
Sangam: A Transformation Modeling Framework

Kajal T. Claypool
Department of Computer Science

University of Massachusetts, Lowell
kajal@cs.uml.edu

Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute

rundenst@cs.wpi.edu

Abstract

Integration of multiple heterogeneous data sources con-
tinues to be a critical problem for many application do-
mains and a challenge for researchers world-wide. One
aspect of integration is the translation of schema and data
across data model boundaries. Researchers in the past have
looked at both customized algorithmic approaches as well
as generic meta-modeling approaches as viable solutions.
We now take the meta-modeling approach the next step for-
ward. In this paper, we propose a flexible, extensible and
re-usable transformation modeling framework which allows
users to (1) model their transformations; (2) to choose from
a set of possible execution strategies to translate the un-
derlying schema and data; and (3) to access and re-use
a library of transformation generators. In this paper, we
present the core of our modeling framework - a set of cross
algebra operators that covers the class of linear transfor-
mations, and two different techniques of composing these
operators into larger transformation expressions. We also
present an evaluation strategy to execute the modeled trans-
formation, and thereby transform the input schema and data
into the target schema and data assuming that data model
wrappers are provided for each data model. To show re-
usability in our framework, we also present one transforma-
tion generator and show how the generator can produce a
transformation model for any given input schema and data.
The proposed framework has been implemented, and we
give an overview of this prototype system.

Keywords: Cross Model Mapping Algebra, Heterogeneous
System Integration, Schema Transformation

1. Introduction

Integration of multiple heterogeneous data sources con-
tinues to be a critical problem for many application do-
mains and a challenge for researchers world-wide [5]. Each
database brings with it its own concepts, semantics, data
formats, and access methods. Currently, the burden falls on

the human to manually resolve conflicts, integrate the data,
and interpret the results. More often than not, this barrier
proves too difficult or too time-consuming to overcome and
data hence often is under-exploited.

Data integration as a research field looks at automating
as many of the tasks related to the above process, and hence
aims to provide better and painless access to data no mat-
ter what data source or format it is stored in. One aspect
of data integration is schema matching. Schema matching
is the task of finding semantic correspondences between el-
ements of two schemas [16]. Many researchers have ad-
dressed the schema matching problem either for a specific
domain [6, 3, 4] or in a generic domain-independent way
[14, 16, 5, 2, 12, 17, 20]. Another aspect of the inte-
gration problem with respect to the heterogeneity of in-
formation, i.e., the different data models, is the transla-
tion of schema (and data) from one data model to an-
other. Solutions for this include customized algorithmic ap-
proaches [26, 11, 22, 7, 23] and meta-modeling approaches
[2, 12, 20, 5, 17]. A customized algorithmic approach
provides fixed translation algorithms that convert schema
and data between a given pair of data models. The meta-
modeling approach provides a more general technique that
goes beyond translations for a given pair of data models.
The translations themselves are generally expressed either
via rules [17, 2] or via fragments of code [5, 12].

In our work we focus on the meta-modeling approach for
the translation of schemas across data model boundaries. In
particular, we focus on the explicit modeling and the sub-
sequent execution of the transformations themselves, an as-
pect not addressed by previous research [2, 12, 20, 5, 17].
While models, such as the UML model, for static concepts
like schemata or data models have been much studied, mod-
els for the more dynamic aspects such as for transformations
have been largely overlooked. The goal of our work thus
is to provide a flexible, extensible and re-usable translation
modeling framework wherein users can (1) explicitly model
the translations between schemas; (2) choose automated ex-
ecution strategies to execute the modeled translations that
would transform the source schema and data to the desired

target schema and data; and (3) choose and compose trans-
formations from an existing library of translations. Such
a framework offers many advantages over previous trans-
lation approaches. In particular it allows for (1) optimized
execution strategies as each modeled transformation can be
reasoned over to determine the optimal execution plan sim-
ilar to the algebraic query optimization; (2) development of
a generic tool set for facilitating activities such as mainte-
nance; and (3) query merging and translation in a multi-tier
environment.

