
Keywords
XPath, XML, Indexing, Clustering, Encoding

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information
Storage - File organization

1 INTRODUCTION
XML provides an attractive alternative to relational

databases due to its expressive modeling power and
versatility for representing data with diverse data structure.
Achieving high performance for both queries and updates
of XML data will be critical for the adoption of XML into
many real-world applications.

As we will demonstrate in this paper, the complex
expressions that are possible in the XPath language [15]
require a novel index structure for efficient evaluation.
Furthermore, the orthogonal problem of facilitating index
updates must be addressed before we can claim that a given
index is a viable solution for real-world applications.

1.1 Indexing XML
Several structures have been proposed recently

[3,12,13,16] to speed evaluation of path expressions. These
structures use B-trees or hash indexing to accelerate path
traversal for the child and descendant axes, often relying on
large main-memory caches for performance. Only recently
have two structures been proposed, namely the XPath

Accelerator [1] and XISS [2], to support evaluation of all
Path axes. However, we find that these structures do not
provide equal performance for all XPath axes, mainly due
to their use of a single structural index.

Update performance is another challenging problem for
XML databases. Existing proposals for XML indexing
[1,2,12,13,16] have failed to demonstrate deterministic
update performance, requiring significant portions of the
index to be re-labeled upon insertion of a single document
node. The root of this problem lies in the use of fixed length
numerical quantities for encoding document order [6].

A side effect of extensively indexing XML is that the
indexed data can be substantially larger than the original
document. This adds to the already high degree of
redundant tag inherent in XML data and presents a problem
both in terms of disk space and cache hit rates.
Compression techniques can exploit this redundancy to
reduce the size of indexes [17]. However, the CPU-related
costs incurred can easily outweigh the I/O savings.

1.2 The MASS Approach
In this paper, we propose a new structure called MASS

(Multi-Axis Storage Structure) that provides an efficient
means of evaluating all types of XPath expressions
involving document structure, while also facilitating
efficient updates. MASS introducesFLEX keys, Node
Clustering, and Cluster Compressionto address the
aforementioned query, update, and size issues.

2 THE MASS INDEXING STRUCTURE
MASS is a highly integrated solution for indexing XML

documents. Although each component of MASS can be
applied separately to other indexing techniques, they have
been designed as complementary pieces that integrate
particularly well into one complete indexing solution.

2.1 FLEX Keys
We now propose a versatile organization for encoding

document order called FLEX Keys (Fast Lexicographical
Keys). FLEX Keys can be compared more efficiently than
Dewey keys [11] and avoid the cost of re-labeling during
incremental updates [1,2,6]. FLEX keys allow the
application to determine node ordering, making them useful
for establishing multiple node orderings such as the
clustered indexes presented in Section 2.2.

ABSTRACT
Effective indexing for XML must consider both the

query requirements of the XPath language and the dynamic
nature of XML. We introduce MASS, a Multiple Axis
Storage Structure, to provide scalable indexing for XPath
expressions with guaranteed update performance. We
describe the building blocks of MASS and provide results
that demonstrate MASS's scalability. We show that MASS
can outperform other state-of-the-art XML indexing
solutions, even with constrained system resources.

MASS: A Multi-Axis Storage Structure for Large XML Documents

Kurt Deschler Elke Rundensteiner
Dept. of Computer Science

Worcester Polytechnic Institute
{desch,rundenst}@cs.wpi.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM '03, November 3 8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011&$5.00.

A FLEX key has a stepped organization where each
ancestor from the root node is represented by a step. Instead
of using numbers for each step as in [1,2,11], FLEX keys
use variable length byte strings that grow as needed to
facilitate insertions without re-labeling. These byte strings
can be compared efficiently using the hardware-optimized
memcmp() routine and sorted using radix algorithms [4].

FLEX keys can be compared to determine all
relationships between nodes. The comparison properties of
FLEX keys are useful for both filtering during node
selection and during intermediate query processing. The
rules for comparing FLEX keys are as follows:

1. If the FLEX key for nodeX is a prefix of the FLEX key
for node Y, then X is an ancestor of Y.

2. If two nodes have identical FLEX key ancestor
components, then the nodes are siblings.

3. If the longest prefix of the FLEX key of nodeX is equal
to the FLEX of node Y, then Y is the parent of X

4. If components of FLEX keys are compared
lexicographically, the lesser key is preceding in
document order.

FLEX keys are constructed by first generating a byte
string for each node that implies the correct ordering among
siblings. This is then concatenated with the byte strings of
all ancestor nodes using a delimiter that is smaller than all
values used for keys. To facilitate incremental insertions,
strings that terminate with the lowest or highest values in
the alphabet are disallowed. This behavior is similar to the
Extended Prefix scheme given in [6] for binary trees.

Figure 1 Provides an example of FLEX key assignment
including incrementally inserted nodes (shown in bold).
Note that future incremental inserts will not produce longer
strings since legal keys of the same length such as
“b.b.b.ac” and “b.b.b.bc” are possible.

