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Abstract. Traditional optimization algorithms that guarantee optimal plans have exponen-
tial time complexity and are thus not viable in streaming contexts. Continuous query optimiz-
ers commonly adopt heuristic techniques such as Adaptive Greedy to attain polynomial-time
execution. However, these techniques are known to produce optimal plans only for linear
and star shaped join queries. Motivated by the prevalence of acyclic, cyclic and even com-
plete query shapes in stream applications, we conduct an extensive experimental study of the
behavior of the state-of-the-art algorithms. This study has revealed that heuristic-based tech-
niques tend to generate sub-standard plans even for simple acyclic join queries. For general
acyclic join queries we extend the classical IK approach to the streaming context to define
an algorithm TreeOpt that is guaranteed to find an optimal plan in polynomial time. For
the case of cyclic queries, for which finding optimal plans is known to be NP-complete, we
present an algorithm FAB which improves other heuristic-based techniques by (i) increasing
the likelihood of finding an optimal plan and (ii) improving the effectiveness of finding a
near-optimal plan when an optimal plan cannot be found in polynomial time. To handle the
entire spectrum of query shapes from acyclic to cyclic we propose a Q-Aware approach that
selects the optimization algorithm used for generating the join order, based on the shape of
the query.

1 Introduction

1.1 Continuous Query Plan Generation

In traditional, static, databases, query optimization techniques can be classified as either techniques
that generate optimal query plans [1–4], or heuristic based algorithms [5–7], which produce a good
plan in polynomial time. In recent years there has been a growing interest in continuous stream
processing [8–11]. Continuous query processing differs from its static counterpart in several aspects.
First, the incoming streaming data is unbounded and the query life span is potentially infinite.
Therefore, if state-intensive query operations such as joins are not ordered correctly they risk
consuming all resources. Second, live-stream applications such as fire detection and stock market
tickers are time-sensitive, and older tuples are of less importance. In such applications, the query
execution must keep up with incoming tuples and produce real-time results at an optimal output
rate [12]. Third, data stream statistics typically utilized to generate the execution query plan such as
input rates, join selectivity and data distributions, will change over time. This may eventually make
the current query plan unacceptable at some point of the query life span. This volatile nature of the
streaming environment makes re-optimization a necessity. We conclude that an effective continuous
query optimizer must have (1) polynomial time complexity, (2) the ability to generate optimal or
at least near-optimal plans, (3) provide migration strategies to move the existing plan states to
the newly generated plan. Existing approaches either have exponential complexity [1, 3, 4] or fail
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to produce an optimal plan. In streaming databases, the typical approach [9, 10, 13, 14] is to use
a forward greedy heuristic [3]. Although it was shown in [15] that a greedy approach can perform
within a constant factor of optimal, the scope of this analysis was restricted to ordering unary filters
over a single stream. Migration strategies proposed by [16] to safely transfer the current suboptimal
query plan to the re-optimized query plan can be employed.
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Fig. 1. a) NIST Fire Lab - Mobile Home Test Arena, b) Join Graphs for Q1 and Q2

1.2 Spectrum of Linear, Acyclic and Cyclic Queries

In any streaming domain many flavors of join graphs from cyclic to acyclic may coexist. As mo-
tivation we examine the processing of sensor readings obtained from sensors placed in the mobile
home (Figure 1.a) conducted by National Institute of Standards and Technology (NIST) [17]. Each
sensor generates a reading feed Si made up of tuples that contain the sensor identifier sid, the time
stamp of the reading and the actual reading. In addition, each room contains a router (Ri) that
generates a summarizing stream of all the sensors in its respective room. Fire engineers interested
in determining false positive alarms or rogue sensors can submit the following query:

Query 1 (Q1): A smoke sensor in the bedroom #1 has detected an abnormality.

Monitor and compare its behavior with all sensors within the same room.

To evaluate Q1 we must compare the readings of each sensor against the readings of all the
sensors in bedroom #1 to identify abnormalities. Such user queries are represented as complete
(cyclic) join graphs, as in Figure 1.b. In the same domain, user queries can also correspond to
acyclic join graphs. For example, first responders must identify the fire and smoke path in an arena.