To enable this translation modeling framework, we iden-
tify (1) the fundamental operations required to express and
model the translation process (Section 3); and (2) the flex-
ible techniques necessary for composing these core oper-
ations into larger meaningful translations (Section 4). A
modeled transformation can be executed using any one of
the many possible execution strategies, to perform the req-
uisite data transformation process. These execution strate-
gies range from the mapping of the cross algebra expres-
sions to full-fledged query languages such as SQL [1] and
XQuery [10] to having customized execution algorithms. In
this paper, we briefly sketch out a customized algorithm
(Section 5) for executing the cross algebra expressions to
illustrate the simplicity of this task.

2. Background: Sangam Graph Model

<!ELEMENT item (location,
mailbox, name)>

<!ATTLIST item id ID #REQUIRED
featured CDATA #IMPLIED>

<!ELEMENT location (#PCDATA)>
<!ELEMENT mailbox (mail∗)>
<!ATTLIST mailbox id CDATA>

<!ELEMENT mail (from, to, date)>
<!ATTLIST mail text CDATA>

<!ELEMENT from (#PCDATA)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT name (firstName,

lastName)>
<!ELEMENT firstName (#PCDATA)>
<!ELEMENT lastName (#PCDATA)>

Figure 1. A Fragment of the XMark Bench-
mark DTD.

We assume, as in previous modeling approaches [2, 12,
20, 5, 17], that schemas from different data models are first
represented in one common data model. In our work we
assume that all schemas are represented by a simple graph

called a Sangam graph, an instance of the Sangam graph
model [8]. A Sangam graph G = (N , E , λ) is a directed
graph of nodes N and edges E , and a set of labels λ. Each
node has an associated type complex (

�
) or atomic (©); and

each edge is either a containment (→) or a property (99K)
edge. A containment edge is an edge between two complex
nodes, while a property edge exists between a complex node
and an atomic node. Each node n has associated with it a
set of objects, its extent denoted as I (n). Each object o ∈ I
(n) is a pair <id, v> where id is a globally unique identi-
fier and v is its data value. Each edge e:<n1, n2> also has
associated with it a set of objects, termed its extent R (e).
Each object oe ∈ R is a triple <id,o1,o2> where id is a
system-generated identifier, object o1 ∈ I (n1) and object o2

∈ I (n2). There may be zero to multiple edges between the
same two nodes. In addition, each edge e is annotated with
a set of properties ζ, possibly empty. This set of properties
includes a local order, denoted by ρ, and quantifier annota-
tion, denoted by Ω. The local order ρ gives the relative local
ordering for all outgoing edges from a given node n in the
Sangam graph. A quantifier is a pair of integers [min:max],
with 0 ≤ min ≤ max < ∞ where min specifies the min-
imum and max the maximum occurrences of objects of a
node n2 for a given object o of node n1 associated via the
relationship (edge) e.

Figure 2. A Fragment of the XMark Bench-
mark DTD as shown in Figure 1 depicted as a
Sangam Graph.

Example: Representing XML Schema as a Sangam
Graph Figure 2 shows the Sangam graph for the XMark
benchmark schema of Figure 1. Here each element and
attribute is represented by a Sangam graph node. For ex-
ample, the edge e1 between the node labeled item and
location represents a relationship between the item el-
ement and its sub-element location. The edge e1 has an
order annotation of 1. The quantifier annotation [1:1] on

2

edge e1 denotes a functional edge, i.e., that there must be
exactly one object of location that can participate in a
binary relationship with one object of item.

3. The Bricks: Cross Algebra Operators

The key factors that influence the achievement of a flex-
ible and extensible translation framework are the building
blocks that would enable users to model different transla-
tions in order to transform a schema. To enable the mod-
eling of such translations we provide two main building
blocks: (1) the bricks: the cross algebra operators which
allow the user to express a variety of linear transforma-
tions; and (2) the mortar: different techniques that allow
users to compose the operators together to represent larger
translation units. In this section we present the first building
blocks, i.e., the cross algebra operators.

