Having the value Berlin in the update tuple will lead to
the addition of a new relation BERLIN in the output schema of the view—forming
a sequence 0V which contains both a schema change and a data update:

OV = (add-relation(BERLIN, (Type,Destination,BA,LH)),
add-tuple(BERLIN, ("Economy’,null,610)))

The add-relation-update is valid since the relation BERLIN did not exist in the
output schema before, and the add-tuple-update is valid since its schema agrees
with the schema of relation BERLIN defined by the previous update.

3.3 Overall Propagation Strategy

Given an update sequence implemented by a List data structure, our update
propagation strategy works according to the algorithm in Fig. 3. Each node in
the algebra tree has knowledge about the operator it represents. This operator
is able to accept one input update and will generate a sequence of updates as



function propagateUpdate(Node n, Update u)
List r— 0, s<—0
if (n is leaf)
if (n.operator is affected by u)
r.append(n.operator.operator Propagate(u))
else
for(all children c; of n)
/* s will change exactly once, see text */
s.append(propagate Update(c;, u))
for(all updates u; in s)
r.append(n.operator.operatorPropagate(u;))
return r

Fig. 3. The SchemaSQL View Maintenance Algorithm

output. Each (leaf node) operator can also recognize whether it is affected by
an update (by comparing the relation(s) on which the update is defined with its
own input relation(s)). If it is not affected, it simply returns an empty update
sequence.

After all the updates for the children of a node n are computed and collected
in a list (variable s in the algorithm in Fig. 3), they are propagated one-by-one
through n. Each output update generated by the operator of n when process-
ing an input update will be placed into one update sequence, all of which are
concatenated into the final return sequence r (see Fig. 3, <« is the assignment
operator).

The algorithm performs a postorder traversal of the algebra tree. This ensures
that each operator processes input updates after all its children have already
computed their output!. At each node n, an incoming update is translated into
an output sequence dn of length greater than or equal to 0 which is then propa-
gated to n’s parent node. Since the algebra tree is connected and cycle-free (not
considering joins of relations with themselves) all nodes will be visited exactly
once. Also note that since updates occur only in one leaf at a time, only exactly
one child of any node will have a non-empty update sequence to be propagated.
That is, the first for-loop will find a non-empty addition to s only once per
function call. After all nodes have been visited, the output of the algorithm will
be an update sequence OV to the view V that we will prove to have an effect on
V' equivalent to recomputation.

3.4 Propagation of Updates through Individual SchemaSQL
Operators

Since update propagation in our algorithm occurs at each operator in the algebra
tree, we have to design a propagation strategy for each type of operator.

1 'We are not considering concurrent updates in this paper.



Propagation of Schema Changes through SQL Algebra Operators The
propagation of updates through standard SQL algebra nodes is simple. Deriv-
ing the update propagation for data updates is discussed in the literature on
view maintenance [16, 5]. It remains to define update propagation for selec-
tion, projection, and cross-product operators under schema changes, as these
are the only operators necessary for the types of queries discussed in this pa-
per. In short, delete-relation-updates will make the output invalid, while other
relation-updates do not affect the output. Attribute-updates are propagated by
appropriate changes of update parameters or ignored if they do not affect the
output. For example, a change delete-attribute(r,a) would not be propagated
through a projection operator 7z if @ ¢ A, and would be propagated as delete-
attribute(q, a) otherwise, with ¢ the name of the output relation of 7 5. We refer
to our technical report [8] for further details, as they are not important for the
comprehension of this paper.

SchemaSQL Operators In the appendix (Figs. 5-8), we give the update prop-
agation tables for the four SchemaSQL operators. In order to avoid repetitions
in the notation, the cases for each update type are to be read in an “if-else”-
manner, i.e., the first case that matches a given update will be used for the
update generation (and no other). Also, NULL-values are like other data values,
except where stated otherwise.