Query 2 (Q2): Find the direction and the speed of the smoke cloud caused

by the fire generated in bedroom #1.
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The spread of fire and smoke is guided by access paths such as doors and vents. Such queries
can be answered by querying the summarized streams from the routers placed in each room. Query
Q2 is therefore guided by the building layout, which in Figure 1.b is an acyclic join graph.

1.3 Our Contributions

The optimization of cyclic join queries is known to be NP-complete [5]. Even in the case of acyclic
join queries, the state-of-the-art techniques [15, 18, 19] used in streaming database systems do not
guarantee optimality. In addition, these techniques are insensitive to the shape of user query and so
represent a “one-algorithm fits-all” policy. There is a need for a comprehensive approach to handle
the entire spectrum of join queries, from acyclic to cyclic in the most effective manner.

In this effort, we begin by studying the performance of the commonly adopted heuristic-based
techniques [15,18,19]. These techniques are known to produce sub-standard query plans for general
acyclic and cyclic queries and may prove fatal for time-critical applications. More specifically, when
handling acyclic queries our experiments demonstrate several cases when these techniques are shown
to produce sub-optimal plans that are 5 fold more expensive than their optimal counterparts. In
response, we tackle this shortcoming by extending the classical IK algorithm [5] in the streaming
context (Section 4). The resulting TreeOpt approach while still featuring polynomial time complexity
now also guarantees to produce optimal join plans for acyclic continuous join queries, such as Q2.

Subsequently, we focus on query plans represented by cyclic join graphs. Our experiments reveal
that when handling cycles, in several cases the popular heuristic-based techniques generate plans
that are 15 fold more expensive than their optimal counterpart. Unfortunately, even the adaptation
of TreeOpt for cyclic queries is not guaranteed to generate optimal plans. Since the optimization
problem in this setting is NP-complete we refine our goals as follows. We ask that our optimizer (i)
be polynomial in time complexity, (ii) be able to increase the probability of finding optimal plans,
and (iii) in scenarios where an optimal solution cannot be found, the technique should decrease the
ratio of how expensive the generated plan is in comparison to the optimal plan. Towards this end,
we introduce our Forward and Backward Greedy (FAB) algorithm that utilizes our global impact
ordering technique (see Section 5). This can be applied in parallel with the traditional forward
greedy approach [3]. Through our experimental evaluation we show that our FAB algorithm has
a much higher likelihood of finding an optimal plan than state-of-the-art techniques. In scenarios
when an optimal plan cannot be found, FAB is shown to generate plans that are closer to the
optimal than those generated by current approaches. Finally, we put the above techniques together
into a system that is query shape aware while still having a polynomial time complexity, called
the Q-Aware approach (see Section 6). This technique is equipped to generate the best possible
(optimal or a good) plans guided by the shape of the query.

2 Background

2.1 Continuous Multi-Join Processing

The common practice for executing multi-join queries over windowed streams is by a multi-way
join operator called mjoin [18], a single multi-way operator that takes as input the continuous
streams from all join participants. See Figure 2.a. Two benefits of mjoin are that the order in
which the inputs tuples from each stream are joined with remaining streams can be dynamic, and
intermediate tuples are not longer stored, saving space. To illustrate, in Figure 2.b new tuples from
S1 (∆S1 for short) are first inserted into the state of S1 (denoted as STS1), then used to probe the
state of S4 (STS4), and the resulting join tuples then go on to probe STS2 , etc. This ordering is
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called S1’s pipeline. The join graph (JG), as in Figure 1.b, represents a multi-join query along with
statistical information such as input rates and selectivities. In this work, we assume independent
join selectivities and time window constraints [20,21].
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Fig. 2. a) 5-way Mjoin operator b) Sample join ordering to process new tuples from S1 (∆S1)

2.2 Cost Analysis
The cost model is based on the commonly used per-unit-time cost metrics [20]. The estimated
processing cost of an mjoin is the cumulative sum of the costs to process updates from each of the
n input streams.

