
The Proactive Promotion Engine

Karen Works and Elke A. Rundensteiner

Worcester Polytechnic Institute
Worcester, MA USA

(kworks,rundenst)@cs.wpi.edu

Abstract— Given the nature of high volume streaming envi-
ronments, not all tuples can be processed within the required
response time. In such instances, it is crucial to dedicate resources
to producing the most important results. We will demonstrate the
Proactive Promotion Engine (PP) which employs a new prefer-
ential resource allocation methodology for priority processing of
stream tuples. Our key contributions include: 1) our promotion
continuous query language allows the specification of priorities
within a query, 2) our promotion query algebra supports proactive
promotion query processing, 3) our promotion query optimization
locates an optimized PP query plan, and 4) our adaptive promotion
control adapts online which subset of tuples are given priority
online within a single physical query plan. Our “Portland Home
Arrest” demonstration facilitates the capture of in-flight criminals
using data generated by the Virginia Tech Network Dynamics and
Simulation Science Laboratory via simulation-based modeling
techniques.

I. INTRODUCTION

A. Electronic Monitoring Applications

In electronic monitoring applications (or EMAs) the required

response time (or rrt) for objects monitored varies depending

on the associated risk of the objects and the current system

load [4]. Consider an EMA tracking missiles. It may be critical

to ensure that some objects are always monitored (e.g., nuclear

missiles). While the monitoring of other objects (e.g., missiles

bound for unpopulated areas) may depend upon whether or

not processing resources remain after handling more important

objects. In addition monitoring of certain objects may be

temporarily skipped altogether (e.g., missiles sent by our

country) until all more significant objects can be processed

within the rrt. By not processing some less important objects,

EMAs reduce the system load as needed and dedicate precious

resources to the most important objects.

EMAs process queries online over large volumes of data

arriving from high-speed data streams with fluctuating arrival

rates for days, months, or even indefinitely. At times EMAs

may not be able to process the sleuth of incoming data. During

such times it is crucial for an EMA to consider the significance

of tuples when allocating resources and to proactively pull cer-
tain tuples forward ahead of others within the query pipeline.

A concept that we henceforth term proactive promotion.

B. Motivating Example

Consider a Portland Home Arrest EMA that reports the

criminal’s ID, locale, and officer’s ID for all criminals at

an improper location who are within 3 miles of an officer

(see Home Arrest Query below). Patrol cars (via GPS) and

criminals (via ankle bracelets) continuously submit their

locale to the Home Arrest EMA. To catch criminals in

improper locations, the current locale of each criminal is

compared against a table of permitted locations.

Home Arrest Query:
SELECT PL.PrisonerID, PL.Locale, OL.OfficerID
FROM prisonerLocation PL, prisonerInfo PI, officerLocation OL
WHERE PL.Loacle != PI.ProperLocation AND PL.PrisonerID = PI.PrisonerID
AND Distance(PL.CurrentLocation, OL.CurrentLocation) ≤ 3 mi
WINDOW 30 seconds

It has been shown that monitoring requirements imple-

mented in a centralized data driven technology increases the

efficiency of police officers [8]. Such technology must incor-

porate a suitable monitoring order to handle which criminals

should be monitored when the system is overloaded. First,

violent criminals who are more than 3 miles from their proper

location (i.e., escaped and likely to cause harm) should be

monitored. Next criminals known to be at an improper location

within the last 30 seconds (i.e., likely to be in violation) should

be monitored. Finally criminals known to be flight risks should

be monitored. Table I outlines the desired resource allocation

order for the Portland Home Arrest EMA.

System Load Order of Resource Allocation
System not overloaded all tuples processed in FIFO order

System mildly overloaded tuples from prisoners
1) escaped and likely to cause harm
2) likely to be in violation
3) who are a known flight risk

System moderately overloaded tuples from prisoners
1) escaped and likely to cause harm
2) likely to be in violation

System extremely overloaded tuples from prisoners
1) escaped and likely to cause harm

TABLE I

PORTLAND HOME ARREST EMA - RESOURCE ALLOCATION ORDER

The relevance criteria for each monitoring level defines how

to determine which incoming tuples meet the requirements to

be given preferential processing assigned to a given monitoring

level. Current methods that define relevance criteria include

top k [7] and preference queries [5]. Broadly, such methods

return the most preferred results based on a ranking score

computed by a possibly complex function over all relevance

criteria. These methods always calculate all defined relevance

criteria to establish the final (global) rank. If some criteria

are complex or a significant number of criteria exist, this may

result in a high overhead and delay the processing of some

PREPRESS PROOF FILE CAUSAL PRODUCTIONS1

results. In contrast, EMAs seek to reduce such overhead to

preferentially allocate resources to specific significant tuples

by adapting at runtime which criteria are evaluated and where

in the pipeline each criteria is evaluated to the system load.