In our work we have identified four basic transformation
operators, cross, connect, smooth, and subdivide.
These operators, termed the cross algebra operators, rep-
resent the primitive set of operations in the class of lin-
ear graph transformations [13] on the basis of which larger
more complex linear transformations can be defined. In this
section we briefly describe the semantics of these operators.
For more details refer to [8].

3.1. Cross Operator

The cross algebra operator ⊗ takes as input a node n
in G and produces as output a node n’ in G’. The cross
operator is a total mapping, i.e., the objects in the extent of
n given by I (n) are mapped one-to-one to the objects in the
extent of n’ given by I (n’) in the output Sangam graph .
Figure 3 (a) depicts the cross operator. We use the notation
⊗n′ (n) to depict a cross operator with input n and output
n’.

3.2. Connect Operator

A connect algebra operator () corresponds to an
edge creation in G’. It takes as input an edge e between
two nodes n1 and n2 in G and produces an edge e’ be-
tween two nodes n1’ and n2’ in G’. All objects o ∈ I (e)
are also copied as part of this process. The connect opera-
tion succeeds if and only if nodes n1 and n2 have already
been mapped to the nodes n1’ and n2’ respectively using
two cross operators. The connect operator preserves the an-
notations of the edge e, i.e., the output edge e’ will have
the same quantifier and local ordering annotation as the in-
put edge e. Figure 3 (b) gives an example of the connect
operator. We use the notation 	e′ (e) to depict a connect
operator that maps the edge e:<n1, n2> to edge e’:<n1’,
n2’>.

3.3. Smooth Operator

A smooth operator (�) models the combination of two
relationships in G to form one relationship in G’. Let G
be a Sangam graph with three nodes n1, n2, and n3, and
two relationships represented by edges e1:< n1, n2 > and
e2:< n2, n3 >. The smooth (�) operator replaces the
relationships represented by edges e1 and e2 in G with a
new relationship represented by edge e’:< n

′
1
, n′

3
> in G’.

The smooth operator can only be applied when ⊗(n1) =
n1’ and ⊗(n3) = n3’. The local order annotation on the
edge e’ is set to the local order annotation of the edge e1.
However, as the edge e’ has a larger information capacity
than the edges e1 and e2, the quantifier annotation of the
edge e’ is given as: ρ(e’) = ρ(e1) ∗ ρ(e2). Figure 4 gives
an example of the smooth operator. We use the notation

� e′ (e1, e2) to depict a smooth operator that maps edges
e1:<n1,n2> and e2:<n2,n3> to edge e’:<n1’,n3’>

in the output.

3.4. Subdivide Operator

A subdivide operator � intuitively performs the in-
verse operation of the smooth operator, i.e., it splits a
given relationship into two relationships connected via a
node. Let G have two nodes n1 and n3 and edge e:<
n1, n3 >. The subdivide operator introduces a new
node n2’ in G’ such that the edge e in G is replaced by
two edges e1’:<n1’, n2’> and e2’:<n2’, n3’> in G’.
The subdivide operator is only valid if ⊗(n1) = n1’
and ⊗(n3) = n3’. The local order annotation for the edge
e1’:< n

′
1
, n′

2
> is the same as the local order annotation of

the edge e as ⊗(n1) = n1’. The edge e2’ is the only edge
added for the node n2’ and thus has a local order annotation
of 1. To preserve the extent I (e), the edges e1’ and e2’
are assigned quantifier annotations as follows. If min(ρ(e))
= 0, then the quantifier range for e1’ is given as [0 : 1],
else it is always set to [1 : 1]. The quantifier of edge e2’
is set equal to the quantifier of edge e. We use the notation

� e1′,e2′,n2′ (e) to depict a subdivide node that maps edge
e:<n1,n3> to e1’:<n1’,n2’> and e2’:<n2’,n3’>

in the output.