Table 1. Terms Used In The Cost Model

Term Meaning

n Number of participant streams

4Si ith update stream

1Si:1, ...,1Si:n−1 Join order (pipeline) for 4Si

1Si:j or Si : j jth stream to join in 4Si’s pipeline

Cinsert Cost of inserting a tuple into a state

Cdelete Cost of deleting a tuple into a state

Cjoin Cost of joining a pair of tuples

λSi:j Average input rate of stream Si : j

σSi:j Selectivity for joining stream Si : j

W Sliding time-based window constraint

|STSi | Number of tuples in state of stream Si

Without loss of generality, we estimate the per-unit-time CPU cost of processing the update
from stream S1. It is the sum of the costs incurred in inserting the new tuples (insert(S1)) to its
corresponding state (STS1), to purge tuples (purge(S1)) that fall outside the time-frame (W ) and
to probe the states of the participating streams (probe(1S1:1,1S1:2, ...,1S1:n−1)).

CPUS1 = insert(S1) + purge(S1) + probe(1S1:1,1S1:2, ...,1S1:n−1) (1)

The cost for inserting new tuples from stream S1 into the state STS1 is λS1 ∗Cinsert where Cinsert

is the cost to insert one tuple. Tuples whose time-stamp is less than (timecurrent - W ) are purged.
Under the uniform arrival rate assumption, the number of tuples that will need to be purged is
equivalent to λS1 . If the cost for deleting a single tuple is given by Cdelete, then the purging cost for
stream S1 is λS1 ∗Cdelete. Updates from stream S1 are joined with the remaining join participants
in a particular order as specified by its pipeline 1S1:1,1S1:2, . . . ,1S1:n−1. The cost of joining every
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new tuple from S1 with 1S1:1 (= S3) is λS1 ∗ (λ1S1:1 ∗W ) ∗Cjoin. This is due to the fact that under
a constant arrival rate at most (λ1S1:1 ∗W ) tuples exist in the state of λS1:1 stream which will join
with the new updates from S1. Now, the resulting tuples (λS1 ∗ (λ1S1,1 ∗W ) ∗ σ1S1:1) probe the
state of 1S1:2 and so on. Thus the total update processing cost is:

CPUS1 =λS1 ∗ Cinsert + λS1Cdelete + λS1 ∗ (λ1S1:1 ∗W ) ∗ Cjoin

+ (λS1 ∗ [λ1S1:1 ∗W ] ∗ σ1S1:1) ∗ (λ1S1:2 ∗W ) ∗ Cjoin + .....

=λS1 [Cinsert + Cdelete + (

n−1X
i=1

[

iY
j=1

λ1S1:j ∗ σ1S1:j−1 ] ∗W i ∗ Cjoin)];where σi:0 = 1.

(2)

It follows that the CPU cost for any n-way mjoin is:

CPUmjoin =

nX
k=1

(λSk [Cinsert + Cdelete +

n−1X
i=1

[

iY
j=1

λ1Sk:jσ1Sk:j−1 ]W iCjoin)]) (3)

where k is the number of streams in the mjoin, while i and j are the index over the pipeline.

3 Assessment of Popular Optimization Algorithms

3.1 Dynamic Programming Techniques For Ordering MJoin

The classical bottom-up dynamic programming algorithm due to Selinger [1] is guaranteed to find
an optimal ordering of n-way joins over relational tables, and can easily be adopted for mjoin
ordering (DMJoin). The aim of the algorithm to find the join order that produces the least number
of intermediate tuples. This is consistent with the CPU cost model described in Equation 3. To
illustrate, consider our query Q1 (as depicted in Figure 1.b) and the processing of the new tuples
from stream S1. In the first iteration, the algorithm computes the cost of all join subsets with
S1 and one other stream. For example, {S1, S2}, {S1, S3}, etc., are each considered. Next, the
algorithm considers all subsets having k = 3 streams and S1 being one of those streams. In the kth
iteration

(
n−1
k−1

)
join pairs need to be maintained. For each of these subsets there can be k− 1 ways

of ordering. Several extensions to this core approach have been proposed [3, 4] along with better
pruning techniques [2, 22] have been designed. However, their exponential time complexity makes
them not viable for streaming databases.

3.2 Forward Greedy Algorithm
In the streaming context, it is a common practice to adopt some variations of the forward greedy
algorithm [3] to order mjoins [15,18,19], here called F-Greedy. In each iteration, the candidate that
generates the smallest number of intermediate tuples is selected as the next stream to be joined.

