
Multiversion Based View Maintenance Over

Distributed Data Sources

SONGTING CHEN, BIN LIU and ELKE A. RUNDENSTEINER

Worcester Polytechnic Institute

Materialized views can be maintained by submitting maintenance queries to the data sources.
However, the query results may be erroneous due to concurrent source updates. State-of-the-art
maintenance strategies typically apply compensations to resolve such conflicts and assume all
source schemata remain stable over time. In a loosely-coupled dynamic environment, the sources
may autonomously change not only their data but also their schema or semantics. Consequently,
either the maintenance or the compensation queries may be broken. Unlike compensation-based
approaches found in the literature, we instead model the complete materialized view maintenance
process as a view maintenance transaction (VM Transaction). This way, the anomaly problem can
be rephrased as the serializability of VM Transactions. To achieve VM Transaction serializabil-
ity, we propose a multiversion concurrency control algorithm, called TxnWrap, which is shown
to be the appropriate design for loosely-coupled environments with autonomous data sources.
TxnWrap is complementary to the maintenance algorithms proposed in the literature, since it
removes concurrency issues from consideration allowing the designer to focus on the maintenance
logic. We show several optimizations of TxnWrap, in particular, (1) space optimizations on ver-
sioned data materialization and (2) parallel maintenance scheduling. With these optimizations,
TxnWrap even outperforms state-of-the-art view maintenance solutions in terms of refresh time.
Further, several design choices of TxnWrap are studied each having its respective advantages for
certain environmental settings. A correctness proof based on transaction theory for TxnWrap is
also provided. Lastly, we have implemented TxnWrap. The experimental results confirm that
TxnWrap achieves predictable performance under a varying rate of concurrency.

Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Distributed
databases; Relational databases; Concurrency

General Terms: Theory, Algorithms, Experimentation

Additional Key Words and Phrases: View Maintenance, Transaction Processing

1. INTRODUCTION

1.1 Materialized Views and Their Environment

Materialized views [Gupta and Mumick 1995; Agrawal et al. 1997] built by gathering
data from possibly distributed data sources and integrating it into one repository

This work was supported in part by several grants from NSF, namely, the NSF NYI grant IRI
97–96264, the NSF CISE Instrumentation grant IRIS 97–29878, and the NSF grant IIS 9988776.
Author’s address: Department of Computer Science, Worcester Polytechnic Institute, Worcester,
MA, 01609, USA; email: (chenst | binliu | rundenst)@cs.wpi.edu.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0362-5915/2004/0300-00000 $5.00

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004, Pages 0–30.

Multiversion Based View Maintenance over Distributed Data Sources · 1

customized to users’ needs are a well recognized technology for data integration,
e-business, and data warehousing. One important task of a view manager is to
maintain the materialized view upon source changes, since frequent data updates
are common for many applications, such as stock trading or telephone call recording.

In dynamic environments like the WWW, the data sources may change their
schema, semantics as well as their query capabilities. A schema change could occur
for numerous reasons during the software life-cycle, including design errors, schema
redesign during the early stages of database deployment, the addition of new func-
tionalities and even new developments in the application domain, such as new tax
laws or Y2K problems. Even in fairly standard business applications, rapid schema
changes have been observed. In [Marche 1993], significant changes (about 59% of
attributes on average) were reported for seven different applications ranging from
project tracking, sales management to government administration. A similar re-
port can also be found in [Sjoberg 1993]. Second, the emerging schema mapping
techniques [Miller et al. 2000; Madhavan et al. 2001] are critical for information
integration over heterogeneous data sources, which aim at mapping between het-
erogeneous sources are semi-automatic and depend on domain knowledge. As a
result, a good mapping is thus hard to find and may evolve over time [Lee et al.
2002; Velegrakis et al. 2003].

Moreover, data sources in a distributed environment are typically owned by dif-
ferent information providers and function independently from one another. The
relationship between materialized views and such autonomous data sources hence
must be loosely-coupled [Zhuge et al. 1995]. That is, the source updates are com-
mitted without any concern of how and when the view manager will incorporate
them into the view [Widom 1995; Lee et al. 2002]. This causes problems which we
called maintenance anomalies. These are the issues we now address in this work.

1.2 Motivating Example of the Maintenance Anomaly Problems

We will now illustrate the anomaly problems via motivating examples. We first
distinguish between three main maintenance tasks, namely, view maintenance,
view synchronization and view adaptation. View maintenance [Zhuge et al. 1995;
Agrawal et al. 1997; Salem et al. 2000] maintains the materialized view extent un-
der source data updates. In contrast, view synchronization [Nica et al. 1998; Lee
et al. 2002] aims at rewriting the view definition when the source schema has been
changed. Thereafter, view adaptation [Gupta et al. 1995; Nica and Rundensteiner
1999] incrementally adapts the view extent again to match the newly changed view
definition.

If there is no concurrency among source updates, namely, the current view main-
tenance process completes before the next source update occurs, then view main-
tenance incorporates each source data update while view synchronization and view
adaptation together incorporate the source schema change into the view. However,
the data sources are autonomous and may undergo changes concurrently, thus caus-
ing the maintenance anomaly problems illustrated below.

Example 1. Assume we have four data sources (DS) as shown in Figure 1.
The materialized view Asia-Customer is defined by the SQL query in Equa-

tion (1). Assume the data update “ ∆C = INSERT INTO Customer VALUES

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

2 · S. Chen, B. Liu and E.R. Rundensteiner

DS1: Customer(Name, Address, Phone): Customer Info.

DS2: Tour(TourID, TourName, Age, Type, NoDays): Tour. Info.

DS3: Participant(Participant, TourID, StartDate, Loc): Participant. Info.

DS4: FlightRes(Name, Age, FlightNo, Dest): Reservation. Info.

Fig. 1. Description of Data Sources.

(‘Ben’,‘MA’,213)” has happened at DS1. In order to determine the delta effect on
the view extent, this now requires us to send the view maintenance query Q
[Zhuge et al. 1995] defined in Equation (2) down to the FlightRes relation at DS4.

CREATE VIEW Asia − Customer AS

SELECT C.Name, F.Age,

F.F lightNo, F.Dest

FROM Customer C, F lightRes F

WHERE C.Name = F.Name

AND F.Dest = ′Asia′

(1)

SELECT
′Ben′ as Name, F.Age,

F.F lightNo, F.Dest

FROM F lightRes F

WHERE F.Name = ′Ben′

AND F.Dest = ′Asia′

(2)

We distinguish between two kinds of anomaly problems that may arise:

—Data Update Anomaly: If during the transfer time of the query Q to the
relation FlightRes in the DS4, FlightRes has already committed a new data up-
date “∆F = INSERT INTO FlightRes VALUES (‘Ben’, 18,‘AA43’,‘Asia’)”.
This new tuple would also be included in the join result of Q and the extra tuple
(‘Ben’, 18, ‘AA43’,‘Asia’) would be inserted into the view. However, later when
the materialized view manager starts processing the ∆F , the same tuple would be
inserted into the view again. A data update anomaly appears. Similarly, a delete
operation could cause anomaly problems.

—Schema Change Anomaly: If during the transfer time of the query Q to
DS4, the FlightRes relation in DS4 has a schema change, e.g., the attribute
FlightRes.Age is dropped, then the query Q faces a schema conflict. In this case,
the selected attribute Age required by the maintenance query Q is no longer avail-
able in the source. Hence the query Q cannot be processed by DS4. We then say
that the query Q is broken. That is, a schema change anomaly appears.

As illustrated by the example above, sources being autonomous may commit
updates that are concurrent with and hence may conflict with the view maintenance
process. A concurrent data update may result in an incorrect query result while a
concurrent schema change may result in a broken query that cannot be processed
by the respective data source.

1.3 Contributions of this Work

A preliminary version of this paper focusing on the TxnWrap model itself has been
published in the 21 st International Conference on Conceptual Modeling [Chen et al.
2002]. Our contributions there include:

(1) We illustrate that the anomaly problems as described in Section 1.2 can be
reformulated as a transaction problem by modeling the complete maintenance
process using a transaction model, called a VM Transaction. Based on our
VM Transaction model, we demonstrate that the view maintenance anomaly
problems can be mapped to the problem of the serializability of VM Transactions.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 3

(2) We then propose a multiversion concurrency control algorithm, called Txn-
Wrap, to achieve such serializability that is appropriate for the view mainte-
nance in a distributed environment with autonomous data sources.

(3) To the best of our knowledge, TxnWrap is the first work to integrate the exist-
ing materialized view maintenance works in the literature such as view mainte-
nance, view synchronization and view adaptation algorithms within the context
of a sound theory, the serializability theory, to remove concurrency concerns
from their maintenance logic.

(4) We have implemented the TxnWrap solution and integrated it into a fully func-
tioning view maintenance prototype system. Experiments comparing mainte-
nance performance with and without TxnWrap enabled confirm that TxnWrap
avoids the maintenance anomaly problems and achieves stable performance.

In addition, in this extended journal paper we now contain the following:

(1) We propose a new multiversion management strategy. Instead of using a global
identifier as both a version number and its corresponding VM Transaction iden-
tifier, we now propose to separate identifier design into two concepts. That is,
we introduce a local identifier within each data source’s scope for version man-
agement and a global identifier for VM Transaction management where the
global identifier is composed out of a vector of local identifiers. This avoids the
coordination cost for generating global identifiers in distributed environments.

(2) We analyze the design choices for TxnWrap version placement. Three different
wrapper design choices are discussed and their trade-offs, such as space costs
and maintenance costs, are evaluated experimentally.

(3) We illustrate that the development of a sound transactional foundation for view
maintenance offers the advantage of the ability to easily add additional services
to the system and assure their correctness. In particular, we show how Txn-
Wrap with minimal effort can be optimized by applying a parallel instead of
sequential maintenance scheduler. This way, we achieve a better maintenance
performance. An initial version of parallel view maintenance work has been
published in DaWak′2002 [Liu et al. 2002a]. We now provide an extensive
performance study of the parallel feature. Furthermore, we also present a per-
formance study that demonstrates how the existing self-maintenance approach,
such as [Quass et al. 1996] can benefit from our TxnWrap solution.

(4) We demonstrate that our TxnWrap solution can be easily extended to effi-
ciently handle the scenarios when there are multiple tables in one data source,
a rather important practical requirement not supported by previous work such
as SWEEP [Agrawal et al. 1997].

(5) We introduce several space optimization strategies for versioned data material-
ization. Static optimization strategy is to analyze the view definition and the
existing constraints to reduce the wrapper space during version creation. Dy-
namic optimization is a runtime strategy that aims to reduce the intermediate
wrapper version space on the fly. We also conduct an experimental study to
measure the impact that these space optimization strategies have on mainte-
nance performance .

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

4 · S. Chen, B. Liu and E.R. Rundensteiner

(6) Finally, a correctness proof for both sequential and parallel TxnWrap is pro-
vided utilizing concepts from transactional theory [Bernstein et al. 1987]. These
correctness proofs, primarily due to taking a transactional approach towards
solving this problem, are missing from most existing solutions in the literature
that typically offer (hard-coded) algorithmic approaches.

The outline of the rest of the paper is as follows. The transaction model called
VM Transaction is introduced in Section 2. A multiversion concurrency control
algorithm to handle the conflicts between VM Transactions is proposed in Section 3.
Section 4 discusses the architectural solutions for versioned data materialization.
Wrapper optimization strategies are discussed in Section 5. Extensions of TxnWrap,
in particular, parallel processing of VM Transactions is introduced in Section 6.
Section 7 presents experimental results. In Section 8 we review the related work
while Section 9 concludes the paper.

2. TRANSACTIONAL MODELING OF VIEW MAINTENANCE

We first analyze the view maintenance anomaly problems. Typically, the main-
tenance process involves reads from individual data sources to calculate and ulti-
mately refresh the view extent. On the other hand, the data source update process
may continue to commit various changes throughout the same period. Due to the
autonomy of the data sources, i.e., the loosely-coupled nature of the environment,
concurrency between these two processes may occur. This maintenance anomaly
problem is similar to the following process in a traditional centralized DBMS: as-
sume a join is defined upon two source relations. Without any appropriate concur-
rency control, concurrent data updates or schema changes of other write transac-
tions on these two relations during the computation of the join process would cause
a concurrency problem. This is clearly similar to the view maintenance anomaly
problem.