4. The Mortar: Composition Techniques

Cross algebra operators can be composed into larger
transformations using two techniques: (1) context depen-
dency; and (2) derivation. The context dependency compo-
sition enables several algebra operators to collaborate and
jointly operate on sub-graphs to produce one combined out-
put graph. The derivation composition enables the nesting
of several algebra operators wherein output of one or more
operators becomes the input of another operator. Derivation

3

Figure 3. (a) Example of Cross Algebra Operator; (b) Example of Connect Algebra Operator.

Figure 4. Example of Smooth Operator. Figure 5. Example of Subdivide Operator.

and context dependency can in turn be combined together
to produce larger, more complex transformations. In this
section, we present the rules governing their combination.

4.1. Context Dependency Composition

The first composition technique, called the context de-
pendency composition, enables several algebra operators to
collaborate and jointly operate on sub-graphs to produce
one combined output graph. Figure 7 denotes such a con-
text dependency composition CT of three cross algebra op-
erators. Here, the algebra operators op1A′(A) and op2B′(B)
are cross operators that map the nodes A and B in G to nodes
A’ and B’ respectively in the output Sangam graph G’. The
algebra operator op3e′(e), a 	 operator is the root of CT
and maps the edge e:<A, B> between the nodes A and B
in the input Sangam graph G to the edge e’:<A’, B’> be-
tween the nodes A’ and B’ in the output Sangam graph
G’. Here the outputs of all operators op1, op2, and op3
together produce G’.

Definition 1 Given an input Sangam graph G, a context de-
pendency expression CTo is specified as:

CTo(outo)(ino) =















opi(outi)(ini)
opi(outi)(ini),
(CTk(outk)(ink))[◦
(CTl(outl)(inl))]+)

Figure 6. Derivation Composition.

Figure 7. Context Dependency Composition
Example.

where opi is the parent operator of CTk and CTl denot-
ing that opi must be executed after CTk and CTl. opi uses
outputs, inputs and mapping of CTk and CTl and outo =
outj

⋃

outk
⋃

outl. The context dependency expression
CTo operates on nodes ni and edges ei ∈ G, and produces
as output a Sangam graph G’ such that all nodes ni’ and/or
edges ei’ produced as output by any of the individual op-

4

erators opi ∈ CT are in G’. Here the symbol “+” is part
of the BNF grammar syntax to indicate that the expression
contained in “[]” may occur one or more times.

As an example, the expression for the context depen-
dency composition in Figure 7 is given as: CTout(in)
= op3e′(e), (op1A′ (A) ◦ op2B′(B)). Here the operator
op3 is the root of the composition, and op1 and op2 are
the children operators. Here e:<A, B> and e’:<A’,
B’>. The final output out = e’

⋃

A’
⋃

B’ corresponds
to the final output G’.

The context dependency expression CTo is evaluated
from right to left and from inside out. That is all children
operators are evaluated prior to the evaluation of their parent
operator. The order of evaluation between the sibling opera-
tions is immaterial. Beyond the order of evaluation, the con-
text dependency relation between two operators op3→op1
(Figure 7) implies that the operator op3 uses the following
three pieces of information in its calculation: (1) the input
of op1; (2) the output of op1; and (3) the mapping φ of
op1 as established by the type ⊗, 	, � and � of op1.