2.2 Clustered Organization
We now present the clustered encodings used by MASS

to provide efficient evaluation of XPath node tests, position
predicates and count aggregates for all XPath axes. The
axis and node test combinations supported by each
clustering are shown in Table 1. The ancestor and ancestor-
of-self axes are supported using the inlined FLEX key data
since these axes cannot be clustered efficiently.

Axis / Node Test “*” not “*”

descendant, descendant-or-self, preceding,
following

CL1 CL3

child, following-sibling, preceding-sibling,
attribute, namespace

CL2 CL4

Table 1: Mapping of Axis to Node Clusterings

Each clustering guarantees minimal I/O for each location
step by ensuring that all nodes produced by a given axis,
context node, and node test are grouped together in adjacent
index entries and returned in document order. Key
compositions for the four MASS clustered indexes are
given in Table 2. Examples of the CL2 and CL3 clusterings
are shown in Figures 2 and 3, respectively.

Clustering Key Order Clustering Key Order

CL1 Document CL3 Node Test, Document

CL2 Sibling CL4 Node Test, Sibling

Table 2: MASS Clusterings

Position predicates are evaluated by locating the first
node in the axis, then advancing forward the desired
number of nodes. Likewise, node counts are evaluated by
locating the first and last nodes in the axis, then calculating
the number of nodes between them. These fast counting
capabilities are useful for query planning, yet are absent
from several recent indexing proposals [2,12,16].

2.3 Extending MASS Query Operations to
Large Documents
For large documents, where data is larger than the main

memory, a paged index such as a B+ tree must be used to
cluster and store data. We propose the use of ranking
extensions [4] to extend the capabilities of the B+ tree to
support MASS' query operations. Theranked B+ Tree
facilitates the random access needed for position predicate
evaluation with logarithmic I/O complexity. Furthermore, it
facilitates distance calculation between any two index
entries with logarithmic I/O complexity, which can be used
to determine node set size for large (multi-page) node sets.

Figure 1: Incrementally Inserted FLEX Keys

FLEX Key Node Type

d
d.d
d.d.a
d.d.d
d.d.e
d.d.f
d.d.d.d
d.d.d.e
d.d.d.f
d.d.e.d
d.d.e.e
d.d.e.e.a
d.d.f.d
d.d.f.e
d.d.f.e.a

game
inning
id
at_bat
at_bat
at_bat
ball
strike
out
strike
hit
bases
ball
hit
bases

Figure 2: CL2 Clustering

Node Type FLEX Key

at_bat
at_bat
at_bat
ball
ball
game
hit
hit
inning
out
strike
strike

d.d.d
d.d.e
d.d.f
d.d.d.d
d.d.f.d
d
d.d.e.e
d.d.f.e
d.d
d.d.d.f
d.d.d.e
d.d.e.d

Figure 3: CL3 Clustering

inning

at_bat

ball hit hit

at_bat

b.b

b.b.b

b.b.b.b b.b.b.c

b.b.c

b.b.c.b
strike strike

b.b.b.bbb.b.b.ab

game
b

2.4 Cluster Compression
MASS introduces a simple yet effective scheme for

compressing nodes calledCluster Compression. Cluster
Compression exploits both XML tag data and flex key data
that is redundant between adjacent index entries.
Furthermore, it allows for compression and decompression
of individual nodes to facilitate efficient queries and
incremental updates. Unlike LZ and LZW encoders [8,9],
there is no dictionary to maintain and offsets are stored only
once with each piece of compressed data, rather than at
each reference to the data. The number of nodes visited
during compression and decompression of each node is
bounded by the height of the document tree. Additional I/O
is never incurred since compression chains never span
index pages. Figure 4 demonstrates compression by a factor
of five between two highly redundant adjacent entries.

3 XPATH EXPRESSION EVALUATION
MASS facilitates efficient evaluation of location paths

through iterative evaluation [5] of location steps. Iterative
evaluation is very efficient using MASS since indexes are
read sequentially for all XPath axes. MASS can be also be
used in conjunction with structural joins [7] to facilitate
efficient bottom-up and hybrid [5] evaluation strategies.

The following steps are performed internally by MASS
to locate the node set for each location step.

1. Select the appropriate index clustering (CL1-CL4) from
Table 1 using the axis and node test as selection criteria.

2. Compose the search keys used to locate the first and last
node in the requested axis.

3. Locate the first and last nodes of the node set

Query operations are very efficient using MASS. Once
the first and last node in the result are located, arbitrary
ranges can be retrieved sequentially and node set counts can
be calculated, both without additional key comparisons. By
keeping the current index page in memory and comparing
adjacent keys before performing a full binary search,
MASS can perform iterative processing that is nearly as
efficient as the merge style processing in [2,7].