A traditional DBMS deals with this kind of problem (1) by applying a transaction
model to encapsulate all operations that need to be executed atomically into one
transaction, such as the two reads of the two relations and the full join computation,
and (2) by using concurrency control strategies to guarantee the ACID properties of
each transaction [Gray and Reuter 1992]. The ACID properties assure a consistent
view of all data inside each transaction and hence solve the problem.

Similarly, in our view maintenance context, the maintenance process can be
viewed as a series of read operations over sources that should be executed atomi-
cally, while the source updates are independent write operations. There are read
and write conflicts since the source writes are autonomous. The above discussion
leads us to the idea of applying a transactional model to solve the anomaly problem,
as described in detail below.

2.1 Transactions in a Materialized View Maintenance Environment

In a materialized view maintenance environment, each view maintenance process is
composed of the following two types of transactions:

(1) A source update transaction at some data source is committed, denoted as
“Ts = w(DSi)c(s)” where w(DSi) means the write operation on DSi and i is
the index of the data source, c(s) means the commit operation.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 5

(2) A view maintenance transaction that computes the delta effects caused by
source updates in order to refresh the view extent. During this period, the
maintenance transaction reads the view definition to generate the mainte-
nance queries to be sent to the different sources and to compute the main-
tenance result. After that, it refreshes the view extent. We denote this as
“Tv = r(V D)r(DS1)r(DS2) . . . r(DSn)w(v)c(v)”, where r(V D) denotes the
generation of the source-specific maintenance queries based on the view defini-
tion V D, r(DSi) denotes reading from DSi, w(v) denotes refreshing the view
extent and c(v) denotes the commit process 1.

However, these two types of transactions are not completely independent. As sug-
gested above, the relationship is that each source update transaction would trigger
a corresponding view maintenance transaction. Furthermore, this view mainte-
nance transaction is required to see a consistent state of all sources. That is, a
view maintenance transaction cannot conflict with other source update transac-
tions. Clearly, some coordination between these two transactions is needed, as
otherwise an anomaly may occur as shown in Section 1.2.

These observations give us the hint that a high-level computational transaction
model that integrates both of these two sub-transactions may be able to achieve
such coordination. In addition, the ACID properties of such a high-level transaction
should be sufficient to resolve the conflicts between its sub-transactions, namely
source update transactions and view maintenance transactions.

2.2 A Transactional Model: VM Transaction

We model this high-level transaction that integrates both a source update transac-
tion and its corresponding view maintenance transaction as a VM Transaction.

Definition 1. A VM Transaction starts after a local successfully committed
source update transaction Ts and commits when the materialized view has been
successfully refreshed, i.e., the commit of the view maintenance transaction Tv. We
denote it as “T = TsTv = w(DSi)c(s)r(V D)r(DS1)r(DS2) . . . r(DSn)w(v)c(v)”.

Previous research has already hinted at this notion of a “global view maintenance
transaction” [Zhuge et al. 1996]. However, [Zhuge et al. 1996] states that a global
transactional approach is not feasible since the sources may not tolerate such a
wait time before being allowed to commit their local updates. We now observe
that the nested structure of a VM Transaction as indicated in Definition 1 can be
exploited to avoid this potential drawback. In fact, our work will show the benefits
and feasibility of such a transactional approach towards view maintenance. Here,
we adopt this idea of taking a transactional approach for view maintenance and
put forth the following supporting arguments:

(1) The VM Transaction model is a conceptual rather than a real transaction
model. It encapsulates two types of transactions, namely, source update trans-
actions and their corresponding view maintenance transactions. We observe

1In schema change maintenance transactions, we may need to update the view definition (V D) for
any schema change that affects the view schema before we can generate the maintenance queries.
More discussion on this issue can be found in Section 6.2.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

6 · S. Chen, B. Liu and E.R. Rundensteiner

that the source update transaction can in fact commit autonomously as a sub-
transaction within the complete VM Transaction. Thus sources never need to
wait.

(2) With the help of the VM Transaction concept, the view maintenance anomaly
problem [Zhuge et al. 1995] can be rephrased as the well-known “read dirty
data” transaction problem. With an appropriate concurrency control solution,
the conflicts between the VM Transactions, in other words, the view mainte-
nance anomaly problems can naturally be solved.

(3) Lastly, this formal transaction-based solution lays a solid foundation for many
other maintenance functions and services including handling multiple relations
per source or parallel view maintenance, as we will demonstrate later.

2.3 Start, Commit, Abort and Rollback of VM Transactions

Since our notion of a VM Transaction is a conceptual transaction model, it does
not have an automatic rollback or abort mechanism. A VM Transaction is started
when a source update has been committed. After that, we must have this source
update incorporated into the view to keep the view consistent 2. The reason is
that the source update transaction is out of the control of the view manager. Thus
the rollback of this update cannot be achieved. Hence whenever an error happens
during the VM Transaction, we have to redo the maintenance again until it is
successfully committed.

2.4 VM Transaction Scheduling

Two types of VM Transaction schedulers are possible, namely, sequential and par-
allel ones. A sequential scheduler processes one view maintenance transaction at
a time, and continues on the next one only after the current one has been com-
pleted. Most view maintenance algorithms in the literature [Zhuge et al. 1995;
Agrawal et al. 1997] implicitly employ such sequential scheduling for view mainte-
nance though without utilizing this transaction terminology. Parallel scheduling is
more challenging, since out-of-order view maintenance transaction processing intro-
duces additional conflicts [Zhang et al. 2004]. In this paper, we will first introduce
our solution assuming a sequential scheduler to keep the description simple. Later
in Section 6 we demonstrate that our transactional model can be easily extended to
support such a parallel scheduler. This is in effect one of the advantages of adopting
a transactional model for view maintenance. That is, many services can be easily
added to this solid transactional framework.

2.5 Conflicts between VM Transactions

We now examine the operations encapsulated within VM Transactions to iden-
tify potential conflicts between them. From Definition 1, we know that there are
four basic read and write operations within a VM Transaction, namely, w(DSi),
r(V D), r(DSi) and w(v). Hence, three types of conflicts may arise between these

2We adopt the view consistency notions from [Zhuge et al. 1995; Zhang et al. 2004]. More details
will be discussed in Section 6.3.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 7

operations 3. First, the write-write conflict can occur when some write operation
w1(DSi) in VM Transaction T1 conflicts with w2(DSi) in another VM Transaction
T2. Second, some write operation w1(v) in VM Transaction T1 conflicts with w2(v)
in another VM Transaction T2. Obviously such write-write conflicts would natu-
rally be taken care of by the local data manager of the sources or the view manager
respectively. The third conflict is the read-write conflict, namely, one read operation
r1(DSi) of VM Transaction T1 may read some inconsistent query result written by
w2(DSi) of another VM Transaction T2.

We can see that the view maintenance anomaly problems illustrated in Sec-
tion 1.2 arise due to the read-write conflicts of VM Transactions. That is, we
rephase the view maintenance anomaly problem in terms of the read-write conflicts
of VM Transactions. Hence, as long as we can resolve such read-write conflicts, we
solve the view maintenance anomaly problem.

2.6 Serializability of VM Transaction

Above discussions lead us to a concurrency control strategy for our VM Transaction
model to resolve the conflicts. In other words, we only have to guarantee the
serializability of VM Transactions.

Definition 2. A history of VM Transactions S is serializable iff it is equivalent
to some serial schedule S1 of these VM Transactions.

Note that a serial schedule of VM Transactions S1 assumes source update occurs
after the previous maintenance process. Obviously no view maintenance anomaly
would occur in this case. Consequently, no anomaly would happen in its equivalent
history S either. Hence, Definition 2 describes the correctness criterion of the execu-
tion of VM Transactions. In the next section, we will propose a concurrency control
strategy, called TxnWrap, to achieve such serializability for VM Transactions.

3. MULTIVERSION CONCURRENCY CONTROL ALGORITHM

Generally, two basic kinds of concurrency control algorithms [Bernstein et al. 1987],
namely, lock-based or multiversion-based, can be used to address the serializ-
ability of traditional transactions. Below we examine which of these two strate-
gies may be appropriate to achieve the serializability of the VM Transactions in a
loosely-coupled view maintenance context.

The traditional lock-based concurrency control algorithms [Bernstein et al.
1987] work as follows: For every write, an exclusive write lock is obtained and
released at the end of the transaction; and for every read, a read lock is obtained,
after the read operation completes, the read lock can be released. This is however
too restrictive for the schedule of VM Transactions. By Definition 1, we know that
VM Transaction will read from all sources. Hence a read lock over all sources is
required. However, the sources in a distributed environment are often autonomous
and would not be willing to accept locks from external agents. Hence locking algo-
rithms are not suitable in such environments.

3A read-write view definition (V D) conflict may arise between VM Transactions if we schedule
view maintenance transactions in parallel. We investigate this type of conflict more closely in
Section 6.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

8 · S. Chen, B. Liu and E.R. Rundensteiner

In the traditional multiversion concurrency control algorithms [Bernstein et al.
1987], a writer writes on a version that is different from the one that the reader
reads. That is, the reader will read an older version than the one that the writer
is currently writing to, thus avoiding the conflicts. In particular, we further dif-
ferentiate between two categories of multiversion algorithms, i.e., the finite version
[Mohan et al. 1992; Quass and Widom 1997] and the unrestricted version [Chan
and Gray 1985; Agrawal and Sengupta 1989] algorithms. Finite version algorithms
pre-set a fixed number of maximal versions (often 2 or some constant n). There is
a so called “version expiration” [Mohan et al. 1992; Quass and Widom 1997] phase
when the number of versions exceeds the allowed maximum. In that case, we have
to switch the reader to a newer existing version to allow for the writers to start
making a new version. To achieve this, we require that either the writer synchro-
nizes with all readers on the old version or aborts those readers. In comparison, in
unrestrictive multiversion algorithms, the writers can always create a new version
and the readers can find whatever the most appropriate versions that they need at
any time. No blocking between the reader and writer would ever occur.

Based on above observations, we find that an unrestrictive multiversion algorithm
is the appropriate design choice in loosely-coupled environments. First, the version
that the reader (view maintenance transaction) needs should never expire before the
maintenance process has been completed, otherwise the materialized view would
be inconsistent. Second, the autonomous writer (source update transaction) is
unlikely to synchronize with the reader. For this reason, we favor the choice of an
unrestricted multiversion algorithm. Also note that since the VM Transactions will
read a monotonically increasing version of data instead of some random old ones,
the version cleanup can be efficiently carried out for old versions. As an added
benefit, we can easily extend this concurrency control strategy to also work with a
parallel scheduler as we will show in Section 6.

We now introduce an unrestricted multiversion algorithm based on the above
discussion, called TxnWrap. The main idea is to extend the functionality of the
wrapper for each data source beyond just communicating between sources and
the view manager 4. That is, the wrapper is responsible for storing the versions
generated due to the source updates and thus answering any maintenance query
using this versioned information. Below, we describe our TxnWrap multiversion
algorithm, in particular, first the wrapper materialization of sources at initialization
time and then the version management under both update notifications and query
requests.

3.1 Wrapper Schema Setup

We propose to extend the wrapper of each source to contain version relations of
source data, called wrapper relations. A simple full replication of the source data
for the wrapper relations would guarantee that we can answer a maintenance query
at the wrapper without any further source access. However we can further improve
upon this by various optimization techniques to filter out unnecessary data, as

4Note that this is just one of the three architectural choices for where to keep the versioned data.
See Section 4 for an elaboration on these choices. Without loss of generality, here we select one
of these designs to describe the main idea.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 9

we will discuss in detail in Section 5. Here, for the purpose of understanding
the concurrency control strategy, we will first assume that each version relation
corresponds to a full copy of the source relation.