4.2. Derivation Composition Technique

The second composition technique is the derivation com-
position. This technique enables the nesting of several al-
gebra operators wherein output of one or more operators
becomes the input of another operator. Figure 6 gives
an example of the modeling of a derivation composition
that transforms the path in the Sangam graph G shown in
Figure 6 (a) to the edge in the Sangam graph G’ given
in Figure 6 (c) by applying three smooth nodes � . Let
e1:<A,B>, e2:<B, C>, e3:<C, D> and e4:<D, E> be
edges in G. Operators op1e1′(e1, e2) and op2e2′ (e3, e4)
are applied to the input edges e1 and e2, and e3 and e4 re-
spectively to first produce the intermediate edges e1’:<A’,
C’> and e2’<C’, E’> as shown in Figure 6 (b)1. The
operator op3e3′′ (e1’, e2’) operates on these intermediate
edges e1’ and e2’ and produces the desired output edge
e3’’:<A’’, E’’> as shown in Figure 6 (c). One ap-
proach to achieving this is to first produce the intermediate
edges and then the final output edge e3”. Equivalently we
can express this by nesting. Thus, the output of the algebra
expression op3e3′′ (op1e1′(e1, e2),op2e2′(e3, e4)) is the
output edge e3”. The output of the operator op3 is said to
be derived from the outputs of operators op1 and op2, or
put differently, the output of operators op1 and op2 are the
inputs of operator op3 and are consumed by op3.

Definition 2 Given an input Sangam graph G, a derivation
expression DTo is given as:

1We do not include here the context dependency composition that
would be needed to map the nodes of the graph.

DTo(outo)(ino) =























opi(outi)(ini)
opi(outi)(DTj(outj)(inj))
opi(outi)((DTk(outk)(ink)),
(DTl(outl)(inl)))

where DTk and DTl are derivation trees and ini =
{outj} or {outk, outl}. The expression DTo produces as
output outo node and edge elements for an output Sangam
graph G’, such that outo is the output of the root opera-
tor opi and thus also of the complete derivation tree DTo.
Here, “(” and “)” pairs denote nesting and the symbol “,”
separates input arguments of an operator opi.

4.3. Cross Algebra Graphs (CAG):
Combining Context Dependency and Deriva-
tion Compositions

Derivation and context dependency compositions can be
combined in one cross algebra graph (CAG) to model a
complex transformation of a Sangam graph G into into a
graph G’. See for example Figure 8. Here let e1:<A, B>,
e2:<B, C>, e3:<C, D> and e4:<D, E> represent edges
in G, and let e’:<A’, E’> represent an edge in G’. The
expression for Figure 8 is CAT = CAT3.

Figure 8. A Cross Algebra Graph.

The output of CAT3 (CAT3 = DT1, (op1A′(A) ◦
op3E′(E))) is produced by the evaluation of its three inputs,
the derivation composition DT1, and the two cross algebra
operators op1 and op3. The evaluation of the two primi-
tive operators op1 and op3 produces the nodes A’ and E’

5

respectively. The expression DT1 produces two intermedi-
ate Sangam graphs G’ and G’’ (outputs of CT1 and CT2
respectively) that smooth the edges e1 and e2 to produce
edge eTemp1 and smooth edges e3 and e4 to produce
edge eTemp2 respectively. The operator op6 then gets its
inputs from CT1 and CT2 and produces the edge e’:<A’,
E’>. The operatorop6 also participates in the composition
CAT3, the output of which is the final Sangam graph G’’’
with nodes A’, E’ and the edge e’:<A’, E’>. Thus, the
CAT in Figure 8 operates on the input Sangam graph G and
produces as output the Sangam graph G’’’.

Definition 3 (CAT) A CAT is an expression that operates
on one or more input Sangam graphs G and produces one
or more output Sangam graph G’ such that:

CATo(outo)(ino) =















































DTi(outi)(ini)
CTi(outi)(ini)
(CATj(outj)(inj)) ,
((CATk(outk)(ink)))†.
opj(outj)

(CATk(outk)(ink))‡.
opj(outj)((CATk(outk)(ink)),
(CATl(outl)(inl)))γ.

† = A context dependency edge is added from the root opj

of CATj to the root opk of CATk.
‡ = A derivation edge is added from opj to opk, the root of
CATk.
γ = A derivation edge is added from opj to opk and opl,
the roots of CATk and CATl respectively.