C. Shortcomings of State-Of-the-Art

State-of-the-art stream engines do not meet the needs of

EMAs. The closest method to managing resource allocation

based upon tuple precedence in streaming databases is shed-

ding [2], [10]. Shedding improves the overall processing of all
tuples by reducing the workload. Random shedding randomly

drops a percentage of incoming tuples. Semantic shedding

drops ”less important” tuples based on data content or stream

statistics. Shedding makes a major assumption that is contrary

to the objectives of proactive promotion as explained below.

Fig. 1. State of the Art

Shedding considers all tuples not dropped to have equal

importance. Consider the Home Arrest Query executed in

moderately overloaded system utilizing shedding in Figure

1. In this case the Semantic Load Shedder would drop all

tuples not from prisoners who have escaped and are likely to

cause harm or likely to be in violation. Now consider that

there is a period of time where many violent prisoners flee

to improper locations (i.e., the workload quickly fluctuates).

In this situation the most significant tuples (i.e., escaped

violent prisoners) should swiftly be dedicated all the resources.

However resources will still be dedicated to processing older

in process tuples from prisoners likely to be in violation. This

potentially may cause some significant tuples to not meet

their required response time. This may cause some significant

results to not be produced (i.e, the prisoner might get away).

D. Our Proactive Promotion Approach

Thus we now propose a new innovation to tackle the

above shortcomings, namely, Proactive Promotion (or PP). PP

adjusts resource allocation in accordance with the significance

of tuples and the system load. PP’s goal is to establish an

adaptive processing ordering of tuples to ensure that at any

given moment the most important tuples have the greatest

chance at completing within the required response time (rrt).

Some of our key innovations include:

1) We introduce the promotion continuous query language
(P-CQL) that supports the specification of multi-tiered proac-

tive promotion criteria as part of a query.

2) We design the proactive promotion query algebra that

supports the assignment and propagation of tuple importance.

Priority classifier operators perform selective precedence

evaluations. While all operators in the query pipeline employ

a multi queue priority driven execution strategy.

3) We propose the proactive promotion query optimizer
that locates an optimized PP query plan using a cost-based

approach.

4) At runtime to promote specific tuples given the current

runtime environmental conditions, the PP Adaptor efficiently

adjusts which and where precedence criteria are used to assign

preferential processing (Table I). The PP Adaptor instructs the

query operators to adapt which, when, and where precedence

evaluations are applied without requiring any changes to the

query pipeline.

II. PP SYSTEM ARCHITECTURE

The PP architecture is composed of the PP Optimizer, PP

Monitor, PP Adaptor, and the PP Executor (Figure 2) 1. First

the user specifies a query using P-CQL (Section III-A). Then

the PP Optimizer produces an optimized PP query plan. The

optimizer forwards the PP query plan to the PP Executor,

which instantiates the PP runtime infrastructure.

P-CQL

Query

offline

Training

Data

Streams

online

Proactive

Promotion

Optimizer

PP Query Plan Data Streams
Proactive

Promotion

Executor

Output

Query statistics

Proactive

Promotion

Optimizer

Proactive

Promotion

Monitor

Statistics Proactive

Promotion

Activator

PP query

plan

PP adaptions

Fig. 2. PP Architecture

At runtime, the PP Monitor gathers statistics. Once changes

in the number of significant tuples which complete processing

within the rrt are identified, the PP Optimizer exploits these

statistics to select an optimized PP query plan. The optimized

PP query plan is forwarded to the PP Adaptor which effec-

tively adapts which, when, and where precedence evaluations

by instructing the query operators.

III. TECHNICAL DETAILS

A. Precedence specification via Promotion-CQL

We designed the promotion continuous query language (P-

CQL) as an extension of CQL [3] to allow the specification

of multiple promotion levels and a lifespan for each query.

For each promotion level, P-CQL supports the stipulation of

membership and rank. Below is the P-CQL extension to the

Home Arrest Query (Section I-B) using the resource allocation

order in Table I.