We further propose to add two more attributes V Start and V End into the
wrapper relation to denote the life time of each tuple. V Start denotes the start
version of the tuple (by insertion), and V End denotes the version when the lifetime
of the tuple ends (by deletion). We initialize the tuples in the wrapper relation by
setting their V Start to 0 and V End to ∞. This way we guarantee that all initial
tuples are visible to all VM transactions.

We also build a meta relation at the wrapper for versioning of the source meta
data. It contains six attributes, namely, Rel, Attr, Rel′, Attr′, V Start and V End,
respectively. The pair of attributes Rel and Attr describes the source meta data.
V Start and V End denote the life span of the attributes, i.e., the version number
when it’s been created, renamed or dropped. The pair of attributes Rel′ and Attr′

indicates the new name of a particular attribute or of a relation. The initial source
wrapper status for the two sources from Example 1 are now shown in Figures 2
and 3, respectively.

CA

MA

Add.

146

123

Phone

∞0Bob

∞0Tom

V_EndV_StartName

∞0--Add.C ′

∞0--PhoneC ′

∞0--NameC ′

V_EndV_StartAttr ′Rel′AttrRel

Wrapper for DS1Relation C′

Meta Relation

Fig. 2. Initial Extent of Wrapper of DS1

∞0--AgeF′

∞0--FlightNoF′

∞0--DestF′

∞0--NameF′

V_EndV_StartAttr ′Rel′AttrRel

Wrapper for DS4
Relation F′

Meta Relation

∞0AsiaAA439917Tom

V_EndV_StartDestFlightNoAgeName

Fig. 3. Initial Extent of Wrapper of DS4

3.2 Version and VM Transaction Identifiers

A version number is needed in a multi-version management system to identify each
version. Similarly, a VM Transaction identifier is also necessary to track and iden-
tify each view maintenance transaction. One simplified strategy is to introduce
a global id [Chen et al. 2002]. This identifier is issued by some global identifier
server in the materialized view manager to assure its global uniqueness. In such a
scenario, a global id would serve both as a version number and a VM Transaction
id. Thus, whenever a source update is reported to the wrapper, the wrapper must
first get a global id from the view manager and then use that id to create versions.
This however introduces coordination cost between wrappers and view manager,
which may be non-trivial in distributed environments. For this reason, we now
introduce two levels of identifiers, a local id within the scope of a data source to
identify versions in the wrapper and a TxnID within the scope of the whole view
maintenance context to manage VM Transactions. This avoids the extra coordina-
tion cost between wrappers and view manager and is thus beneficial for distributed
environments.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

10 · S. Chen, B. Liu and E.R. Rundensteiner

3.2.1 Local Identifier in the Wrapper. We define a local id to be a timestamp
that represents the time the update happened at each individual data source. With-
out loss of generality, we use an integer k (k ≥ 0) to represent the local id. Each
local id is assigned by the corresponding wrapper with each source update. For
example, assume three source updates as shown in Figure 4 happened on relations
as depicted in Figure 1, then the wrapper will attach a local id 1 to the update
“INSERT INTO Customer VALUES (‘Ben’,‘CA’,‘213’)” because this is the first
update to the relation Customer. While for the update “RENAME Customer.Name
TO Customer.First-Last”, its local id will be 2 because this is the second update in
the relation Customer. The same rule also applies to the update on source relation
FlightRes. Its local id in the wrapper will be 1 because this is the first update in
this relation.

3.2.2 VM Transaction Identifier: TxnID. We also need identifiers to track each
global VM Transaction and help to construct correct maintenance queries that
access the appropriate versions of data. A TxnID τ is defined to be a vector
τ = [k1, k2, . . . , kn] with τ [i] = ki (1 ≤ i ≤ n and n is the number of data sources).
Each τ [i] records the current local id of each DSi at the time this TxnID is being
generated, i.e., the largest local id that has been reported to the view manager thus
far. We describe the rules for generating TxnIDs as follows:

—As initial value, the view manager has a vector T with each T [i]=0 (1 ≤ i ≤ n).
Each entry T [i] will hold the local id that has been reported from the source DSi.

—Whenever an update from source DSi (1 ≤ i ≤ n) with a local id k is reported to
the view manager, the view manager generates a TxnID τ for this source update
using the following two steps: 5

—Set T [i] = k.
—Copy T to τ (Set τ [j] = T [j] for all 1 ≤ j ≤ n).
—Return τ as the VM Transaction identifier.

It’s easy to see that though the local ids in different data sources may be the
same, the TxnIDs are globally unique for each update. From the view point of the
view manager, each entry of the TxnID vector records the current state of each
data source on arrival of the source update to be maintained.

For example, the view Asia-Customer as shown in Example 1 is defined on two
data sources, one is Customer and the other is FlightRes. We thus build a TxnID
vector T with two entries, with each entry containing the current local id of its
corresponding data source. Without loss of generality, we use T [1] to hold the local
id from relation Customer and T [2] to hold the local id from the relation FlightRes.
Initially, we have T [i] = 0 (1 ≤ i ≤ 2). For the three updates depicted in Figure 4, if
we also assume that they arrive at the view manager in the order as we have defined
them, then the TxnIDs for these updates will be [1, 0], [1, 1] and [2, 1] respectively.
That is, when the first data update (the VM Transaction1) with a local id 1 arrives
at the view manager, we set T [1] = 1 and return [1, 0] as its TxnID. While for

5A FIFO transferring of updates from data souce to view manager for updates from the same
data sources is required, which is also assumed by most of the literature in the view maintenance
area.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 11

update VM Transaction2, we set T [2] = 1 and get [1, 1] as the TxnID, and so on.
As can be seen, each entry in TxnID records the right versioned data that needs to
be accessed from the corresponding wrapper in its view maintenance transaction.

3.3 Version Operations

Basically, there are three classes of version operations that the wrapper must per-
form. First, the wrapper needs to create versions whenever an update is reported
by a source. Second, the wrapper needs to read the appropriate versions to answer
each maintenance query issued by the view manager. Third, any versions that are
no longer required by any future VM Transactions need to be cleaned up.

3.3.1 Version Creation in the Wrapper. The updates reported by a source can
be categorized as data updates, which are insert, delete and update, or schema
changes, which are add, drop and rename an attribute or create, drop and rename
a table. To create versions, a local id i will be assigned as a version number by the
wrapper to create a new version for each source update. The corresponding version
creation rules are shown below:

(1) Delete a tuple t : update t [V End] to be i.

(2) Insert a tuple t : insert this tuple, set t [V Start] as i and set t [V End] ∞.

(3) Update a tuple t : treat it as a delete followed by an insert.

(4) Drop an attribute: update the attribute’s V End to be i in the meta-relation.

(5) Add an attribute: insert it into the meta relation with V Start to be i and
V End to be ∞.

(6) Rename an attribute: In meta relation, set Rel′ and Attr′ of the old attribute
to its new names, update V End to i. Then add the renamed attribute to meta
table.

(7) Drop a table: treat it as drop of all its attributes.

(8) Add a table: Add all its attributes to the meta-relation.

(9) Rename a table: Method similar to rename an attribute, but operate on all
attributes.

As an example, consider the four source updates shown in Figure 4. After the
corresponding version creation step, the wrapper relation and metadata relation
are shown in Figures 5 and 6.

VM_Transaction1 (local id =1, TxnID=[1,0])
INSERT INTO Customer VALUES (‘Ben’, ‘CA’, ‘213’);

VM_Transaction2 (local id =1, TxnID=[1,1])
INSERT INTO FlightRes VALUES (‘Ben’, ‘18’, ‘A34’, ‘Asia’);

VM_Transaction3 (local id =2, TxnID=[2,1])
RENAME Customer.Name TO Customer.First-Last;

VM_Transaction4 (local id =2, TxnID=[2,2])
INSERT INTO FlightRes VALUES (‘Sue’, ‘20’, ‘A34’, ‘Asia’);

Fig. 4. Four Source Updates

∞0--PhoneC ′

∞0--Add.C ′

∞2--First-LastC′

20First-LastC ′NameC ′

V_EndV_StartAttr ′Rel′AttrRel

Wrapper for DS1Relation C′

Meta Relation

∞0146CABob

CA

MA

Add.

213

123

Phone

∞1Ben

∞0Tom

V_EndV_StartName

Fig. 5. DS1 Wrapper Content after Updates

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

12 · S. Chen, B. Liu and E.R. Rundensteiner

3.3.2 Version Read in the Wrapper. The read version operation happens when
a VM Transaction wants to query a source. Rather than being processed by the
source, the queries are interpreted by the wrapper and executed by reading the
appropriate versions from the wrapper data and metadata relations. Notice that the
VM Transaction requires to see a consistent state of all sources. Here a consistent
state means both source data and metadata.

To achieve this, the first step is to rewrite the original maintenance query by
augmenting it with the version conditions “AND V Start <= τ [i] AND τ [i] <
V End”. This rewritten maintenance query will be evaluated over the wrapper data
relation. For example, Figure 7 depicts the rewritten versioned maintenance query
for the three source data updates from Figure 4. The third rename schema change
in Figure 4 results in the rewriting of view definition without any maintenance
queries.

∞0--AgeF′

∞0--FlightNoF′

∞0--DestF′

∞0--NameF′

V_EndV_StartAttr ′Rel′AttrRel

Wrapper for DS4Relation F′

Meta Relation

∞1AsiaA3418Ben

∞2AsiaA3420Sue

∞0AsiaAA4317Tom

V_EndV_StartDestFlightNoAgeName

Fig. 6. DS4 Wrapper Content after Updates

VM_Transaction with TxnID=[1,0]
SELECT Name, Age, FlightNo, Dest FROM F′
WHERE Name=‘Ben’ AND V_Start <=0 AND V_End >0

VM_Transaction with TxnID=[1,1]
SELECT Name FROM C′ WHERE
Name=‘Ben’ AND V_Start <=1 AND V_End >1

VM_Transaction with TxnID=[2,2]
SELECT First-Last FROM C′ WHERE
Name=‘Sue’ AND V_Start <=2 AND V_End >2

Fig. 7. Version Queries at Wrapper

The second step is to make sure the metadata specified in the maintenance query
is consistent with the wrapper data relation. If not, we need to evolve the schema of
the wrapper data relation. More precisely, if the version number of the maintenance
query “τ [i]” is larger or equivalent than any “V End” in the wrapper metadata
relation, then we know that the corresponding wrapper data relation’s schema is
out-dated. For example, to maintain the fourth update in Figure 4, the maintenance
query in Figure 7 needs to access the ‘First-Last’ column, which is not available
yet in the wrapper data relation. Hence the corresponding wrapper data relation
has to be evolved by (1) deleting the corresponding tuples in the metadata relation
and (2) renaming/dropping the corresponding columns/tables in the wrapper data
relations. The above has to be done as one atomic action. In this example, we
delete the (C’, Name,...) tuple from metadata relation and rename the column
‘Name’ to ‘First-Last’. After this metadata consistency checking, we can process the
maintenance query. Note that we can keep those metadata tuples with V End <>
∞ (there are typically only few such tuples) in memory to speed up this step.

3.3.3 Version Cleanup in the Wrapper. Finally, we clean up versions that are
no longer needed by any maintenance transaction. The primary purpose of this
operation is to reduce the size of the wrapper relations in order to speed up the
maintenance queries and to evolve the wrapper schema. For a sequential scheduler,
the cleanup is straightforward. That is, after the completion of a VM Transaction

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 13

with TxnID τ , for all the local ids τ [i] (1 ≤ i ≤ n) recorded in TxnID τ , the
data with V End less than τ [i] are no longer required by any later maintenance
transaction. Hence they can be deleted from the corresponding wrapper relation
specific to DSi. For the wrapper data relation, we simply delete the tuples with
V End <= τ [i]. For wrapper metadata relation, we atomically execute the up-
date as “DELETE * FROM meta-table WHERE V End <= τ [i]” and perform the
corresponding schema change operations on the wrapper data relation, e.g., drop
or rename attributes. For a parallel scheduler (Section 6), intuitively, we have to
assure that all VM Transactions that contain a local id less than τ [i] are completed
before that respective version removal can proceed.

3.4 TxnWrap: A Multiversion Algorithm

We are now ready to introduce our TxnWrap concurrency control algorithm (Txn-
Wrap) for materialized view maintenance.