Inspection of the update propagation tables shows several properties of our
algorithm. For example, the view becomes invalid under some schema changes or
data updates, mainly if an attribute or relation that was necessary to determine
the output schema of the operator is deleted (e.g., when deleting the pivot or
data attribute in UNFOLD). In the case of rename-schema changes (e.g., under
rename-relation in FOLD), some operators change their parameters. Those are
simple renames that do not affect operators otherwise. The operator will then
produce a zero-element output sequence. In those cases we denote renaming by
=.

3.5 Update Propagation Example

Continuing our running example, Fig. 4 gives an example for an update that
is propagated through the SchemaSQ@QL-algebra-tree in Fig. 2. All updates are
computed by means of the propagation tables in the appendix.

The operators in Fig. 4 appear in boxes with their output attached below
each box (SQL-statements according to our update tables in [8]). The actual
tuples added by these SQL-statements are shown in tabular form. The sending
of updates to another operator is denoted by double arrows (1)), while single
arrows (1) symbolize the transformation of SQL-statements into updates. We
are propagating an add-tuple-update to base relation LH. Algorithm propaga-
teUpdate will perform a postorder tree traversal, i.e., process the deepest node
(UNITE) first, and the root node (SPLIT) last. The operators are denoted by wq
through ws, in order of their processing. First, the UNITE operator propagates



OV (add-relation BERLIN
add-tuple to BERLIN )

OR: add-tuple to LH (input change) (output change)

[Destination[Business] Econ| [Type[ BA] IA)
|Ber|in | 1400| 610| [Econ[nul] 510]
0 Legend 1
o 1 e s
v T SQL-stmts. create table BERLIN;
insert into TMPREL_1 applied to (like LONDON)
values (’LH’,’Berlin’,1400,610); output rel. insert into Berlin
l operators values (’Eco?r’ ,null,610);
Ow;: add-tuple to TMP_REL_1 insert. . .queries Owy: add-tuple to TMP_REL_4
|Air|ine|Destination|Business|Econ| Eenerated |Type|Destination| BA| LH|
- Yy Wi -
[CH  [Berlin [ 1400[ 610] tables data upd. [Econ[Berlin [null] 610]
generated
0

1

“’4:‘ UNFOLD Airline, Price ‘

wat | FOLD Type Price, {Business,Econ}
insert into TMP_REL_2

values (’LH’,’Econ’,’Berlin’,610); insert into TMP_REL_ 4
insert into TMP_REL_2 values (’Econ’,’Berlin’,
values null,610);
(’LH’ ,Business’,’Berlin’,1400); T
i
w3
Owo: 2 add-tuple to TMP_REL2 STANDARD-SQL Ows: add-tuple to TMP_REL_3
[Airline[Type  [Destination[ Price] select * from |Air|ir'1e|Type|Destination|_ Pri;:e|
[LH_[Econ | Berlin| 610] 7| tiprel-2 [CH  [Econ] Berlin[  610]
[CH [Business| Berlin| 1400] vhere price
<= 1100;

Fig. 4. Update Propagation in the View from Figure 2.

the incoming update into a one-element sequence dw; of updates which is then
used as input to the FoLD-operator. The FoLD-operator propagates its input
into a two-element sequence dws, sent to the StandardSQL-operator. This oper-
ator then propagates each of the two updates separately, creating two sequences
Ows, and Ows,, with 1 and 0 elements, respectively. Those sequences can simply
be concatenated before the next operator’s propagation is executed (Sec. 3.3),
yielding dws. Since one update is not propagated due to the WHERE-condition
in the StandardSQL-node, we have dws = Ows,. UNFOLD now transforms its
incoming one-element update sequence dws into another one-element sequence
Ow4 which becomes the input for the SPLIT-operator. This operator then creates
the two-element final update sequence 9V, consisting of an add-relation schema
change followed by an add-tuple data update.

4 Correctness

Our update propagation strategy is equivalent to a stepwise evaluation of the
algebraic expression constructed for a query. Each operator transforms its input
changes into a set of semantically equivalent output changes, eventually leading



to a set of changes that must be applied to the view to synchronize it with the
base relation change.

