Total Operator Execution Time Average Tuple Latency

OO
O

NN
\\ \\ “\

u Multiroute

 Single-route

O\

W Multi-route

W single-route

b) Average Tuple Latency

Output Rate

= Multi-route

——single-route

Time (s)

¢) Cumulative Throughput over 5 min

Figure 1: Experimental results.

1 Experimental Evaluation

Experimental Setup: All our experiments are run on a machine with Java 6,
64-bit Windows 7 with Intel(R) Core(TM) Duo CPU @2.27 GHz processor and
4GB of RAM. We compare the performance of QueryMesh (i.e., multi-route)
against the traditional “single plan for all data” system (i.e., single route).

Our experiments include the measurement of several metrics: 1) the total
execution time required to process a data set, 2) the average tuple latency, and
3) the cumulative throughput.

1.1 Data set and Query

The tuples of each stream are created such that the selectivities of joining subsets
of one stream to the other streams varies. This causes multiple optimal routes
to be available for this stream and hence multiple optimal processing routes
may be required.

The experiments ran a 3 way join query across 3 synthetic data streams.
Each experiment was run 10 times. The results are the averaged output of
these runs.



1.2 Results and Analysis

Total Execution Time: We now compare the total execution time of QueryMesh
to the single route model using the synthetic data outlined above. Figure 1 a
indicates the total execution time of Query Mesh (i.e., multi-route) and sin-
gle route model to run the synthetic data outlined above. We can observe that
Query Mesh executed the data set 170.62% faster than the single route solution.
Average Tuple Latency: We now compare the average execution time of tu-
ples through QueryMesh to the single route model using the synthetic data out-
lined above. Figure 1 b indicates the average execution time of Query Mesh (i.e.,
multi-route) and single route model to run the synthetic data outlined above.
We can observe that the average execution time of Query Mesh is 107.21% faster
than the single route solution.

Cumulative Throughput: Figure 1 c indicates the total number of tuples
produced by the Query Mesh (i.e., multi-route) and the single route model
over time using the synthetic data outlined above. We can observe that the
cumulative throughput of Query Mesh remains significantly larger over time
than the single route solution. In particular, Query Mesh produced 36.82%
more results.

1.3 Summary of Experimental Results

The main findings of our experimental study are: 1) the total execution time for
Query Mesh was 170.62% faster than the single route solution, 2) the average
execution time for Query Mesh was 107.21% faster than the single route solution,
and 3) Query Mesh improved the cumulative throughput rate by 36.82% better
than that experienced by the single route plan.