(1) First, the TxnWrap initializes the wrapper relations as defined in Section 3.1.

(2) When a source commits a local update transaction and reports its updates to
the wrapper (or extracted by the wrapper), the TxnWrap first assigns a local
id as a version id and uses it to create versions in the wrapper. After that, the
wrapper notifies the view manager about these updates. The view manager
builds a TxnID by collecting and concatenating all the current local ids of each
data source for this VM Transaction.

(3) When the wrapper receives a maintenance query from the view manager, then
the TxnWrap rewrites the maintenance query according to the corresponding
local id recorded in the VM Transaction identifier (TxnID) and executes it
upon the wrapper relations.

(4) When a VM Transaction is committed, version cleanup starts based on the
type of scheduler, i.e., sequential or parallel. The cleanup action can be done
by a background daemon process.

The correctness criterion of TxnWrap algorithm is characterized by Theorem 1.

Theorem 1. A history of VM Transactions scheduled by the TxnWrap is seri-
alizable.

We prove by contradiction in Appendix A that each TxnWrap multiversion (MV)
history is serializable by showing its multiversion serial graph (MVSG) to be acyclic
based on transaction theory [Bernstein et al. 1987]. By Theorem 1 and Definition 2,
we know that TxnWrap maintains the views correctly. This means that the extent
of the view after maintenance reflects the right states of the data sources.

3.5 Handle Multiple Relations in One Data Source

The discussions on the VM Transaction model and its multiversion concurrency
control algorithm (TxnWrap) so far assume each data source only has one re-
lation. Such assumption, while has also been made by the other approaches in
the literature thus far [Agrawal et al. 1997; Zhang and Rundensteiner 2000], can
be easily lifted within our model as shown below. The VM Transaction model
naturally fits if we define read and write operations on relations instead of data

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

14 · S. Chen, B. Liu and E.R. Rundensteiner

sources. For example, assume a view is defined upon two data sources involv-
ing five relations, e.g., DS1(R1, R2, R3) and DS2(R4, R5)

6. A VM Transaction
that models a source update to relation R2 at DS1 can be denoted as “T =
w(R2)c(R2)r(V D)r(R1)r(R3)r(R4)r(R5)w(v)c(v)”. Correspondingly, the TxnID
will also be generated based on the local ids of source relations instead of data
sources. Hence, in TxnWrap, we have the same number of wrapper data relations
in the source wrapper as the relations in the data source.

For generating maintenance queries when one data source contains multiple rela-
tions, the view manager could send one combined maintenance query that involves
all the relations in that data source instead of multiple maintenance queries to
each relation. Correspondingly, the wrapper should also append all the version
conditions of these relations.

For example, a data update ∆R2 at relation R2 with TxnID τ can be maintained
using the following two queries: 1) A query “R1 ⊲⊳ ∆R2 ⊲⊳ R3” to DS1’s wrapper.
Here we assume the result of this query is ∆DS1

2 , which denotes the effects of ∆R2

on data source DS1. 2) A query “∆DS1
2 ⊲⊳ R4 ⊲⊳ R5” to DS2’s wrapper. Note that

the source wrapper would append all related version conditions when receiving a
combined maintenance query. For example, the version conditions for the first query
will be “AND R1 Wrapper.V Start ≤ τ [1] AND τ [1] < R1 Wrapper.V End AND
R3 Wrapper.V Start ≤ τ [3] AND τ [3] < R3 Wrapper.V End”. Here R1 Wrapper
and R3 Wrapper are the corresponding wrapper relations for R1 and R3.

Hence the TxnWrap algorithm can be easily extended to handle multiple source
relations. This also demonstrates an additional benefit of adopting the TxnWrap
approach. Prior work such as SWEEP [Agrawal et al. 1997] has to send maintenance
queries to each source relation even if they exist in the same database. While in
a separate work, [Varde and Rundensteiner 2002] has tried to address this using a
schema of two-level compensations.

4. TXNWRAP VERSION DESIGN STRATEGIES

4.1 Version Placement Design Choices

In the previous section, our concurrency control strategy, TxnWrap, will materialize
versioned data in a special-purpose source wrapper. Clearly this is not the only
design choice for the versioned data. Alternative choices include to either (1) add
extra version information directly into the source data store or (2) to materialize
the versioned data on the view server itself. We now discuss the tradeoffs between
these version placement design options.

First, we consider the case of adding version information directly into each source.
This would imply that two version attributes as described in Section 3.1 are directly
added to each of the source relations. Clearly, this option reduces the space cost
compared to storing versioned source copies at wrappers. However, the source
update transactions would now be affected since they also have to deal with the
version information. Such version information serves the sole purpose of exter-
nal view maintenance support. This design choice thus may not be acceptable in

6Relations in different data sources could have same name as long as they are globally unique, i.e.,
the concatenation of data source name with the relation name. For simplicity, we use different
names in this example to illustrate the technique.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 15

a loosely-coupled environment since the sources may not want to degrade their
transaction performance.

The second design choice would be to materialize the versioned relations inside
the view manager. One potential benefit is that instead of decomposing the view
maintenance query into individual remote source queries to each source, we now
could use one single combined maintenance query. The reason is that all the rela-
tions are within the same view site database. This design choice is similar to the
view self-maintenance approach, such as [Quass et al. 1996], where the source data
is selectively replicated in the view site for maintenance.

However, in this case, the view manager would have to maintain both the materi-
alized view and the versioned copied data as well as answer user queries. This may
become a heavy burden for the view manager. Furthermore, since all the mainte-
nance queries are against the data on the same view site, we may not be able to
improve the parallel maintenance performance (an additional functionality gained
by taking a multiversion-based approach as demonstrated in Section 6). This is be-
cause a single view server may not have enough system resources to handle a large
number of maintenance queries in parallel. Another potential drawback is that if
we have multiple warehouses, such as data marts, that share the same source tables,
then the source data has to be copied into each view site resulting in a significant
overall space cost for the entire environment.

In comparison, placing the versioned data into a dedicated wrapper achieves the
independence and simplicity of both the sources and the view manager by moving
the complex version management responsibility into a third dedicated place, as we
have illustrated in Section 3. First, we can reduce the overall space cost for ap-
plications such as data marts since one wrapper can support multiple warehouses.
Second, the performance gain for parallel processing can be effectively explored
since the maintenance query workload is distributed to each wrapper. Our experi-
mental studies in Sections 7.6 and 7.7 show indeed significant parallel maintenance
performance improvements gained by this design choice.

4.2 Comparison with Self-Maintenance Solutions

Next, we compare our solution to the self-maintenance approach such as [Quass
et al. 1996]. In [Quass et al. 1996], the authors propose to selectively materialize
the source data at the warehouse so that the view maintenance can be achieved
without accessing the sources. Note that this approach also has to make multiple
copies for data mart applications due to its data materialization at the warehouse.
Since the self-maintenance approach [Quass et al. 1996] does not explicitly assume
any concurrency control strategies, we now investigate how the concurrency issues
could be tackled in the context of this approach.

Since the source copies are kept at the warehouse, the updating of source copies
and the updating of views can be combined into a single maintenance transaction.
However, in this case, deadlocks may occur. Here is a simple example. Assume the
view is R1 ⊲⊳ R2 and there are two source updates ∆R1 and ∆R2. R′

1 and R′

2 are
the corresponding source copies materialized at the data warehouse. ∆R′

1 and ∆R′

2

are the changes to the source copies based on ∆R1 and ∆R2. The maintenance
transactions for these two updates are w(R′

1) followed by ∆R′

1 ⊲⊳ R′

2 and w(R′

2)
followed by ∆R′

2 ⊲⊳ R′

1, respectively. If the write operations acquire table-level

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

16 · S. Chen, B. Liu and E.R. Rundensteiner

locks, then the deadlocks may occur. The reason is that the first transaction reads
R′

2 table and writes R′

1 table, while the second transaction reads R′

1 and writes R′

2

table. There are cyclic read-write conflicts on R′

1 and R′

2 tables between these two
transactions, resulting in deadlocks. Even if fine-granularity locking mechanisms,
such as low-level locks are used, the deadlocks still may occur. For example, when
∆R′

1 and ∆R′

2 contain any tuples that are joinable to each other, the deadlock
occurs on those tuples. Such deadlocks may introduce significant extra cost. In
comparison, our TxnWrap approach does not have such deadlock problems.

An alternative transaction processing strategy for self-maintenance approaches
is to separate the action of updating source copies and the updating of views as
two independent transactions. In this case, although these two transactions can be
executed in parallel, the same maintenance anomalies may occur as in Section 1.2.
We then must apply either compensation-based or multiversion-based solutions to
solve the anomalies as discussed in this paper. A multiversion-based solution out-
performs the compensation-based one in that it achieves a more steady performance
and allows parallel maintenance as shown via experiments in Sections 7.2, 7.3 and
7.5. Hence, based on the above analysis, the existing self-maintenance approaches
can be enhanced by our TxnWrap solution to achieve better maintenance perfor-
mance. In short, self-maintenance approaches themselves could benefit from the
TxnWrap solution.

5. WRAPPER OPTIMIZATION STRATEGIES

5.1 Static Reduction Optimization

Version management assuming a full duplication of a source relation requires signif-
icant storage space. For this reason, several optimization strategies can be applied
to reduce the storage. First, we can optimize the storage by analyzing the view
definition. Selection Optimization extracts the local condition in a view definition
and then pushes it down to the wrapper relation definition to reduce the wrapper
size. For example, in Example 1, by pushing the local condition of the view defini-
tion, i.e., “F.Dest = Asia” into the wrapper relation definition, we can reduce the
wrapper space for source relation FlightRes. This results in the additional advan-
tage that some data updates with “F.Dest 6= Asia” can now be filtered early on
as being irrelevant. They thus would not even be reported to the view manager.
Projection Optimization projects any attribute of the source not involved in the
view definition from the wrapper. Thus, for source relation Customer of DS1 in
Example 1, the attributes Address and Phone can be safely dropped from the DS1

wrapper.
Second, we can explore existing constraints to reduce the space cost. For example,

the key and foreign key constraints can also be used to reduce the versions. Assume
two tables A and B with column A.a referencing primary key B.b. Assume the
materialized view defined as A ⊲⊳ B with join condition A.a = B.b. In this case,
we can avoid to make any version copy of table A since the maintenance does not
need to access table A at all. Similar ideas are proposed for the self-maintenance
approach such as [Quass et al. 1996]. In fact, all space optimizations strategies
developed for self-maintenance approaches should also be applicable here.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 17

5.2 Dynamic Version Optimization

While the above strategies reduce the wrapper space statically, we now consider how
to optimize the wrapper space dynamically. Here we measure the versioning cost
by comparing the number of tuples of the wrapper relations to that of the source
relations. We find that eventually after all the updates have been maintained and all
the versions have been cleaned up, the wrapper relation contains the same number
of tuples as the sources with just two extra version attributes. We thus consider this
to be the minimum version cost. However, the intermediate state of the wrapper
relation may also contain more tuples than the sources.

The first case is when we have source updates that result in both inserts and
deletes of versions. For example, the update of all ‘Price’ columns to ‘Price’*0.9
will double the size of the wrapper data relation. Although such tuple explosion is
temporary and will be cleaned up, it may still significantly degrade the performance.

To solve this problem, if the wrapper identifies some update that potentially
affects many of the current tuples (by analyzing both statistics and the update
statement itself), then we propose to hold updating the wrapper data relation and
just send the view manager a special update message. When the view manager
starts to maintain this update message, the wrapper will be notified to directly
update the wrapper data relation without any tuple duplication. Note that by this
strategy we need to update the modified tuples’ V Start using the new local id.
This is a different versioning strategy from what we initially would do based on
Section 3.3.1. Also any subsequent changes to this relation have to be recorded in a
special manner at the wrapper due to semantic issues. They can be either recorded
as statements (such as update and delete statements) or deltas (such as inserts).
This strategy avoids the tuple explosion problems with minimal extra cost, i.e.,
logging an update statement is a lot cheaper than duplicating a huge chunk of the
relation.