The lifespan, or upper bound on required response time, is

the tuple processing time limit for a query. Once a tuple has

1To reduce overhead, the PP Monitor, PP Optimizer, and PP Adaptor are run on a
separate thread.

2

reached its lifespan limit, the tuple is expired (i.e., no longer

processed).

The rank predicate specifies the significance of a promotion

level in relation to the other promotion levels associated with

the query. Each promotion level within a query has a unique

rank. The most significant promotion level in the query has

the rank value of 1.

Membership in a level is specified via criteria predicates.

Each predicate is composed of 1) an attribute or function,

2) a comparison expression (=,≤, <,>,≥), and 3) a data

value or attribute. Membership may be defined by combining

multiple criteria using conjunction and disjunction.

(Extension to Home Arrest Query)
LIFESPAN 1000 milliseconds
RANK 1
CRITERIA PI.CommittedViolentOffense = TRUE AND

Distance(PL.Locale, PI.ProperLocation) ≥ 3 mi
RANK 2
CRITERIA PI.RecentlyFoundInWrongLocation = TRUE
RANK 3
CRITERIA PI.KnownFlightRisk = TRUE

B. Promotion Query Algebra and Processing

We now extend the continuous query algebra [6] to design

a promotion query algebra using two key features. First, we

design novel query operators dedicated to significant tuple

precedence evaluation. Second, we enhance existing CQL

query operators to support promotion-aware processing.

Query operators could be augmented to compute the signifi-

cance of tuples. However this would not easily allow resource

allocation adjustments between query processing and prece-

dence evaluations. Thus PP implements dedicated precedence

evaluation operators referred to as priority classifiers or PCs.

After evaluating the precedence of a tuple, PCs associate

promotion levels with tuples via priority punctuations. A

priority punctuation states the rank and number of tuples at this

rank. Using priority punctuations reduces resource overhead

by sharing a promotion level across multiple tuples.

At runtime if a query operator receives a priority punc-

tuation, the operator queues the associated tuples according

to their rank. All other non-punctuated tuples are placed in

the lowest priority queue. An operator starts processing tuples

from the highest priority queue. When this queue is empty the

operator moves to the next highest priority queue.

C. Promotion Query Optimization

At compile-time the PP optimizer, given a P-CQL query and

a training data stream, locates an optimized PP query plan.

The optimized PP query plan maximizes the number of the

most significant tuples that met their required response time

(i.e., dedicates resources to processing the most significant

tuples) and minimizes the estimated tuple latency for the most

significant tuples (i.e., reduces the processing overhead in

terms of associated precedence evaluation). The PP optimizer

first places a PC before each standard query operator in the

regular CQL query plan. All possible PP query plans are

created by adjusting in which PC each promotion level is

evaluated. Then a cost-based search algorithm that considers

the effectiveness of each possible PP query plan at producing

the largest number of the most significant tuples that met

the required response time with the minimum estimated tuple

latency for the most significant tuples is applied.

D. Online Adaptive Promotion Control

Given that the system load can vary drastically over time,

the PP Optimizer determines at run-time which and where

in the query plan promotion levels are assigned preferential

processing. To change the PP query plan, first the PP Opti-

mizer selects an optimized PP query plan based upon statistics

collected by the PP Monitor. The PP Adaptor reconfigures the

PP query plan without requiring the physical query plan to

change by adapting which PC evaluates each promotion level.

IV. DEMONSTRATION

Portland Home Arrest EMA: The real-life application we

demonstrate is the Portland Home Arrest EMA which reports

on criminals in improper locations who are in close proximity

to police officers (Section I-B). PP addresses the problem of

aligning resource allocation to the significance of tuples and

the current system load. In our demonstration, we allow the

audience to define promotion levels and adjust the load on

the system. During execution, the audience can watch the

movement of people (i.e., criminals and policemen) in real

time. Then they can compare the results of the query ran using

PP with several alternative systems, namely, random shedding,

semantic shedding, and traditional query processing and assess

which method caught the most significant criminals.

The promotion levels defined may lead to different PP

query plans being executed. This scenario corresponds to the

situation where the monitoring order of objects adapts based

upon the characteristics of the objects monitored (i.e., there

may be no violent criminal assigned to home arrest), the

number of objects monitored (i.e., the number of officers

available), and user’s preferences.