Based on the definition of a CAT (Definition 3), we now
define a cross algebra graph (CAG). Intuitively, a CAG is a
collection of cross algebra trees that may operate on possi-
bly disjoint input graphs to produce possibly disjoint output
graphs.

Definition 4 (CAG) A cross algebra graph (CAG) is an ex-
pression that operates on one or more input Sangam graphs
G and produces one or more output Sangam graph G’ such
that:

CAGo(outo)(ino) =
(CATj(outj)(inj)) [◦
(CATk(outk)(ink))]+

where CATj and CATk are sibling CATs such that outo =
outj

⋃

outk.

5. Execution Strategies for Modeled Transfor-
mations

In Sections 3 and 4 we have introduced the bricks
and the mortar of our translation modeling framework, and
shown how large complex transformations can be modeled
in the same. In this section, we briefly describe how the
cross algebra expressions representing the modeled trans-
formations can be executed.

function EvaluateCAG (input: CAG cag, Sangam graph G,
output: Sangam graph G’)

{
List roots← cag.getRoots()
while (roots ! = null) {

operator op← roots.getNext()
EvaluateCAT (op, G, G’)
}

}

function EvaluateCAT (input: Operator op, Sangam graph G,
output: Sangam graph G’)

{
if (!op.hasChildren())

Sangam graph G’← op.evaluate(G, G’)
op.markDone()
Sangam graph out← G’ // cache the local output
return localG’

while (op.hasChildren()) {
operator opC← op.getNextChild()
if (e:<op, opC> = derivation)

SAG Glocal← EvaluateCAT (opC, G, G’)
SAG G’← op.evaluate(Glocal, G’)
op.markDone()
SAG out← G’ // local cached output
return G’

elseif (e:<op, opC> = context dependency)
SAG Glocal← EvaluateCAT (opC, G, G’)
SAG G’local← op.evaluate(G, G’)
SAG G’← Glocal � G’local

op.markDone()
SAG out← G’local // local cached output
return G’

}
}

Figure 9. The Evaluation Algorithm for a
Cross Algebra Graph.

The execution of the cross algebra expression here im-
plies the transformation of the source schema and data
as per the modeled transformation to produce the target

6

schema and data. As stated in Section 1 there are many
possible strategies for executing these modeled transforma-
tions. These strategies range from mapping the modeled
transformation into query languages such as SQL [1] or
XQuery [10] to applying execution algorithms directly us-
ing the transformation model. To keep the discussion sim-
ple we now sketch out a customized algorithm for executing
the cross algebra expressions as shown in Figure 9.

A cross algebra graph (CAG) can be viewed as a forest
of nested context dependency and derivation compositions.
Each composition CATi of the CAG can be evaluated inde-
pendently of any other composition CATj of the CAG. To
evaluate each individual CAT, we use post-order evaluation,
i.e., all children operators opj of an operator opk are eval-
uated prior to the evaluation of opk.

Figure 9 gives the algorithm for evaluating the cross al-
gebra graph. Here, to facilitate evaluation of shared oper-
ators, each operator opj is marked “visited” the first time
it is evaluated, and its local output is cached. If the opera-
tor opj is re-visited, no further evaluation of opj is done,
instead its cached output is returned to the invoking par-
ent operator opi. Evaluation of the tree terminates with the
evaluation of the root operator2.

6. Architectural Overview of Sangam

The Sangam system incorporating all the techniques
discussed in the paper has been developed using Java tech-
nology and a variety of tools such as the JAXP [24] for
parsing XML documents and the DTD-Parser [25] for pars-
ing the DTDs. Figure 10 gives an architectural overview of
the system. Here SAG-Loader translates XML and rela-
tional schema and data into Sangam graphs ; CAG-Builder
houses the library of transformations and builds transforma-
tion models based on the chosen generators for the given
input Sangam graph ; the CAG-Evaluator evaluates the
CAG; and lastly the CAG-Generator is able to translate
the given output Sangam graph into a relational or XML
schema and data.