The second case is when we delete a large number of tuples from one relation.
Instead of updating these tuples in the wrapper, we can apply similar techniques as
above to delete them directly thus avoiding the large intermediate version space.

6. PARALLEL MAINTENANCE SCHEDULER

6.1 Parallel Scheduling in a Data Update Only Environment

One advantage of using such a principled sound approach towards view mainte-
nance, namely a transactional approach, is that other transactional-based features
can be gotten for “free”. As one example of this, we discuss in this section how
TxnWrap can be extended to support parallel view maintenance. First, we note
that a direct extension of the sequential TxnWrap scheduler would achieve provably
correct parallel maintenance for view maintenance transactions in a data update
only environment. As described in Section 2.1, one data update view maintenance
transaction is represented as r(V D)r(DS1)r(DS2) · · · r(DSn)w(v). Thus, there
will be no read block between view maintenance transactions in TxnWrap if we
apply a multi-version concurrency control strategy 7. Borrowing from traditional

7We consider the w(v) operation in view maintenance transactions separately in the commit
control discussion (Section 6.3).

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

18 · S. Chen, B. Liu and E.R. Rundensteiner

concurrency control concepts [Bernstein et al. 1987], an aggressive scheduler can
thus straightforwardly be applied. That is, we can start maintaining data update
view maintenance transactions concurrently as long as sufficient computational re-
sources are available in the view manager because there are no read/write conflicts
in these transactions due to the multiversion concurrency control strategy employed
by TxnWrap.

6.2 Parallel Scheduling in a Data and Schema Change Environment

However, more issues must be dealt with if we take source schema changes into
consideration. To illustrate this, let us first briefly review how schema changes are
maintained [Lee et al. 2002; Chen et al. 2001]. There are three steps for maintaining
a source schema change:

—Determine which view is affected by the source schema change: [r(V D)]

—Find the suitable replacement for schema elements removed from the view defi-
nition and rewrite the view definition if needed: [w(V D)]

—Calculate the delta changes in term of tuples to be added or to be deleted due
to the replacement between the old and the new view definition and adapt
the view extent by committing these delta changes: [r(V D)r(DS1)r(DS2) · · ·
r(DSn)w(v)]

Thus, one schema change view maintenance transaction can be represented as
r(VD)w(VD)r(V D)r(DS1)r(DS2) · · · r(DSn)w(v). Clearly, the view definition
(VD) represents a critical resource among the different view maintenance trans-
actions. Hence, when scheduling the maintenance for mixed data updates and
schema changes, we have to consider the potential r(V D)/w(V D) conflicts besides
the anomaly problems (the read-write conflicts between the source update transac-
tions and the view maintenance transactions).

In a view maintenance environment, we keep the assumption of a FIFO network
for updates being transmitted from the sources to the view manager which come
from the same data source, otherwise certain updates wouldn’t be correctly main-
tained. For example, assume two updates “U1:INSERT INTO Customer VALUES
(‘Ben’, ‘CA’, ‘213’)”, “U2:DELETE FROM Customer WHERE Name = ‘Ben’ ”
happened on the same source relation Customer as shown in Example 1 in this
given order. Then we should maintain U1 before U2 in the view manager. If not,
it is possible that the maintenance result of U2 couldn’t be refreshed or may be
incorrect because the corresponding tuple isn’t in the view extent yet. Thus, we
can’t reorder view maintenance transactions randomly.

In addition, more ordering restrictions need to be imposed once we assign the
corresponding TxnID to each update. To clarify this, we first define the order of
TxnIDs as follows: given two TxnIDs τi and τj , τi < τj ⇔ (1) ∀h, 1 ≤ h ≤ n (n
is the size of TxnID vector), τi[h] ≤ τj [h]. (2) ∃k, 1 ≤ k ≤ n, τi[k] < τj [k]. In
situations that there is a mixture of data and schema changes to be maintained,
we can’t randomly reorder these view maintenance transactions once their TxnIDs
are assigned even if these updates come from different data sources. Otherwise the
maintenance result may also be inconsistent with the data source state. We use the
following example to illustrate this ordering restriction.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 19

Example 2. Figure 8 illustrates the view Asia-Customer first defined in Exam-
ple 1. For simplicity, we use Customer ⊲⊳ FlightRes to represent the view. Assume
that after a certain time period, source relation Customer becomes unavailable, i.e,
a schema change “DROP TABLE Customer” has happened. Based on view syn-
chronization [Lee et al. 2002; Nica et al. 1998] techniques, the view manager will
locate a replacement (Here we use the relation Registered-User as the replacement
of relation Customer) to update the view definition and its extent. After that, a
data update “INSERT INTO Registered-User VALUES (‘Ben’, ‘CA’, 456)” also
happened on the relation Registered-User. Assume these two updates are reported
to the view manager for maintenance following the order as defined above. Assume
they are assigned TxnIDs [1,0,0] and [1,0,1] respectively. After the correct mainte-
nance, the final view definition will evolve to Registered-User ⊲⊳ FlightRes, and it
will have two tuples as depicted in Figure 9.

However, now assume we maintain the data update with TxnID [1,0,1] first.
Then no changes to the view extent would be recorded because the source relation
Registered-User is not in the view definition of the Asia-Customer yet. While main-
taining the update [1,0,0], the view manager can’t see the data update’s effect because
the TxnID tells us that it can only see the state ‘0’ of relation Registered-User in
this maintenance process. State ‘0’ denotes the state of the Registered-User relation
before the data update happened. Thus, the maintenance result of this data update
will be lost. In short, we can’t change the scheduling order of these two updates
after we have assigned them the corresponding TxnIDs.

123MATom

Ph#Add.Name

AsiaB10228Ben

AsiaA12230Tom

DestFlt. NoAgeName
123MATom

Ph#Add.Name

AsiaA12230Tom

DestFlt. NoAgeName

Customer FlightRes Registered-User

Asia-Customer

Fig. 8. View Asia-Customer Before Updates.

123MATom

Ph#Add.Name

AsiaB10228Ben

AsiaA12230Tom

DestFlt. NoAgeName
123MATom

Ph#Add.Name

AsiaB10228Ben

AsiaA12230Tom

DestFlt. NoAgeName

Customer FlightRes Registered-User

Asia-Customer

+(Ben, CA, 456)

Fig. 9. View Asia-Customer After Updates.

As can be seen, this ordering restriction is due to the concurrency conflicts on
the critical resource, namely, the view definition Asia-Customer. That is, the view
definition could be changed by some source schema changes while other view main-
tenance transactions still need it. As we discussed before, this concurrency can
also be resolved either using lock-based or multiversion strategies. However, in
this particular context, a multiversion based strategy does not have any preference
because we have to keep the TxnID order to generate the right view definition
version anyway. For example, for the two updates in Example 2, the data update
with TxnID [1, 0, 1] can’t be processed until the new version of the view defini-
tion has been built, that is, after the schema change with TxnID [1, 0, 0] completes
at least its view synchronization (VS) portion. Thus, a multiversion approach
doesn’t offer us any benefits rather the extra overhead of versioning and version

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

20 · S. Chen, B. Liu and E.R. Rundensteiner

control. Based on the above analysis, we propose the following parallel mainte-
nance scheduler using a lock-based control strategy to handle the conflicts in the
view definition access due to some schema changes:

—Start view maintenance transactions based on their TxnID order.

—Synchronize the w(V D) operations of schema change maintenance. That is,
no r(V D) or w(V D) operations will start before the previous w(V D) has been
finished.

/* Parallel schedule the updates need to be maintained in the Txn_Queue*/
1: Parallel_Scheduler (TXN_Queue) {
2: /* TXN_Queue contains unmaintained updates */
3: while (TXN_Queue != empty) {
4: VM_TXN = get first VM_TXN from TXN_Queue;
5: /* get first VM_Transaction */
6: if (VM_TXN.getType() = DU) { /* data update VM_Trans. */
7: Build a new thread to maintain VM_TXN or wait until new thread is available;
8: } else { /* a schema change VM_Trans. */
9: Wait until all running maintenance threads commit;
10: View synchronization (VM_TXN);
11: Build a new thread to wrap view adaptation(VM_TXN);
12: /* synchronize view definition update, while run view adaptation process in parallel
13: with other processes */
14: }
15: } /* end of TXN_Queue equals empty */
16: } /* end of Parallel_Scheduler */

Fig. 10. Parallel Scheduling Process

T5
T4
T3
T2

Time

T
hr

ea
ds

DU DU DU SC DU DU SC DU …

T1

…

Message Queue

Fig. 11. Parallel Scheduling Example

Figure 10 lists the basic logic of this parallel scheduler. A sample execution plan
is depicted in Figure 11. DU and SC stand for data update maintenance transaction
and schema change maintenance transaction respectively. That is, each thread is
responsible of one maintenance transaction. These threads can be run in parallel
except each schema change maintenance will synchronize these processes.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 21

6.3 Commit Control and Consistency

We adopt the notions of consistency of a view extent depending on how and when
the source updates are incorporated into the materialized view in a distributed
environment from [Zhang et al. 2004; Zhuge et al. 1995]. That is, five consistency
levels (convergence, weak consistency, consistency, strong consistency and complete
consistency) of the materialized view are defined based on the materialized view
states according to source updates. However, in a parallel scheduling environment,
even if each individual update is being maintained successfully, the final view state
after committing these effects may still be inconsistent. This Variant Commit Order
problem in a data update only environment has been addressed in [Zhang et al.
2004]. We can apply the same commit control strategy to our mixed data update
and schema change environment. The control strategy we apply in our current
parallel TxnWrap work is a strict commit order control. That is, only after we
commit all the effects of all previous updates, can we begin to commit the current
delta changes to the view extent. As we will show in Appendix A, it reaches at
least a strong consistency level if we apply this strict commit order control strategy.

6.4 More Discussions on the Parallel Scheduler

The limitation of the above parallel scheduler is that once we assign the TxnIDs
based on the arrival order of updates at the view manager, we then must stick
with this order when scheduling transactions. For example, all the subsequent data
updates that arrive after a schema change have to wait for the schema change to
finish its view synchronization portion. This leads us to think about whether other
less strict parallel scheduling solutions may be possible within the TxnWrap context.
For this, we first need to determine whether it is possible to change the scheduling
order of updates in the view manager while still keeping the view consistent.

Observation 1. Any maintenance order for updates from different data sources
will generate the same and correct final maintenance results.

This observation allows us to assign the corresponding TxnIDs dynamically. For
example, if we assign the data update in Example 2 the TxnID [0,0,1] as if it comes
to the view manager first, while assigning the schema change TxnID [1,0,1], the final
maintenance result of these two updates in this newly assigned order would also
be correct. This observation gives us the hint that we should be able to exchange
the scheduling order of updates in the view manager that come from different data
sources as long as we assign the TxnIDs correspondingly. This way, a more flexible
scheduler can be designed by freely exchanging the maintenance orders for updates
that come from different data sources. We are thus able to reduce the wait of the
data updates that arrived after a schema change.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Testbed

Since TxnWrap by itself is not a stand-alone system, we have plugged it into the
existing Dynamic Data Warehouse Maintenance (DyDa) system developed at WPI
[Chen et al. 2001]. The basic DyDa system uses SWEEP [Agrawal et al. 1997], a
compensation-based algorithm to handle concurrent data updates. It also has some

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

22 · S. Chen, B. Liu and E.R. Rundensteiner

enhanced view adaption strategies to detect and correct a mixture of concurrent
data updates and schema changes [Chen et al. 2004]. By disabling this concur-
rency logic and instead plugging TxnWrap into the DyDa system, we now have a
transactional-based maintenance solution. The java code to handle concurrencies
in the DyDa system is more than 5000 lines, while in contrast the TxnWrap mod-
ule contains less than 900 lines of code. In this section, we experimentally evaluate
TxnWrap by comparing these two systems.

In our experimental study, we have conducted our experiments on four Pentium
III PCs with 256M memory, running Windows NT and Oracle8i. We employ six
data sources with one relation each evenly distributed over three machines. Each
relation has four attributes and 100,000 tuples. There is one materialized join view
defined upon these six source relations residing on the fourth machine.