For Q1 (Figure 1.b), in the first iteration the algorithm computes the cost incurred by new tuples
from S1 joining with the remaining streams. For example, stream S3 generates 75.36∗53.94∗0.26 ≈
1057 tuples/sec, while with stream S5 is 75.36 ∗ 26.05 ∗ 0.78 ≈ 1531 tuples/sec. Since S3 produces
the smallest number of intermediate results, it is chosen for joining first S1’s pipeline and so on.
F-Greedy returns the plan S1 1 S3 1 S5 1 S2 1 S4 which generates ≈ 7212 intermediate tuples per
sec. For comparison, the optimal plan for processing input tuples from S1 is S1 1 S5 1 S2 1 S3 1 S4

which generates ≈ 3629 intermediate tuples per second. Therefore, F-Greedy plan is 2 fold more
expensive than the optimal plan generated by DMJoin.

Time complexity to generate a query plan that processes the new tuples from an input stream
is O(n2). Therefore, the time complexity for ordering an n-way mjoin operator is O(n3).
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Fig. 3. Forward Greedy Algorithm

3.3 Experimental Evaluation

Environment. Our experiments were conducted on a 3.0 GHz 4 Intel machine with 1 GB memory.
We executed the generated plans on the CAPE continuous query engine [10] to verify the cost
model and record the execution time. All algorithms where implemented in Java 1.5.
Experimental Setup. In line with state-of-the-art techniques [23, 24] we use synthesized data to
control the key characteristics of the streams namely input rate and selectivites between streams.
More importantly, to assure statistical significance of our results and scopes of applicability we work
with wide variations of settings as elaborated below. The setup included varying the number N of
streams from 3 to 20. For each N, we randomly generate: 1) the input rate for each stream [1–100]
tuples/sec, and 2) the join selectivities among the streams. For each N, we repeat this setup process
500 times. Therefore we have a total of (20-3+1) * 500 = 9000 different parameter settings.
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Objectives. First, we compare time needed by the algorithm to generate a plan. Second, we measure
the effectiveness measured as % of runs1 of each algorithm to produce an optimal plan. Third, we
compare the plan produced by heuristic-based algorithm against the optimal plan returned by
DMJoin. Lastly, we observe the effectiveness of generating optimal plans as well as how expensive
non-optimal plans can be for a diversity of join graph shapes.
Evaluation of Popular Algorithms. We begin by comparing the time needed to generate a plan
by F-Greedy vs. DMJoin. The plan generation time for each distinct N is the average time over 500
distinct runs. As it is well known, Figure 4.a re-affirms the exponential nature of DMJoin. Next,
we study the capability of F-Greedy to generate optimal plans for different query plan shapes. We
achieve this by comparing the cost of plans generated by F-Greedy to those generated by DMJoin.
As in Figure 4.b F-Greedy generates optimal plans for linear and star-shaped join queries. However,
for general acyclic and cyclic join queries, F-Greedy generates substandard plans for many settings.
Next, to provide a deeper understanding of the behavior of F-Greedy when applied to general acyclic
and cyclic join queries, we compute the ratio of the average number of intermediate results generated
by plans produced by heuristic-based algorithm against those generated by optimal plan. A ratio
= 1 is ideal since it reflects that F-Greedy plan generates the same number of intermediate results
and therefore have similar CPU costs. Figures 4.c and 4.d confirms that F-Greedy could potentially
generate plans that are many fold more expensive than the optimal plan, thereby triggering re-
optimization sooner.