7. Related Work

Schema Integration and Data Transformation. There
is extensive literature under the umbrella of schema trans-
formation and integration [15, 19, 11, 18, 9, 21]. How-
ever, this work is typically specific to either an applica-
tion domain or to a particular data model and does not deal
with meta-modeling [2, 5, 20, 21]. Recent work related to
ours are Clio [15] a research project at IBM’s Almaden Re-
search Center and work by Milo and Zohar [19]. Clio, a
tool for creating mappings between two data representations

2Proof of termination can be found in [8].

semi-automatically with user inputs, focuses on supporting
querying of data in either the source or the target represen-
tation and on just in time cleansing and transformation of
data. Milo et al. [19] have looked at the problem of data
translations based on schema-matching. They follow an ap-
proach similar to Atzeni et al.[2] and Papazoglou et al. [20],
but not at the meta-level, in that they define a set of transla-
tion logic rules to enable discovery of relationships between
two application schemas. Bernstein et al. [5] have also pro-
posed a meta-modeling framework to represent schemas in
a common data model to facilitate a host of tools such as the
match operator which produces a set of matches between
two given schemas. While we share this vision, our focus
is more on the representation and the execution of transfor-
mations that may be produced either by such matches or
by a user via a GUI. In fact, based on the discussion with
the authors of [5], their meta-model can be extended with
a makemap meta-operator to capture the semantics of our
work.

We can directly make use of translation algorithms from
the literature, such as the algorithms for translating between
an XML-DTD and relational schema [11] or mapping rules
[19] or output from match operators [5]. That is, we can de-
velop generators that capture such specific algorithms, and
then generate separate transformation models that can be
executed. Work on equivalence of the translations between
models [18] is of particular importance as such properties
could also be established for the cross algebra.

8. Conclusions

In this paper, we have presented our flexible, extensible
and re-usable transformation modeling framework. This
framework has the advantage of allowing users to model
complex translations using the basic building blocks that
we have presented in this paper, and then with a click of
a button generating and executing code that would perform
the data translation. While in this paper, we make substan-
tial contributions towards providing a transformation frame-
work, we believe this is just the tip of the iceberg. Some
possible extensions to this work are handling of non-linear
transformations and optimization of evaluation strategies.

References

[1] ANSI Standard. The SQL 92 Standard. http://www.ansi.org/,
1992.

[2] P. Atzeni and R. Torlone. Management of Multiple Models in
an Extensible Database Design Tool. In P. M. G. Apers and
et al., editors, Advances in Database Technology - EDBT’96,
Avignon, France, March 25-29, LNCS. Springer, 1996.

[3] S. Bergamaschi, S. Castano, M. Vincini, and D. Beneven-
tano. Semantic integration of heterogeneous information

7

Figure 10. Architecture of Sangam

sources. Data and Knowledge Engineering, 36(3):215–249,
2001.

[4] J. Berlin and A. Motro. AutoPlex: Automated Discovery of
Content for Virtual Databases. In CoopIS, pages 108–122,
2001.

[5] P. A. Bernstein and E. Rahm. Data Warehouse Scenarios for
Model Management. In International Conference on Con-
ceptual Modeling, 2000.

[6] M. Bright, A. Hurson, and S. H. Pakzad. Automated Reso-
lution of Semantic Heterogeneity in Multidatabases. TODS,
19(2):212–253, 1994.

[7] B. Catania, E. Ferrari, A. Levy, and A. Meldelzon. XML
and Object Technology. In ECOOP Workshop on XML and
Object Technology, LNCS 1964, pages 191–202, 2000.

[8] K. Claypool. Managing Change in Databases. PhD thesis,
Worcester Polytechnic Institute, May 2002.

[9] K. Claypool, J. Jin, and E. Rundensteiner. SERF: Schema
Evolution through an Extensible, Re-usable and Flexible
Framework. In Int. Conf. on Information and Knowledge
Management, pages 314–321, November 1998.