Currently, we set each VM Transaction in our experiments to contain exactly
one update, as to compare the performance with other algorithms in a similar
configuration. The issue of batching multiple data and schema updates in one
VM Transaction is orthogonal to this paper. We thus ask readers to refer [Liu
et al. 2002b] for details on this topic and corresponding experimental results.

7.2 Data Update Processing

In this experiment, we evaluate the overhead of TxnWrap for data update processing
under a varying rate of concurrency compared to the SWEEP [Agrawal et al. 1997]
algorithm. SWEEP applies local compensation to remove the data update anomaly
as shown in Section 1.2. Figure 12 shows the average maintenance cost of one data
update (on the y-axis) under different numbers of concurrent data updates (on the
x-axis) for both systems.

0

0.1

0.2

0.3

0.4

0.5

0 100 200 300 400 500 600 700 800 900 1000

SWEEP TxnWrap
 # Concurrent DUs

Time (s)

Fig. 12. Concurrent Data Update Process

0
100
200
300
400
500
600
700
800
900

1000

0 6 12 18 24 30 36 42 48 54 60

DyDa Abort of DyDa
TxnWrap Abort of TxnWrap

 Time
 Interval (s)

Time (s)

Fig. 13. Concurrent Schema Change Process

From Figure 12, we can see that initially the maintenance cost of TxnWrap is
larger than that of SWEEP when the number of data updates concurrent with
the one currently being processed is 0 (i.e., there is no concurrent data update).
This cost is mainly caused by the versioned maintenance query, which requires
additional version conditions to be evaluated. The maintenance cost of SWEEP
increases with an increase in the number of concurrent data updates, because it has
to use local compensation to deal with concurrent data updates. The more updates
are found to be concurrent when handling one update, the more compensation has

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 23

to be undertaken. In comparison, TxnWrap exhibits an almost fixed cost for the
handling of data updates independent of the number of concurrent data updates,
and thus achieves a steady performance.

7.3 Schema Change Processing

In this experiment, we examine the performance of TxnWrap for schema change
processing, which includes both view synchronization and view adaptation. We
measure the maintenance cost for twenty schema changes while varying the time
intervals between them. As described in Section 1.2, if there are some concurrent
schema changes, the query would be broken and the current maintenance process
may be aborted in the DyDa system. This is a significant cost. Figure 13 presents
the maintenance as well as the abort cost (as part of the maintenance cost) of
both systems (on the y-axis). From the figure, we see that the DyDa system has
a varying abort cost under different system loads. The explanation of the curves
of the DyDa system can be found in [Chen et al. 2004]. Eventually when the time
interval is larger than the maintenance time, the updates will not conflict with each
other. In this case, both systems have the same maintenance cost. In comparison,
TxnWrap, employing a multiversion algorithm, avoids any abort and hence again
achieves a steady performance.

7.4 Impact of Version Management Optimizations

In this experiment, we study the performance achieved when applying the wrapper
optimization strategies described in Section 5. Since various optimization strategies
all have the same goal, namely, to reduce the size of wrapper relations, we study
how such size reduction affects the maintenance performance.

We measure the average maintenance cost of one data update or one schema
change under different size reduction factors for wrapper optimization and compare
TxnWrap to the non-multiversion solution DyDa. As shown in Figures 14 and 15,
the x-axis is the size of the wrapper relations after optimization over that before
optimization. Clearly, we find that the smaller the wrapper relations, the better
maintenance performance.

We note that in Figures 14 and 15, there are still several differences between data
update maintenance and schema change maintenance. There is a crossover point
for data update maintenance. The reason is that the extra version attributes and
conditions complicate the maintenance queries and are thus initially more costly
to evaluate. In comparison, the maintenance of a schema change is much more
expensive [Lee et al. 2002]. The performance largely depends on the number of
tuples of the relations. The extra version attributes and conditions have a relatively
small overhead. Hence, the performance improvement is more significant for schema
change maintenance.

7.5 Parallel View Maintenance

7.5.1 Basic Parallel View Maintenance Performance. We have experimentally
evaluated TxnWrap when extended with a parallel view maintenance scheduler.
We use the same system setup as described above and use a workload of 500 data
updates and vary the number of maintenance threads, i.e., the maximum number
of source updates that can be maintained by the system at the same time. The

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

24 · S. Chen, B. Liu and E.R. Rundensteiner

0

0.1

0.2

0.3

0.4

0.5

100% 80% 60% 40% 20%

DyDa TxnWrap
 Wrapper
Materialization

Time (s)

Fig. 14. Data Update Processing with Wrapper
Materialization Optimization

0

10

20

30

40

50

60

100% 80% 60% 40% 20%

DyDa TxnWrap
 Wrapper
Materialization

Time (s)

Fig. 15. Schema Change Processing with Wrap-
per Materialization Optimization

total maintenance time of these 500 data updates is depicted in Figure 16. The
x-axis denotes the number of parallel threads in the system with S denoting the
serial scheduler. The y-axis represents the total processing time.

If we only use one thread, then the total processing time is very similar to the se-
rial one. There is some fairly small overhead for the parallel maintenance scheduler
and thread management. Given our system setup, the total processing time reaches
its minimum with five parallel threads. A maximum percentage of performance im-
provement of 150% is observed. When we further increase the thread number, the
processing time achieves only some small extra improvement. The main reason is
that the parallel processing power of wrapper databases is limited. They are not
able to effectively process a large number of maintenance queries concurrently due
to resource contention.

100

200

300

400

500

600

700

800

900

1000

S 1 2 3 4 5 6 7 8 9 10

of Threads

P
ro

ce
ss

in
g

 T
im

e
(s

)

Fig. 16. Parallel Data Updates Maintenance

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

of Threads

P
ro

ce
ss

in
g

 T
im

e
(s

)

1 DS 2 DS 3 DS 6 DS

Fig. 17. Impact of Source Rel. Distribution

7.5.2 Impact of Source Relation Distribution. Figure 17 shows the changes of
the parallel maintenance performance due to the distribution of source relations.
Here we assume that each data source has a similar query processing capability.
We vary the distributions of the six source relations from one data source to six
data sources. The more data sources, the smaller the number of source relations
located at each data source. Seen from Figure 17, if we distribute the source
relations to more data sources, then a higher rate of performance improvement can
be achieved. For example, if the six source relations are evenly distributed over the
six data sources, then the maximal percentage of performance improvement in our

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 25

setting reaches around 250% when using 5 parallel threads. This is as expected
because more maintenance queries can be answered in parallel by all these data
sources.

7.5.3 Impact of Network Delay. In Figure 18, we measure the effect of changing
the network delay in each maintenance query. A network delay is added when
evaluating each maintenance query based on the average time to transfer a tuple
across the network. For example, if we assume that the average time to transfer
a tuple with 20 bytes is ℓ, then it takes k*2*ℓ to transfer k tuples with 40 bytes
each. The performance changes from no network-delay to ‘ℓ = 10ms’ and then ‘ℓ
= 30m’ in each maintenance query are listed in Figure 18. From the figure, we can
see that while the high network delay has a negative effect on the serial TxnWrap
performance, such effects are quickly offset by using our parallel TxnWrap scheme.
The reason is that although the network transfer is slow, we can still run many other
tasks in parallel, which improves the overall throughput. This is an especially useful
feature since the wrappers and view manager are distributed over the network in
our framework.

7.5.4 Impact of Schema Changes. We measure the parallel maintenance perfor-
mance when schema changes and data updates are mixed. We set up a workload
of 400 data updates and 2 schema changes. The two schema changes are evenly
scattered among these 400 data updates. Figure 19 depicts changes of the total
maintenance cost in terms of processing time when we vary the number of parallel
threads. Similar with what we have measured for data updates only environments
(Figure 16), the total processing time reaches its minimal around thread number
five. The maximal percentage of performance improvement we measured in this
case is around 45%. This is because (1) schema change maintenance is much more
time consuming than that of a data update and (2) we cannot fully maintain schema
changes in parallel.

100

300

500

700

900

1100

1300

1500

1 2 3 4 5 6 7 8 9 10

of Threads

P
ro

ce
ss

in
g

 T
im

e
(s

)

0ms Delay 10ms Delay 30ms Delay

Fig. 18. Impact of Network Delay on Parallel
Maintenance

100

200

300

400

500

S 1 2 3 4 5 6 7 8 9 10

of Threads

P
ro

ce
ss

in
g

 T
im

e
(s

)

Fig. 19. Parallel Maintenance of both Data Up-
dates and Schema Changes

7.6 Wrapper Placement Evaluation

As we have discussed in Section 4.1, distributing the wrapper relations as done
in our proposed TxnWrap architecture is likely beneficial for maximally exploiting
the parallel maintenance capability. We experimentally evaluate this hypothesis in

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

26 · S. Chen, B. Liu and E.R. Rundensteiner

this section. Figure 20 depicts the maintenance performance under two extreme
experimental settings. The “DW-Wrapper” case has six wrapper relations placed
in the same database engine where the materialized view resides, while the “6DS-
Wrapper” case has the wrapper relations placed in six separate database engines.
We vary the number of parallel maintenance threads (x-axis). We use again the
workload of 500 data updates as in Section 7.5.

From Figure 20, we can see that the maintenance performance of the “DW-
Wrapper” approach could hardly be improved by adding more maintenance threads
due to the high resource contention when handling a large amount of maintenance
queries in parallel (the database server has a single CPU and a single disk in our ex-
perimental setting). In comparison, the “6DS-Wrapper” approach achieves better
performance when adding more maintenance threads since the workload is dis-
tributed over several servers with less resource contention.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10

of Threads

P
ro

ce
ss

in
g

 T
im

e
(s

)

6DS-Wrapper (0ms-delay)
6DS-Wrapper (10ms-delay)

6DS-Wrapper (100ms-delay)
DW-Wrapper

Fig. 20. Impact of Wrapper Placement

0

500

1000

1500

2000

2500

Types of Maintenance

P
ro

ce
ss

in
g

 T
im

e
(s

)

Lock-based Sefl-maintenance
Multiversion-based Self-maintenance
"6DS-Wrapper" TxnWrap

Types of Maintenance

Fig. 21. TxnWrap vs. Self-Maintenance

However, the “6DS-Wrapper” approach may suffer from high network delay since
each maintenance query will be evaluated across the network. Seen from Figure 20,
given the network delay factor “ℓ = 100ms” in this experimental setting, the total
maintenance time of the “6DS-Wrapper” approach is worse than that of the “DW-
Wrapper” in the case of sequential maintenance. We also find that this parallel
maintenance strategy makes TxnWrap less sensitive to slow network environments.
This is especially useful since the wrappers and view manager are distributed over
the network. The reason is that although the network transfer is slow, we can still
run many other tasks in parallel. This may improve the overall throughput.

7.7 TxnWrap vs. Self-Maintenance

In our system, we implement the self-maintenance approach [Quass et al. 1996] by
replicating source relations in the DW server and issuing one combined mainte-
nance query to this local DW server to maintain a source update. We compare
TxnWrap to a lock-based self-maintenance solution and to a multiversion-based
self-maintenance solution as described in Section 4.2.

Figure 21 compares the total maintenance time between the lock-based self-
maintenance approach, the multiversion-based self-maintenance approach (i.e., the
parallel “DW-Wrapper” TxnWrap approach) and the parallel “6DS-Wrapper” Txn-
Wrap approach. The experimental setting is the same as in Section 7.6. Seen from
Figure 21, the total processing time of the lock-based self-maintenance is less than

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 27

the multiversion-based self-maintenance approach since the latter has extra version
management overhead. Both approaches are limited in terms of parallelism perfor-
mance due to the high resource contention because of the data all residing on the
same machine. In comparison, distributing the replicated data under the TxnWrap
approach (labelled as “6DS-Wrapper” in Figure 21) gains much more parallelism
performance. While the lock-based approach may also exploit more potential par-
allelism when the replicated data is distributed, one problem is that the lock-based
approach integrates the source updates and the maintenance process into one single
transaction. Managing such a global transaction in a distributed context is non-
trivial. The potential deadlocks worsen this problem. In summary, we conclude
that our proposed parallel maintenance with wrapper data materialization effec-
tively improves the maintenance performance over prior approaches while offering
the extra functionality to handle concurrent schema changes.