4 The TreeOpt Algorithm

In the previous section, F-Greedy is shown to generate substandard plans even for acyclic join
queries. We now extend the classical IK algorithm [5] to solve the optimal ordering of acyclic
queries, called TreeOpt. [5] has been largely ignored in the streaming context. To illustrate the
main intuition of this approach let us consider acyclic join graphs such as Q2 (Figure 1.b) and the
processing of new tuples from stream Si. The join graph can now be viewed as a directed tree with
Si as its root. The aim is to transform this tree into a chain (representing the join order) with Si as
its root. However, a directed tree can be composed of vertexes linked as a chain or as wedges (two
or more children). If this directed tree is a chain, then the chain hierarchy dictates the join order.
When this directed tree is not a chain, then TreeOpt starts the optimization from its leaves. Each
vertex (Sr) is assigned a rank (defined later). If a parent vertex Sq has a greater rank than that of
its child vertex Sr, then the two vertexes are merged into one with the name SqSr and their rank is
calculated. The merging of unordered vertexes ensures that the structural information of the query
is not lost. For example, Sq is always joined before Sr. To transform a wedge into a chain, we merge
all the children of a vertex into a single chain arranged in ascending order by their respective rank.

Next, we show that the cost model, as in Section 2.2, satisfies the Adjacent Sequence Interchange
(ASI) property of [5] and thereby is guaranteed to generate an optimal plan for acyclic join graphs.
Consider a given acyclic join graph JG and a join sequence ζ = (1S1:0, ...,1S1:n−1) starting from
input S1. By Equation 2 the total CPU cost of this sequence is: CPUS1 = λS1 [Cinsert + Cdelete

+ (
∑n−1

i=1 [
∏i

j=1 λ1S1:j * σ1S1:j−1 ] * W i * Cjoin). The terms λS1(Cinsert +Cdelete) and Cjoin are
order-independent, and are therefore ignored. The order-dependent part of CPUS1 , that is,

∑n−1
i=1

[
∏i

j=1 λ1S1:j * σ1S1:j−1 ] * W i can be defined recursively as below (similar to [5]):

1 A run is defined as a unique assignment of input rates and selectivities in a join graph
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C(Λ) = 0 Null sequence Λ.
C(S1) = 0 Starting input stream.
C(1S1:i) = λ1S1:iσ1S1:iW Single input Si(i > 1).

C(ζ1ζ2) = C(ζ1) + T (ζ1)C(ζ2) Sub-sequences ζ1 and ζ2in join sequence ζ.
where T(*) is defined by:
T (Λ) = 1 Null sequence Λ.
T (S1) = λS1 Starting input stream.
T (1S1:i) = σ1S1:iλ1S1:iW Single input Si(i > 1).

T (ζ1) =
Qj

k=i(σ1S1:kλ1S1:kW ) Subsequence ζ1 = (1S1:i, . . . ,1S1:j−1).

Each node Sq is marked by the rank, rank(Sq) = (T (Sq) − 1)/C(Sq), where C(Sq) and T (Sq)
are defined as above. This modified cost model satisfies the Adjacent Sequence Interchange (ASI)
property [5] and therefore is guaranteed to produce an optimal join order for acyclic graphs.
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Handling Cycles in TreeOpt: For the problem of optimizing cyclic join graphs the strategy
is to first transform the graph into some acyclic graph and then apply TreeOpt. The aim now is
to construct a good acyclic graph. Note that when ordering the pipeline of a given stream Si, the
goal is to reduce the number of intermediate tuples. Therefore, we propose to generate a minimal
spanning tree (MST), where the weight of an edge connecting two vertexes Si and Sj is computed
as λSi ∗ λSjσSiSj . In the static database context, [25] proposed a similar heuristic accounting for
the cost of disk accesses. TreeOpt is then applied to produce an optimal ordering for this MST.
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Example: For the weighted cyclic join graph in Figure 5.a we generate the MST shown in
Figure 5.b and then compute the rank for each node Sq. We traverse the rooted tree (Figure
6.a) bottom up. S5 is the first node with more than one child and we check to see if all of its
children’s branches are ordered by non-decreasing ranks. We then merge the children’s nodes into
one sequence by the ascending order of their ranks as in Figure 6.b. The resulting chain is not
ordered since rank(S2) < rank(S5) and so we merge nodes S5 and S2, and recompute the rank for
the merged node S5S2 (Figure 6.c). As a final step, we expand all combined nodes. The resulting
sequence is the optimal join for the MST shown in Figure 5.b.
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Time Complexity: For a join graph with n vertexes, it takes O(n2log(n)) to find a mini-
mum spanning tree. Ordering an input stream takes O(nlog(n)). Therefore, TreeOpt has a time
complexity of O(n2log(n)) for ordering an n-way mjoin.
Evaluation of The TreeOpt Algorithm. Figure 7.a depicts the percentage of runs in which
TreeOpt generates an optimal plan. Note that all lines in Figure 7.a except for the cyclic case
overlap fully. That is, TreeOpt generates an optimal plan for any acyclic join query as expected
and has faster plan generation time than F-Greedy (as in Figure 7.b). Clearly, this is a win-win
solution for acyclic join queries. However, for the cyclic queries we observe in Figure 7.b that the
ability of TreeOpt to generate an optimal plan rapidly goes down to zero. A closer investigation of
the distribution of generated plan costs reveals that in most cases the upper-quartile (top 75%) of
generated plans are ≈ 2.5 fold more expensive than the optimal plan generated by the DMJoin.
Additionally, we note in Figure 7.c that there are many cases when TreeOpt performs unacceptably,
sometimes 50 fold or worse depending on the MST considered.
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Summarizing: TreeOpt generates optimal plans for any acyclic join graph in polynomial time,
while the widely used F-Greedy [15, 18, 19] often produces sub-standard plans. However, for cyclic
join queries, where neither offer any guarantees on optimality, F-Greedy outperforms TreeOpt.

