
Cost-Driven General Join View Maintenance over Distributed Data Sources ∗

Bin Liu and Elke A. Rundensteiner
Department of Computer Science

Worcester Polytechnic Institute, MA 01609, USA
{binliu | rundenst}@cs.wpi.edu

Abstract

Maintaining materialized views that have join conditions
between arbitrary pairs of data sources possibly with cy-
cles is critical for many applications. In this work, we
model view maintenance as the process of answering a set
of inter-related distributed multi-join queries. We illustrate
two strategies for maintaining as well as optimizing such
general join views. We propose a cost-driven view mainte-
nance framework which generates optimized maintenance
plans tuned to a given environmental settings. This frame-
work can significantly improve view maintenance perfor-
mance especially in a distributed environment.

1 Introduction

Materialized views [4] defined over distributed data
sources are widely used in many applications to ensure ef-
ficient access, reliable performance and high availability.
To realize such benefits, materialized views must be main-
tained upon source changes since stale view extents may
not serve well or even mislead user applications. Incremen-
tal view maintenance, aimed at only computing the delta
changes of the view extent under source changes instead of
recomputing from scratch, has been extensively studied in
the literature [11, 1]. Among these works, the incremental
maintenance of batches of updates [10, 3, 6, 7] is of partic-
ular interest since it is attractive to most practical systems
from both a resource and a performance perspective.

State-of-the-art view maintenance algorithms [1, 10, 6,
7] usually focus on maintaining simple acyclic join views.
Less attention has been paid to maintain and optimize gen-
eral join views (i.e., cyclic join views that may specify mul-
tiple join conditions between any two source relations) or
to exploit dynamic environmental settings such as source
updates and network costs. In this work, we illustrate that
such a general join view offers opportunities of more flexi-

∗This work was supported in part by the NSF grant #IIS 9988776.

ble maintenance strategies and thus demands the optimiza-
tions. These optimizations have the potential to improve
maintenance performance significantly.

2 View Maintenance and Optimization

We first illustrate the state-of-the-art view maintenance
process. Assume the materialized viewV is defined on4
data sources represented asR1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4. ∆R1,
∆R2, ∆R3, ∆R4 are the corresponding sourcedeltasthat
need to be maintained. The changes to the view extent
(∆V ) by all these source deltas can be computed by Equa-
tion (1) [6]. HereRi represents the pre-state of the under-
lying data source, whileR′

i
= Ri + ∆Ri is the post-state of

the data source. We refer to each line in Equation (1) as a
maintenance step, e.g.,∆R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4, and each
join operation within such a step as amaintenance query,
e.g.,∆R1 ⊲⊳ R2.

∆V = ∆R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4

+R
′

1 ⊲⊳ ∆R2 ⊲⊳ R3 ⊲⊳ R4

+R
′

1 ⊲⊳ R
′

2 ⊲⊳ ∆R3 ⊲⊳ R4

+R
′

1 ⊲⊳ R
′

2 ⊲⊳ R
′

3 ⊲⊳ ∆R4

(1)

We view the above maintenance process (the evaluation
of Equation 1) as the process of answering multiple inter-
related distributed queries. Thus, the following two gen-
eral optimization opportunities are available. They have not
been carefully exploited in the view maintenance context.

Choose Optimized Join Ordering. Multiple ways of ex-
ecuting each maintenance step exist. For example, we can
evaluate either∆R2 ⊲⊳ R3 or ∆R2 ⊲⊳ R

′

1 first for the sec-
ond maintenance step that contains∆R2. Different join or-
derings brings variations such as intermediate results that
affect the overall performance. Thus, the selection of an
optimal join ordering for a multi-join query, which is inves-
tigated in traditional distributed query optimization such as
in [5], could be applied here to improve the maintenance
performance.

1



Reduce Number of Maintenance Queries. Reducing the
number of maintenance queries to remote data sources also
has the potential to improve the maintenance performance.
We propose agrouping maintenancealgorithm [9] that
maintains a materialized view defined asR1 ⊲⊳ R2 ⊲⊳ . . . ⊲⊳

Rn using 2*(n-1) maintenance queries only. This reduction
in the number of maintenance queries (from O(n

2) to O(n))
has been shown to be efficient. However, an important re-
quirement for this grouping maintenance is the existence of
a join condition between eachRi andRi+1. Otherwise, we
may be forced to evaluate a Cartesian product [9].