8. RELATED WORK

Maintaining materialized views under source updates is one of the important issues
of data integration [Widom 1995; Zhuge et al. 1995]. Initially, some research has
studied incremental view maintenance assuming no concurrency. Such algorithms
for maintaining a view under source data updates are called view maintenance
algorithms [Lu et al. 1995; Colby et al. 1996]. There has also been some work on
rewriting view definitions under source schema changes [Nica et al. 1998; Lee et al.
2002], and on adapting the view extent under source schema changes [Gupta et al.
1995; Nica and Rundensteiner 1999].

As first noted in [Zhuge et al. 1995], if the data sources are on remote servers from
the view site and an asynchronous loosely-coupled environment is assumed, then
the maintenance process of sending maintenance queries to the remote data sources
may experience concurrency conflicts due to the autonomy of sources. [Zhuge et al.
1995] introduces a compensation-based algorithm, called ECA, for incremental view
maintenance of concurrent source data updates restricted to a single source. Strobe
[Zhuge et al. 1996] handles multiple data sources while still assuming the schema of
all sources to be static. SWEEP [Agrawal et al. 1997] applies local compensation
of maintenance over distributed sources. [Salem et al. 2000] proposes to materialize
delta changes of both sources and views with timestamps, thus being able to asyn-
chronously refresh the view extent. They introduce a propagation algorithm that
reduces the number of compensation queries. Our earlier work on the DyDa project
[Zhang and Rundensteiner 2000] is the first attempt to address mixed workloads
of concurrent data updates and schema changes. However, these existing efforts
including DyDa are all compensation-based. That is, they all require special al-
gorithms to detect possible anomalies due to concurrent updates of sources and
then to correct them thereafter. Furthermore, a formal basis for these algorithms
is missing. This makes it more difficult to develop formal proofs of correctness
or extensions in terms of services such as recovery or parallelism. Our new ap-
proach TxnWrap employs a multiversion solution removing concurrency concerns
from view maintenance algorithms altogether, thus no longer requiring any com-
pensation strategies. This is complimentary to any of the previous work mentioned
above by isolating concurrency concerns from the maintenance logic.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

28 · S. Chen, B. Liu and E.R. Rundensteiner

Beyond view maintenance work, there are techniques in version management and
concurrency control in general that relate to our approach. Multiversion concur-
rency control algorithms [Agrawal and Sengupta 1989; Chan and Gray 1985; Quass
and Widom 1997; Mohan et al. 1992] can be categorized into two types, namely,
finite version and unrestricted version algorithms. In this paper, we demonstrate
that unrestricted version algorithms are the most appropriate design choice for ma-
terialized view maintenance. In addition, our proposed algorithm can also handle
versioned schema meta data. [Quass and Widom 1997] proposes to utilize a two-
version algorithm to resolve the concurrency between the view maintenance and its
read-only sessions. Our work instead focuses on the other end of the spectrum, i.e.,
the concurrency between frequent source updates and the view maintenance. In
the former work, the read-only sessions of the materialized view could be scheduled
for any version as long as it is consistent. While in our work, the view maintenance
reads will ask for a particular version of source data. To keep the view consistent,
the desired version should always be available to the view maintenance process.

The TxnWrap versioning approach proposed in this paper is somewhat similar
to the temporal database model [Zaniolo et al. 1997] in the literature. Our work
shows the potential benefits for exploiting this temporal database model for view
maintenance. Many existing temporal index schemes [Lomet and Salzberg 1989]
can be applied here to further improve the maintenance query performance.

9. CONCLUSIONS

In this paper we take a fresh new look at the concurrency problems of material-
ized view maintenance. In contrast to previous work, we now present a solution
based on transaction theory. While previous work [Zhuge et al. 1995; Salem et al.
2000] focuses on specialized compensation algorithms for view maintenance, we
instead propose a transactional model that removes concurrency considerations
from the maintenance logic. In particular, we encapsulate both the source update
transactions and the actual view maintenance process into what we refer to as a
VM Transaction. We then propose a multiversion algorithm called TxnWrap to
achieve the serializability of VM Transactions. This way TxnWrap addresses the
maintenance anomaly problem not only under concurrent data updates but also
under concurrent schema changes. Our TxnWrap solution can be plugged into any
existing view maintenance system as a middle layer that removes concurrency issues
from the view manager. As an added benefit, we found TxnWrap very easy to im-
plement. The experimental results reveal that our solution achieves a rather stable
maintenance performance. With even simple optimizations of the wrapper, Txn-
Wrap already outperforms previous solutions from the literature [Agrawal et al.
1997; Zhang and Rundensteiner 2000] in terms of refresh rates. Another added
benefit we find about the transactional approach towards view maintenance is that
parallel processing can easily be added. The experimental results confirm the per-
formance achievable by the parallel maintenance. A formal correctness proof for
both TxnWrap and parallel TxnWrap is also provided based on transaction theory
[Bernstein et al. 1987].

For the future work, we are beginning to look more closely at supporting multi-
ple views with inter-dependencies between views, since our transactional-modeling

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · 29

based approach removes the concurrency issues and simplifies the overall processing
logic.

ACKNOWLEDGMENTS

The authors would like to thank Xin Zhang, Jun Chen, Andreas Koeller and all
DSRG members at WPI for many valuable suggestions. The authors also thank
the anonymous reviewers whose detailed comments helped greatly to improve the
paper.

REFERENCES

Agrawal, D., Abbadi, A. E., Singh, A., and Yurek, T. 1997. Efficient View Maintenance at
Data Warehouses. In Proceedings of SIGMOD. 417–427.

Agrawal, D. and Sengupta, S. 1989. Modular Synchronization in Multiversion Databases. In
Proceedings of SIGMOD. 408–417.

Bernstein, P. A., Hadzilacos, V., and Goodman, N. 1987. Concurrency Control and Recovery
in Database System. Addison-Wesley Pub.

Chan, A. and Gray, R. 1985. Implementing Distributed Read-Only Transactions. IEEE Trans.
on Software Engineering 11, 205–212.

Chen, J., Chen, S., and Rundensteiner, E. A. 2002. A Transactional Model for Data Warehouse
Maintenance. In Proceedings of Conceptual Modeling. 247–262.

Chen, J., Zhang, X., Chen, S., Andreas, K., and Rundensteiner, E. A. 2001. DyDa: Data
Warehouse Maintenance under Fully Concurrent Environments. In Proceedings of SIGMOD
Demo Session. 619.

Chen, S., Chen, J., Zhang, X., and Rundensteiner, E. A. 2004. Detection and Correction of
Conflicting Source Updates for View Maintenace. In Proceedings of ICDE. 436–448.

Colby, L. S., Griffin, T., Libkin, L., Mumick, I. S., and Trickey, H. 1996. Algorithms for
Deferred View Maintenance. In Proceedings of SIGMOD. 469–480.

Gray, J. and Reuter, A. 1992. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann.

Gupta, A. and Mumick, I. 1995. Maintenance of Materialized Views: Problems, Techniques, and
Applications. IEEE Data Engineering Bulletin 18(2), 3–19.

Gupta, A., Mumick, I., and Ross, K. 1995. Adapting Materialized Views after Redefinition. In
Proceedings of SIGMOD. 211–222.

Lee, A. M., Nica, A., and Rundensteiner, E. A. 2002. The EVE Approach: View Synchroniza-
tion in Dynamic Distributed Environments. IEEE TKDE 14, 5, 931–954.

Liu, B., Chen, S., and Rundensteiner, E. A. 2002a. A Transactional Approach to Parallel Data
Warehouse Maintenance. In Proceedings of DaWaK. 307–317.

Liu, B., Chen, S., and Rundensteiner, E. A. 2002b. Batch Data Warehouse Maintenance in
Dynamic Environments. In Proceedings of CIKM. 68–75.

Lomet, D. B. and Salzberg, B. 1989. Access Methods for Multiversion Data. In Proceedings of
SIGMOD. 315–324.

Lu, J. J., Moerkotte, G., Schue, J., and Subrahmanian, V. S. 1995. Efficient Maintenance of
Materialized Mediated Views. In Proceedings of SIGMOD. 340–351.

Madhavan, J., Bernstein, P. A., and Rahm, E. 2001. Generic schema matching with cupid. In
Proceedings of VLDB. 49–58.

Marche, S. 1993. Measuring the Stability of Data Models. European Journal of Information
Systems 2, 1, 37–47.

Miller, R. J., Haas, L. M., and Hernández, M. A. 2000. Schema mapping as query discovery.
In Proceedings of VLDB. 77–88.

Mohan, C., H.Pirahesh, and Lorie, R. 1992. Efficient and Flexible Methods for Transient
Versioning of Records to Avoid Locking by Read-only Transactions. In Proceedings of SIGMOD.
124–133.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

30 · S. Chen, B. Liu and E.R. Rundensteiner

Nica, A., Lee, A. J., and Rundensteiner, E. A. 1998. The CVS Algorithm for View Synchro-

nization in Evolvable Large-Scale Information Systems. In Proceedings of EDBT. 359–373.

Nica, A. and Rundensteiner, E. A. 1999. View Maintenance after View Synchronization. In
International Database Engineering and Applications. 213–215.

Quass, D., Gupta, A., Mumick, I. S., and Widom, J. 1996. Making Views Self-Maintainable for
Data Warehousing. In Conference on Parallel and Distributed Information Systems. 158–169.

Quass, D. and Widom, J. 1997. On-Line Warehouse View Maintenance. In Proceedings of
SIGMOD. 393–400.

Salem, K., Beyer, K. S., Cochrane, R., and Lindsay, B. G. 2000. How To Roll a Join:
Asynchronous Incremental View Maintenance. In Proceedings of SIGMOD. 129–140.

Sjoberg, D. 1993. Quantifying Schema Evolution. Information and Software Technology 35, 1,
35–54.

Varde, A. S. and Rundensteiner, E. A. 2002. MEDWRAP: Consistent View Maintenance over
Distributed Multi-Relation Sources. In Proceedings of DEXA. 341–350.

Velegrakis, Y., Miller, R. J., and Popa, L. 2003. Mapping Adaptation under Evolving
Schemas. In Proceedings of VLDB. 584–595.

Widom, J. 1995. Research Problems in Data Warehousing. In Proceedings of CIKM. 25–30.

Zaniolo, C., Ceri, S., Faloursos, C., Snodgrass, R. T., Subrahmanian, V. S., and Zicari,

R. 1997. Advanced Database Systems. Morgan Kaufmann Pub.

Zhang, X., Ding, L., and Rundensteiner, E. A. 2004. Parallel Multi-Source View Maintenance.
VLDB Journal 13, 1, 22–48.

Zhang, X. and Rundensteiner, E. A. 2000. DyDa: Dynamic Data Warehouse Maintenance in
a Fully Concurrent Environment. In Proceedings of DaWaK. 94–103.

Zhuge, Y., Garćıa-Molina, H., Hammer, J., and Widom, J. 1995. View Maintenance in a
Warehousing Environment. In Proceedings of SIGMOD. 316–327.

Zhuge, Y., Garćıa-Molina, H., and Wiener, J. L. 1996. The Strobe Algorithms for Multi-
Source Warehouse Consistency. In Parallel and Distributed Information Systems. 146–157.

Received August 2003; May 2004; accepted August 2004

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · App–1

This document is the online-only appendix to:

Multiversion Based View Maintenance Over Distributed Data

Sources
SONGTING CHEN, BIN LIU and ELKE A. RUNDENSTEINER

Worcester Polytechnic Institute

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004, Pages 0–30.

A. PROOF OF TXNWRAP MAINTENANCE

Since TxnWrap is a specific kind of multiversion concurrency control algorithm, we
thus proceed to prove the correctness of this concurrency control algorithm using
the multiversion serializability theory. Below we first review several definitions as
defined by [Bernstein et al. 1987].

In general, we use ri[x] (or wi[x]) to denote the execution of a Read (or Write)
operation issued by transaction Ti on a data item x. We also use ci and ai to denote
Ti’s Commit and Abort operations respectively.