The structure of the algebra tree for a view depends only on the query, not
on the base data [12]. The only changes to operators under base relation updates
are possible changes of parameters (schema element names) inside the operators.
An algebra operator cannot disappear or appear as the result of a base update.
However, the entire view query may be rendered invalid, for example under some
delete-relation-updates.

Theorem 1 (Correctness of SchemaSQL View Maintenance). Let V' be
a view defined over the set of base relations Ry, ..., Ry, and AR, € {DU,SC} an
update applied to one relation R, (1 <u < p). Let R., be the relation R,, after the
application of AR, and Vggc be the view after recomputation. Furthermore, let
the SchemaSQL View Maintenance Algorithm as defined in Section 3.3 produce
a change sequence OV that transforms view V into view Viyc. Then, Viee = Vine-

Proof. (Sketch) We only give the proof idea, the full proof can be found in [8].
We prove by first showing that each operator by itself propagates updates cor-
rectly, i.e., produces results equivalent to recomputation. We then prove overall
correctness by induction over the unique path in the algebra tree from the alge-
bra node (leaf) in which the update occured to the root of the tree. O

5 Related Work

The integration of data stored in heterogeneous schemas has long been an ob-
ject of intensive studies. The problem of schematic heterogeneity or different
source capabilities is repeatedly encountered when attempting to integrate data.
Some more recent examples are Garlic [17] and TSIMMIS [3]. Several logic-based
languages have been developed to integrate heterogeneous data sources (e.g.,
SchemaLog [4]). Some SQL-extensions have also been proposed, in particular,
SchemaSQL [11] (see below).

Those approaches overcome different classes of schematic heterogeneities.
However, the important class of schematic heterogeneities in semantically equiv-
alent relational databases is often excluded from integration language proposals,
and even if it is covered, the problem of incremental view maintenance in a view
over an integrated schema is rarely discussed. Krishnamurthy et al. [9] were the
first to recognize the importance of schematic discrepancies and developed a
logic-based language called IDL to deal with such problems. Miller et al. [13]
show that relational databases may contain equivalent information in different
schemas and give a formal model (Schema Intension Graphs) to study such “se-
mantic equivalence” of heterogeneous schemas. An overview over object-oriented
approaches can be found in [15]. Pitoura et al. also discuss a number of OODBMS
implementation that support views. However, none of the projects listed has a
comprehensive incremental view maintenance strategy.

An important approach at integrating semantically equivalent schemas has
been done by Gyssens et al. [6] and later by Lakshmanan, Sadri, and Subra-
manian [11, 12]. In [11], the authors present SchemaSQL, which is used as the



basis for our work. SchemaSQL builds upon earlier work in Schemalog [4]. Tt
is a direct extension of SQL, with the added capability of querying and restruc-
turing not only data, but also schema in relational databases, and transforming
data into schema and vice-versa. Thus, using SchemaSQL as a query language
makes it possible to overcome schematic heterogeneities between relational data
sources.

A second foundation of our work is the large body of work on incremental
view maintenance. Many algorithms for efficient and correct view maintenance
for SQL-type queries have been proposed. One result, taking concurrency into
account, is SWEEP [1]. Most of those approaches follow an algorithmic approach
in that they propose algorithms to compute changes to a view.

Related to our work are also performance studies on incremental view main-
tenance algorithms. An early paper on measuring the performance of incremental
view maintenance strategies is Hanson [7]. More recently, there are performance
studies on some OO view maintenance algorithms for example by Kuno et al. [10].

6 Conclusions

In this paper, we have proposed the first incremental view maintenance algo-
rithm for schema-restructuring views. We have shown that the traditional ap-
proach at incremental view maintenance—rewriting view queries and executing
them against the source data—is not easy to adapt for such views, and that
in addition it is necessary to include schema changes into the picture. We have
solved this problem by defining an algebra-based update propagation scheme
in which updates are propagated from the leaves to the root in the algebra tree
corresponding to the query. We have also proved the correctness of the algorithm.