3 General Join View Maintenance

Considering view definitions beyond simple acyclic join
views, i.e., those having multiple join conditions between
arbitrary data sources possibly with cycles, new mainte-
nance and optimization strategies can be exploited. We use
view graphsto represent such general join view definitions.
Each node represents a data source while an edge indicates
a join condition between two sources. Figure 1(a) shows
an example of a view graph that has4 data sources. We
describe two types of maintenance below that apply the op-
timizations described in Section 2 respectively.

R3

R1

R4

R2

R3

R1

R4

R2

(c-1) Apply Grouping 
Maintenance 

R3

R1

R4

R2

(a) Original Graph

R3

R1

R4

R2

1 2

2

3

(b) Optimized Join Orders

+

Transform View Graph

Join Order
Apply

(c-2) Apply Remaining 
Join Conditions

Figure 1. Maintaining General Join Views

General join view maintenance applying join ordering
optimization reduces to seeking optimized join orders for
each maintenance step. For example, Figure 1(b) illustrates
one possible processing of the maintenance step containing
∆R2 for the view graph defined by Figure 1(a). The num-
ber listed on each edge indicates the ordering. Note that
multiple join conditions can be combined and evaluated at
the same time. As seen in Figure 1(b), once we evaluate
∆R2 ⊲⊳ R4, then we can incorporate the join conditions in-
dicated by edgesR2 − R3 andR4 − R3 and evaluate both
of them (againstR3) at the same time.

General join view maintenance with grouping optimiza-
tion reduces to transforming the join graph into simple sub-

graphs and applying the grouping maintenance whenever
possible. As an example, the view graph of Figure 1(a) can
be divided into two simpler subgraphs as shown in Figures
1(c-1) and (c-2). We can apply grouping maintenance to the
part indicated byR1 − R2 − R3 − R4 (Figure 1(c-1)). The
remaining join condition(s) can be applied after we get the
result ofR1 −R2 −R3 −R4. Due to space limitations, we
ask readers to refer [8] for details.

4 Cost-based Optimization Framework

We enhance the view graph by incorporating relevant
cost information for estimating the cost of maintenance pro-
cess applying above maintenance and optimization strate-
gies. Algorithms have been proposed to generate optimized
view maintenance plans that incorporate the impact of view
definitions as well as environmental settings such as net-
work cost and data source processing capabilities [8].

A view maintenance optimization framework has been
implemented based on the TxnWrap [2] system. Experi-
mental results show that the view maintenance performance
can be improved significantly by using our proposed op-
timization strategies. While we omit details due to space
limitations, readers may refer to our technical report [8] for
more information.

To conclude, this work illustrates effective view mainte-
nance optimization strategies for general join view defini-
tions. Our work also brings two independent areas one step
closer, namely, the fusion of distributed query optimization
and view maintenance optimization.

References

[1] D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. EfficientView Maintenance
at Data Warehouses. InSIGMOD, pages 417–427, 1997.

[2] S. Chen, B. Liu, and E. A. Rundensteiner. Multiversion Based View Mainte-
nance over Distributed Data Sources.ACM TODS, 2004, to appear.

[3] L. S. Colby, T. Griffin, L. Libkin, I. S. Mumick, and H. Trickey. Algorithms for
Deferred View Maintenance. InSIGMOD, pages 469–480, 1996.

[4] A. Gupta and I. Mumick. Maintenance of Materialized Views: Problems, Tech-
niques, and Applications.IEEE Data Engineering Bulletin, 18(2):3–19, 1995.

[5] D. Kossmann. The State of the Art in Distributed Query Processing. ACM
Computing Surveys (CSUR), 32(4):422–469, 2000.

[6] W. J. Labio and R. Y. and. Shrinking the Warehouse UpdatedWindow. pages
383–395, June 1999.

[7] B. Liu, S. Chen, and E. A. Rundensteiner. Batch Data Warehouse Maintenance
in Dynamic Environments. InCIKM’02, pages 68–75, Nov 2002.

[8] B. Liu and E. A. Rundensteiner. Cost-Driven View Maintenances in Distributed
Environments. Technical Report WPI-CS-TR-03-30, WPI, 2003.

[9] B. Liu, E. A. Rundensteiner, and D. Finkel. Restructuring View Maintenance
Plans for Large Update Batches. InCIKM, Poster, page to appear, 2004.

[10] K. Salem, K. S. Beyer, and et.al. How To Roll a Join: Asynchronous Incremen-
tal View Maintenance. InSIGMOD, pages 129–140, 2000.

[11] Y. Zhuge, , J. Hammer, and J. Widom. View Maintenance in aWarehousing
Environment. InSIGMOD, pages 316–327, May 1995.

2