Definition 3. A transaction Ti is a partial order of operations ti with ordering
relation <i where

(1) Ti ⊇ { ri[x], wi[x] | x is a data item }
⋃
{ ai, ci };

(2) ai ∈ Ti iff ci /∈ Ti;

(3) for t ∈ Ti: if t is ci or ai (whichever is in Ti), for any other operation p ∈ Ti,
p <i t; and

(4) if ri[x], wi[x] ∈ Ti, then either ri[x] <i wi[x] or wi[x] <i ri[x].

A.1 Classical Serializability Theory

Definition 4. Let T = T1, . . . , Tn be a set of transactions. A complete history
H over T is a partial order with ordering relation <H where:

(1) H =
⋃n

i=1 Ti;

(2) <H ⊇ (
⋃n

i=1 <i); and

(3) for any two conflicting operations p, q ∈ H, either p <H q or q <H p.

A transaction Ti is committed (or aborted) in history H if ci ∈ H (or ai ∈ H).
Given a history H , the committed projection of H, denoted C(H), is the history
obtained from H by deleting all operations that do not belong to transactions
committed in H .

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 0362-5915/2004/0300-00000 $5.00

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

App–2 · S. Chen, B. Liu and E.R. Rundensteiner

Definition 5. Let H be a history over T = T1, ... , Tn. The serialization graph
(SG) for H, denoted SG(H), is a directed graph whose nodes are the transactions
in T that are committed in H and whose edges are all Ti → Tj (i 6= j) such that
one of Ti’s operations precedes and conflicts with one of Tj’s operations in H.

Theorem 2. (The Serializability Theorem) A history H is serializable iff SG(H)
is acyclic.

A.2 Multiversion Serializability Theory

Let T = T1, ... , Tn be a set of transactions, where the operations of Ti are ordered
by <i for 1 ≤ i ≤ n. Suppose a multiversion scheduler translates T ’s operations on
(single version) data items into operations on specific versions of those data items.
We formalize this translation by a function h that maps each wi[x] into wi[xj], each
ri[x] into ri[xj] for some j, here xj represents the j th version of x, each ci into ci,
and each ai into ai.

Definition 6. A complete multiversion (MV) history H over T is a partial
order with ordering relation <MV where:

(1) H = h(
⋃n

i=1 Ti) for some translation function h;

(2) for each Ti and all operations pi, qi in Ti, if pi <i qi, then h(pi) <MV h(qi);

(3) if h(rj [x]) = rj [xi], then wi[xi] <MV rj [xi];

(4) if wi[x] <i ri[x], then h(ri[x]) = ri[xi]; and

(5) if h(rj [x]) = rj [xi], i 6= j, and cj ǫ H, then ci <MV cj.

Condition (1) states that the scheduler translates each operation submitted by a
transaction into an appropriate multiversion operation. Condition (2) states that
the MV history of version-specific transactions preserves all orderings stipulated by
the transactions. Condition (3) states that a transaction may not read a version
until it has been produced. Condition (4) states that if a transaction writes into a
data item x before it reads x, then it must read the version of x that it previously
created. If H satisfies condition (4), we say that it preserves reflexive reads-from
relationships. Condition (5) says that before a transaction commits, all the trans-
actions that produced versions it read must have already committed. If H satisfies
condition (5) we say it is recoverable.

Definition 7. A complete MV history is serial if for every two transactions
Ti and Tj that appear in H, either all of Ti’s operations precede all of Tj’s or vice
versa. A serial MV history H is one-copy serial (or 1-serial) if for all i, j and
x: if Ti reads x from Tj, then i=j, or Tj is the last transaction preceding Ti that
writes into any version of x. An MV history is one-copy serializable (or 1SR)
if its committed projection is equivalent to a 1-serial MV history.

To justify the value of 1SR as a correctness criterion, we need to show that the
committed projection of every 1SR is also equivalent to a serial 1V history.

Theorem 3. Let H be a MV history over T . C(H) is equivalent to a serial 1V
history over T iff H is 1SR.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · App–3

Since the serial 1V histories determine the correctness of a concurrency control
algorithm, we reduce the proof of a multiversion concurrency control algorithm to
the proof of the problem whether all of its MV histories are 1SR.

Theorem 4. A multiversion concurrency control algorithm is correct iff all its
MV histories are 1SR MV histories.

In order to determine whether a MV history is 1SR, the SG needs to be extended
to MVSG.

Definition 8. Given a MV history H and a data item x, a version order ≪ for
x in H is a total order of versions of x in H. A version order for H is the union
of the version orders for all data items.

Definition 9. Given a MV history H and a version order ≪, the multiversion
serialization graph for H and ≪, MVSG(H, ≪), is SG(H) with the following ver-
sion order edges added: for each rk[xj] and wi[xi] in C(H) where i, j, and k are
distinct, if xi ≪ xj then include Ti → Tj, otherwise include Tk → Ti.

This definition says that if rk[xj] and wi[xi] are in C(H), then the version order
edge forces wi[xi] to either precede wj [xj] or to follow rk[xj] in every serial history
of H .

Theorem 5. A MV history H is 1SR iff there exists a version order ≪ such
that MVSG(H, ≪) is acyclic.

A.3 Correctness Proof of TxnWrap

In the TxnWrap context, we assume n data sources, denoted as DS1, DS2,· · ·,
DSn. We use DSi(j) to denote the state of DSi after having been updated by
a source update transaction with local id j in DSi. We refer to this as the j th
version of DSi. In this context, we annotate all initial states of data sources by
the version number 0. The transaction identifier TxnID τ of a VM Transaction
T is generated by the view manager as soon as the update message arrives. We
use τ1, τ2, · · · , τm to denote TxnIDs. Similarly, we use V(τi) to denote the view
state after the maintenance result has been committed to the view extent by the
VM Transaction with TxnID τi (1 ≤ i ≤ n). For simplicity, we use V(0) to denote
the initial state of the view extent based on the initial states of all data sources.

As in [Bernstein et al. 1987], we use rτi
[x] (or wτi

[x]) to denote the execution of
a Read (or Write) operation issued by transaction Tτi

on a data item x. We use
cτi

to denote the commit operation of Tτi
. Notice that we don’t have any abort

operation for the VM Transactions (See Section 2.3 for the explanation). We use
xτi

to denote any version data that is being accessed by the VM Transaction with
TxnID τi. The order of the version data x can be defined based on the order of
the TxnID, xτi

≪ xτj
⇔ τi < τj , where τi, τj are TxnIDs of the corresponding

VM Transactions.
The following is an illustrative example. Assume three VM Transactions are

generated in the view manager. Tτ1
is for the source update in DSh with local id

1, Tτ2
is for the update in DSk with local id 1, and Tτ3

again is for in DSh with
local id 2, assume 1 ≤ h, k ≤ n with n the number of data sources. For simplicity,
we assume the initial versions of the data source extents stored in their respective

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

App–4 · S. Chen, B. Liu and E.R. Rundensteiner

wrappers are DS1(0), DS2(0), . . . , DSn(0) and the inital view extent is V(0). These
three VM Transactions can be represented as follows:

(1) Tτ1
= wτ1

[DSh(1)]rτ1
[DS1(0)] . . . rτ1

[DSk(0)] . . . rτ1
[DSn(0)]wτ1

[V (τ1)]cτ1

(2) Tτ2
= wτ2

[DSk(1)]rτ2
[DS1(0)] . . . rτ2

[DSh(1)] . . . rτ2
[DSn(0)]wτ2

[V (τ2)]cτ2

(3) Tτ3
= wτ3

[DSh(2)]rτ3
[DS1(0)] . . . rτ3

[DSk(1)] . . . rτ3
[DSn(0)]wτ3

[V (τ3)]cτ3

For the sequential schedule, below is a sample history H1 of Tτ1
, Tτ2

and Tτ3
:

—H1=wτ1
[DSh(1)]wτ2

[DSk(1)]wτ3
[DSh(2)]

rτ1
[DS1(0)] . . . rτ1

[DSk(0)] . . . rτ1
[DSn(0)]wτ1

[V (τ1)]cτ1

rτ2
[DS1(0)] . . . rτ2

[DSh(1)] . . . rτ2
[DSn(0)]wτ2

[V (τ2)]cτ2

rτ3
[DS1(0)] . . . rτ3

[DSk(1)] . . . rτ3
[DSn(0)]wτ3

[V (τ3)]cτ3

For the parallel schedule, we may also interleave the execution of the view main-
tenance transactions. The following is a sample history H2 of such a schedule 8.

—H2=wτ1
[DSh(1)]wτ2

[DSk(1)]wτ3
[DSh(2)]

rτ1
[DS1(0)] . . . rτ1

[DSk(0)] . . . rτ2
[DS1(0)] . . . rτ2

[DSh(1)]rτ1
[DSn(0)]wτ1

[V (τ1)]cτ1

rτ3
[DS1(0)] . . . rτ3

[DSk(1)] . . . rτ3
[DSn(0)]rτ2

[DSn(0)]wτ2
[V (τ2)]cτ2

wτ3
[V (τ3)]cτ3

For both histories, we can construct the MVSG as follows. We add the edge Tτ1
→

Tτ2
since rτ2

[DSh(1)] reads the result from wτ1
[DSh(1)]; add the edge Tτ2

→ Tτ3

since rτ3[DSk(1)] reads the result from wτ2
[DSk(1)]; add the edge Tτ1

→ Tτ3
since

wτ1
[DSh(1)] precedes wτ3

[DSh(2)]. No other version order edges exist. Thus G is
an acyclic MVSG graph in this example.

We now prove the correctness of both type of schedules by contradiction. We
assume that the view manager keeps all arriving update messages in a queue. At
any time t, each update message in this queue represents a VM Transaction. Thus,
we denote this set of VM Transactions as T = Tτ1

, Tτ2
, . . . , Tτm

, with τ1, τ2, . . . , τm

their corresponding TxnIDs.

Theorem 6. Given any VM Transaction set queueing in the view manager, the
multiversion serializable graph G of any history over this set of VM Transactions is
acyclic. More strictly, all version order edges in G are pointing from the VM Transaction
Tτi

with TxnID τi towards another VM Transaction Tτj
with TxnID τj and τj > τi.

Proof: We prove this by contradiction.

(1) Assumption: There is one version order edge, Tτi
← Tτj

with TxnID τi < τj .

(2) There are two possible reasons for adding this edge to the MVSG graph.
(a) If this edge is added due to the serial graph (SG) definition [Bernstein

et al. 1987], this can’t be true because in TxnWrap and in parallel Txn-
Wrap algorithm, we always assign a TxnID only to a transaction after its
corresponding versions have been built.

(b) If this edge is added by the additional MVSG definition [Bernstein et al.
1987], then there are only two cases to consider:
—wτj

[xτj
] . . . rτk

[xτi
] and xτj

≪ xτi
. This is impossible because we assume

the version order xτi
≪ xτj

if τi < τj .

8Assume that we use a strict commit control strategy.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

Multiversion Based View Maintenance over Distributed Data Sources · App–5

—rτj
[xτk

] . . . wτi
[xτi

] and xτk
≪ xτi

. That is, Tτj
reads some data item

whose version is earlier than that of the same data written by Tτi
. This

is also impossible in both TxnWrap and parallel TxnWrap because we
always assign the latest version number (local id) to the VM Transaction
in the TxnID.

(3) Contradiction: Since all cases lead to contraditions, the assumption is not
correct. Thus, there is no version order edge Tτi

← Tτj
with τi < τj . So the

MVSG is acyclic.

Thus, the maintenance of a set of VM Transactions Tτ1
, Tτ2

, . . . , Tτm
using both

TxnWrap schedulers has the identical effect to maintaining each VM Transaction
sequentially as if no concurrency among source updates exists. That is, the current
VM Transaction completes before the next source update occurs which in turn
generates the next VM Transaction. Seen from the above discussion, TxnWrap
reaches a strong consistency level in terms of the consistency levels defined in [Zhang
et al. 2004; Zhuge et al. 1995]. If every VM Transaction contains only one data
source transaction, then this will even achieve complete consistency.

ACM Transactions on Database Systems, Vol. x, No. x, 12 2004.