The update propagation strategy described in this paper has been imple-
mented in Java on top of a SchemaSQL query evaluation module also written by
us [8]. The algebra tree builder was constructed along the lines of [12]. Our ex-
periments showed that for most queries and schemas, incremental maintenance
performs significantly better than recomputation. A case in which incremental
maintenance does not outperform recomputation occurs when a base update
such as delete-relation is translated into a long sequence of single-tuple updates
by one of the SchemaSQL-operators (up to one update per tuple in the deleted
base relation). We plan to address this issue by introducing update batches as a
new class of updates in addition to individual data updates and schema changes.

In summary, we believe our work is a significant step towards supporting the
integration of large yet schematically heterogeneous data sources into integrated
environments such as data warehouses or information gathering applications,
while allowing for incremental propagation of updates. One application that
comes to mind is in a larger data integration environment such as EVE [14], in
which the SchemaSQL wrapper would help to integrate a new class of informa-
tion sources into a view.
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_H:@:ﬁ Change _Ooc%Sosm and Variable Binding Propagation

for ¢ := 1..k

add-tuple (r,t) (A" ={al,...,a5},k — |A"]) insert into Q

values (ai,...,an,a;,t[a;])

delete from Q

delete-tuple (r,t) where ai1,...,an = t[a1,...,an]

update Q set aq =c
update-tuple (r,t,t") A € A*; set t[a] to a value ¢ where ai,...,an = t[ai,...,a,] and
ap =a

A ¢ A*; set t[a] from a value b to alupdate Q set a =c where a=1b

value ¢
foreach tuple u € R
add-attribute(r, a) Ae A3 insert into Q (ai,...,an,ap,aq)
values (ufai,...,an],a,NULL)
AgA* add-attribute(q, a)
delete-attribute(r, a) Aec A" delete from Q where ap =a
AgA* delete-attribute(q, a)
rename-attribute(r, a,a’)|A € A* update Q set ap, = a’ where a, =a
Ad A" rename-attribute(q, a,a’)
delete-relation(r) delete-relation(q)
rename-relation(n, n’) FOLDa, 4,(N) => FOLD4,, a, (N’)
3Note that the decision whether a new attribute should be a member of a1, ...,a» can only be made by evaluating the view query.

Fig. 6. Propagation Rules for Q=FOLDa,, 4 4,4+ (R)
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_Hnﬁcﬁ Change

_Oo:&iobm and Variable Bindings

Propagation

add-tuple (rg,t)

insert into Q (ai,.
values (t[ai,.

ey G, Gp)
. .ub\ﬁ_qﬂ&v

delete-tuple (r,t)

delete from Q
where ai,...,an = t[aq,.
ap =Tz

..,an] and

update-tuple (rs,t,t')

A = Ag; set t[a] to a value ¢

update Q set a=c¢
where ai,...,a, = t[ai,.
ap = Ta

..,ay) and

A # Ag; set tla] from a value b to a
value ¢

update Q set a=c¢
where a =0 and ap, =7,

add-attribute(r, a)

add simultaneously to all R;

add-attribute(q, a)

otherwise

invalid view

delete-attribute(r, a)

delete simultaneously from all R;

delete-attribute(q, a)

otherwise

invalid view

rename-attribute(r, a,a’)

rename simultaneously in all R;

rename-attribute(q, a, a’)

otherwise

invalid view

add-relation(rz, S)

no change (until first add-tuple to Ry)

delete-relation(ry)

delete from Q where a, =7,

rename-relation(n, n")

UNITEa, ({R1,...,N,...,Ra}) —

UNITEq, ({R1,...,N',..., Rn})
update Q set ap, =n’
where ap = n

Fig. 8. Propagation Rules for Q=UNITE,, (R1, Rz, .

5Note that r, is the name of Relation R, which is one of the n relations of equal schema that are united by the UNITE-operator.

5

. Rn)®