[10] P. Fankhauser, M. Fernandez, A. Malhotra, M. a. Rys,
J. Simeon, and P. Wadler. XQuery 1.0 Formal Semantics.
http://www.w3c.org/TR/2001/query-semantics, June 2001.

[11] D. Florescu and D. Kossmann. Storing and Querying XML
Data Using an RDBMS. In Bulletin of the Technical Com-
mittee on Data Engineering, pages 27–34, Sept. 1999.

[12] S. Göbel and K. Lutze. Development of Meta Databases for
Geospatial Data in the WWW. In ACM-GIS, pages 94–99,
1998.

[13] J. Gross and J. Yellen. Graph Theory and it Applications.
CRC Press, 1998.

[14] L. Haas, R. Miller, B. Niswonger, M. Roth, P. Schwarz,
and E. Wimmers. Transforming Heterogeneous Data with
Database Middleware: Beyond Integration. IEEE Data En-
gineering Bulletin, 22(1):31–36, 1999.

[15] L. Haas, R. Miller, B. Niswonger, M. Roth, P. Schwarz,
and E. Wimmers. Transforming Heterogeneous Data with
Database Middleware: Beyond Integration. IEEE Data En-
gineering Bulletin, 22(1):31–36, 1999.

[16] J. Madhavan, P. Bernstein, and E. Rahm. Generic Schema
Matching with Cupid. In vldb, pages 49–58, 2001.

[17] L. Mark and N. Roussopoulos. Integration of Data, Schema
and Meta-Schema in the Context of Self-Documenting Data
Models. In C. G. Davis, S. Jajodia, P. A. Ng, and R. T.

Yeh, editors, Proceedings of the 3rd Int. Conf. on Entity-
Relationship Approach (ER’83), pages 585–602. North Hol-
land, 1983.

[18] R. J. Miller, Y. E. Ioannidis, and R. Ramakrishnan. The Use
of Information Capacity in Schema Integration and Transla-
tion. In Int. Conference on Very Large Data Bases, pages
120–133, 1993.

[19] T. Milo and S. Zohar. Using Schema Matching to Simplify
Heterogeneous Data Translation. In A. Gupta, O. Shmueli,
and J. Widom, editors, VLDB’98, Proceedings of 24rd Inter-
national Conference on Very Large Data Bases, August 24-
27, 1998, New York City, New York, USA, pages 122–133.
Morgan Kaufmann, 1998.

[20] M. Papazoglou and N. Russell. A Semantic Meta-Modeling
Approach to Schema Transformation. In CIKM ’95, pages
113–121. ACM, 1995.

[21] A. Rosenthal and D. Reiner. Theoretically Sound Transfor-
mations for Practical Database Design. In S. T. March, ed-
itor, Entity-Relationship Approach, Proceedings of the Sixth
International Conference on Entity-Relationship Approach,
New York, USA, November 9-11, 1987, pages 115–131,
1987.

[22] J. Shanmugasundaram, G. He, K. Tufte, C. Zhang, D. De-
Witt, and J. Naughton. Relational Databases for Querying
XML Documents: Limitations and Opportunities. In Pro-
ceedings of 25th International Conference on Very Large
Data Bases (VLDB’99), pages 302–314, 1999.

[23] T. Shimura, M. Yoshikawa, and S. Uemura. Storage
and Retrieval of XML Documents using Object-Relational
Databases. In Int. Conference and Workshop on Database
and Expert Systems Applications, pages 206–217. Springer-
Verlag, 1999.

[24] J. Systems. The jaxp 1.1.1parser. http://java.sun.com,
November 2001.

[25] M. Wutka. The dtd parser. http://www.wutka.com, March
2001.

[26] X. Zhang, W.-C. Lee, G. Mitchell, and E. A. Rundensteiner.
Clock: Synchronizing Internal Relational Storage with Ex-
ternal XML Documents. In ICDE-RIDE 2001, 2001.

8