5 The FAB Algorithm

We now present our Forward and Backward greedy (FAB) algorithm. The F-Greedy algorithm incre-
mentally picks the next best stream and is therefore too greedy at the early stages of optimization.
In Figure 3, during the first iteration F-Greedy chooses S3 as it generates the fewest number of join
results. However, S3 has a higher input rate, and its join selectivities with the remaining streams
are greater than S5. This early greedy decision affects the total plan cost by producing more inter-
mediate tuples in comparison to the case when S2 is chosen. By contrast, our FAB approach uses
a global impact-based ordering, in which we explore the global impact of each stream and place the
most expensive streams as the last candidate to join.

Algorithm 1 GImpactOrdering(Graph JG, Stream Sstart)
Input: Join Graph, JG of streams {S1, .., Sn}; Start stream, Sstart

Output: Query Plan cPlan for 4Sstart

1: for i = n to 2 do
2: impact = ∞
3: for each vertex Sq ∈ {S1, .., Sn} and Sq 6= Sstart do
4: if GlobalImpact(JG, Sq) < impact then
5: impact = GlobalImpact(JG, Node Sq); nextCandidate = Sq

6: cPlan = nextCandidate 1 cPlan; Remove nextCandidate from JG
7: cPlan = Rstart 1 cPlan
8: return cPlan
9: procedure GlobalImpact(JoinGraph JG, Stream Scurr)

10: impact = 1;
11: for each Sx ∈ {S1, .., Sn} and Sx 6= Scurr do
12: impact = impact * λSx

13: for each Sy ∈ {S1, .., Sn} and Sy 6= Scurr and Sy 6= Sx do
14: impact = impact * σSxSy

15: return impact

The global impact metric used by FAB is listed in Algorithm 1 (Line 12). The global impact of
stream Sq (Sq ∈ S and Sq 6= Sstart) is the product of the arrival rates of all remaining streams
and the join selectivities not related to Sq. The intuition here is that if a stream, Sq, has the
least impact, i.e., high input rate and poor selectivities, then the generated plan will be the most
expensive. Following this principle, FAB starts by picking the candidate that has the least impact
and places it as 1Sstart:n−1. Next, we remove this candidate stream from the join graph and proceed
to determine the next-to-last stream to join in the update pipeline of stream Sstart. This process
is done iteratively until all n− 1 positions in the pipeline are filled. Our FAB approach makes use
of the global impact ordering in unison with the F-Greedy to generate optimal plans for ordering
multi-join queries.

Time complexity: The global impact ordering has a complexity of O(n2). Therefore, the time
complexity to order the pipeline for processing new tuples from a single stream by FAB is O(n2);
thus, ordering an n-way mjoin operator has complexity O(n3).