Data and Queries: We use data streams from [1] that contain

the daily movement of people in Portland, Oregon. The queries

we will use include the CQL query in Section I-B with the

addition of P-CQL specifications for the promotion levels

selected (similar to the P-CQL query in Section III-A). As

the audience can adjust the promotion levels, a plethora of

P-CQL queries can be executed. In addition the audience can

select the system load and observe how the system adaptively

adjusts to the system load.

Plethora of Scenarios:

Distinct Data: The audience can adapt the distinct char-

acteristics of people in the Portland, Oregon population. For

example they can set the percentage of criminals (Figure 3).

System Load: The audience will be able to select the level

of the system load between not overloaded, mildly overloaded,

moderately overloaded and extremely overloaded (Figure 3).

Query Specification: The audience can specify promotion

levels. Possible promotion level criteria include criminals

likely to escape, criminals likely to flee, criminals who com-

mitted a violent offense, first time offenders, and criminals

3

Fig. 3. Set Up Query

considered to be flight risks (Figure 3). Combining multiple

criteria using conjunction and disjunction for promotion levels

is also supported.

Fig. 4. PP Query Plan

PP Optimization: After a user submits a query, the PP opti-

mizer will be invoked to compute the optimal PP query plan.

Using the GUI, the audience will be able to see the generated

PP query plan (Figure 4). For each priority classifier operator

(PC), the system displays the PE flag which represents the

promotion levels used to evaluate the precedence of tuples.

(a)

(b)

Fig. 5. Execution Runtime Output a) Not Overloaded b) Overloaded

PP Execution: During execution, the audience can watch the

movement of criminals and policemen in real time. Criminals

will be shown in blue. Police officers will be shown in red.

In addition, the pixels that represent significant criminals as

defined by the promotion levels used to proactively promote

tuples will flash. Figure 5(a) shows an example from a not

overloaded system. While Figure 5(b) shows an example from

an overloaded system.

Fig. 6. Query Results

PP Performance Monitoring Showcase: Finally, our demon-

stration will graphically demonstrate the ability of PP to pro-

vide adequate resources to the most significant tuples (Figure

6) as compared to alternative systems. The audience can

contrast the cumulative throughout of tuples at each defined

promotion level of our PP system to random shedding, seman-

tic shedding, and traditional query processing approaches.

V. CONCLUSION

Our proactive promotion engine (PP) takes an innovative

approach towards addressing the problem of aligning resource

allocation to the significance of tuples and the current system

load. Our key contribution is to show that PP is a viable

approach towards providing preferential resource allocation

based upon user requirements and the current system load.

This now opens research opportunities in this novel area of

preferential query systems.

We thank our WPI peers for CAPE [9] and feedback. This

work is supported by NSF grants IIS-1018443 & 0917017 &

0414567 & 0551584 (equipment), and GAANN.

REFERENCES

[1] http://ndssl.vbi.vt.edu/opendata/index.php. Virginia Tech:Network Dy-
namics and Simulation Science Laboratory.

[2] D. Abadi and et. al. Aurora: a data stream management system. In
SIGMOD, pages 666–666, 2003.

[3] A. Arasu and et. al. The cql continuous query language: Semantic
foundations and query execution. Technical report, VLDB, 2003.

[4] D. Carney and et.al. Monitoring streams: a new class of data manage-
ment applications. pages 215–226. VLDB, 2002.

[5] J. Chomicki. Semantic optimization techniques for preference queries.
Inf. Syst., pages 670–684, 2007.

[6] L. Golab and et.al. Update-pattern-aware modeling and processing of
cont. queries. In SIGMOD, pages 658–669, 2005.

[7] I. F. Ilyas and et. al. A survey of top-k query processing techniques in
relational database systems. ACM, pages 1–58, 2008.

[8] C. Lin. Technology implementation management in law enforcement.
Social Science Computer Review, pages 24–36, 2004.

[9] E. A. Rundensteiner and et. al. Cape: Continuous query engine with
heterogeneous-grained adaptivity. In VLDB, pages 1353–1356, 2004.

[10] M. Wei and et. al. Achieving high output quality under limited resources
through structure-based spilling in xml streams. PVLDB, pages 1267–
1278, 2010.

4

	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Abstracts Book
	Abstracts Card for this Manuscript

	Next Manuscript
	Preceding Manuscript

	Previous View

	Search

	Links to Other Manuscripts by the Authors

	**** PREPRESS PROOF FILE
	**** NOT FOR DISTRIBUTION
	**** BOOKMARKS ARE INACTIVE