11

S1 

S2 S3 

S4 S5 

(75.36) 

(63.34) 

S1 

S2 S3 

S4 S5 

(75.36) 

(53.94) 

(26.05) 

S1 

S2 S3 

S4 S5 

(75.36) 

(53.94) 

S1 

S2 S3 

S4 S5 

(75.36) 

(53.94) 

(26.05) 

(46.84) 

(63.34) 

(b) (a) (d) (c) 
(63.34) (63.34) 

Fig. 8. Finding Optimal Join Ordering Through GImpactOrdering (as described in Algorithm 1)

Example: Consider Q1 and the processing of tuples from stream S1. We compute the global
impact of all remaining join participants. As in Figure 8, the candidate with the least impact is
identified, e.g., the impact of S4 is ≈ 300 while that of S3 is ≈ 11K and is therefore the last stream to
be joined in S1’s pipeline i.e., 1S1:4 = S4. Iteratively, the resultant ordering is S1 1 S5 1 S2 1 S3 1

S4 and generates ≈ 3629 intermediate tuples/sec. This is equivalent to the optimal plan generated
by DMJoin. Recall in Section 3.2, F-Greedy returns a sub-standard plan that generates ≈ 7212
intermediate tuples/sec, which is 2 fold more expensive.
Evaluation of the FAB Algorithm. In Figure 9.b, the FAB approach has a higher likelihood
of generating an optimal for the entire spectrum of queries than F-Greedy (Figure 9.b). However,
FAB does not provide optimality guarantees as TreeOpt (Figure 7.b) for acyclic queries.
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Fig. 9. FAB vs. DMJoin: (a) Plan Generation Time (b) % of Optimal Plans Generated by FAB

For acyclic join queries, FAB produces near-optimal plans with the upper quartile of the runs
generating optimal plans (as in Figure 10.a). FAB is shown to generate plans that are at-most 1.25
fold more expensive in cost than those generated by DMJoin. Figure 10.b highlights similar trends
in the upper quartile of runs when processing cyclic join queries. The most expensive plan in FAB
are cyclic queries, which are at most 2 fold more expensive than those generated by DMJoin.

6 The Q-Aware Approach

Due to the NP-completeness of the query optimization problem no single algorithm can effectively
and efficiently handle the entire spectrum of join queries. We therefore present our query shape
aware approach (Q-Aware) that is sensitive to query shape. This approach has two steps. First we
determine the shape of the join graph; next, based on the query shape, we choose the algorithm
to generate an optimal or a good plan, as described in Table 6. An acyclic query is always ordered
using TreeOpt as it is guaranteed to return an optimal plan. For cyclic queries, the approach uses
the FAB technique to generate a good plan.
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Table 2. Summarizing Q-Aware Approach

Query (Join Graph) Shape Algorithm Complexity Properties

Linear
TreeOpt O(n2log(n)) OptimalStar

General-Acyclic

Cyclic FAB O(n3) Near-optimal

Time complexity: For a join graph with n vertexes (streams) and e edges (selectivities) the
time complexity to determine if a given join query has cycles is O(n+e). Since the number of edges
is smaller than O(n3), the time complexity of Q-Aware O(n3) for ordering an n-way mjoin.

7 Conclusion

Streaming environments require their query optimizers to support (1) re-optimization and migration
techniques to keep up with fluctuating statistics, (2) have polynomial time complexity, (3) increase
the probability of generating optimal plans, and in the worst case scenarios it must aim to generate
a good plan, and (4) handle a diversity of query types. Motivated by this, we revisit the problem
of continuous query optimization. We begin by experimentally studying the effectiveness of the
state-of-the-art continuous query optimization techniques for different query shapes which confirms
that these techniques generate sub-standard plans even for the simple problem of ordering acyclic
queries. To tackle this deficiency, we extend the classical IK algorithm to the streaming context
called TreeOpt. TreeOpt is a polynomial-time algorithm, and is superior to the greedy approach
for general acyclic queries. For the harder problem of ordering cyclic graphs, TreeOpt is not be a
viable alternative. Therefore, we introduce our FAB algorithm utilizes our global impact ordering
technique. This approach increases the chances of finding an optimal plan as well as generating
a less expensive plan when an optimal plan cannot be found in polynomial time. Lastly, we put
forth our Q-Aware approach that generates optimal or near-optimal plans for any query shape in
guaranteed polynomial time.
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