4 DOCUMENT UPDATES
MASS allows for efficient incremental document updates

since nodes can easily be individually inserted or removed

from its compressed storage. Unlike previous proposals
[1,2], an insert will never require relabeling other nodes. A
new FLEX key can always be generated that is ordered
between existing FLEX keys. Likewise, individual nodes
can always be removed without relabeling other nodes.

5 EXPERIMENTAL RESULTS
We have implemented MASS in C++ and extensively

tuned the implementation for optimal query performance.
With the exception of the Xerces SAX Parser [10] used to
parse XML input files, the entire implementation of MASS
was done from scratch. This was done mainly to integrate
the ranked B+ tree enhancements discussed in Section 3.
We also implemented a custom storage manager that allows
strict control of buffer cache size.

5.1 Experimental Setup
Except where noted, tests were performed on a 333MHz

Sun Ultra 10 with a buffer cache size of 256kb and 8k data
pages. The OS buffer cache was bypassed using raw disk
partitions or directio (except where noted). Most of our
experiments use documents of size 0.1MB to 100MB
generated using the XMark generator [14].

5.2 Load/Compression Performance
Load performance was evaluated both in terms of time

and space required. Documents of increasing size were
loaded both with and without compression enabled. LZW
compression was evaluated by compressing the index file
using UNIX compress.

The plot in Figure 5 shows that Cluster Compression
decreases the index size by 70%, which is nearly as
effective as the LZW compression for large documents. The
reduced index size improved load times by up to 20%.

5.3 XMark Queries
XMark queries 2 and 3 demonstrate the performance of

MASS' iterative evaluation and position predicate support.
The plot in Figure 6 demonstrates the linear scale-up for
these queries, which is expected due to the linear increase
in result size.

Figure 4: Cluster Compression

Logical Index Entries
Entry# FLEX KEY PATH

1
2

d.d.e
d.d.f

/game/inning/at_bat
/game/inning/at_bat

Physical Index Entries
Ent# Candidate FLEX Path Size

1

- [1]d
[2]d
[3]e

[1]game
[2]inning
[3]at_bat 19

2 1 [3]f 1

Figure 5: Index Size

0.1

1

10

100

1000

10000

0.1 1 10 100

To
ta

l I
nd

ex
 S

ize
 (M

B)

XML File Size (MB)

No Compression
Cluster Compression

LZW Compression

XMARK Queries 6 and 7 demonstrate performance of
MASS' count aggregate evaluation. The logarithmic scale-
up for queries 6 and 7 is demonstrated in Figure 7.

5.4 Update Performance

To measure MASS' update performance, we measured
the time to add 100 bidders to an auction in the XMark
data. Figure 8 demonstrates that the time for this fixed-size
update scales logarithmically with document size.

5.5 XPath Accelerator & XISS Comparison
To compare MASS against both XISS [2] and the XPath

Accelerator [1], we loaded the XML version of
Shakespeare's plays [18] into MASS and measured
performance of the expression“//act//speech”. We
performed this experiment on a Sun Ultra 2 using the
directio() routine to bypass the Solaris buffer cache as in
[2]. We then repeated the experiment without directio() to
quantify the results of file caching.

System Time (sec)

MASS with directio() 0.58

MASS without directio() 0.28

XISS 0.7

XPath Accelerator 1.15

Table 3: Comparison of Query: //act//speech

The results in Table 3 demonstrate that MASS
outperforms both XISS and the XPath accelerator for
queries on the descendants axis. This is particularly
interesting since XISS and the XPath Accelerator are both
optimized for queries of the descendants axis, whereas
MASS does not favor any particular axis.

6 CONCLUSIONS AND OUTLOOK
The MASS indexing structure proposed here provides

efficient Xpath indexing that readily supports document
updates. Our experimental results demonstrate that MASS
requires little system resources and scales well with
document size.

In the future, we plan to integrate MASS into an XPath
engine and study query optimizations such as using
structural joins to facilitate alternate evaluation strategies.

REFERENCES
1. T. Grust: Accelerating XPath location steps. SIGMOD Conference

2002: 109-120
2. Q. Li and B. Moon: Indexing and Querying XML Data for Regular

Path Expressions. VLDB 2001: 361-370
3. T. Milo and D. Suciu: Index Structures for Path Expressions. ICDT

1999: 277-295
4. D. Knuth: The Art of Computer Programming: Volume 3, Sorting And

Searching. Addison-Wesley, 1973
5. J. McHugh and J. Widom: Query Optimization for XML. VLDB 1999:

315-326
6. E. Cohen, H. Kaplan, and T. Milo: Labeling Dynamic XML Trees.

PODS 2002: 271-281
7. D. Srivastava, S. Al-Khalifa, H. Jagadish, N. Koudas, J. Patel, and Y.

Wu: Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. ICDE 2002

8. J. Ziv and A. Lempel: A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory 23(3): 337-
343 (1977)

9. T. Welch: A Technique for High-Performance Data Compression.
IEEE Computer 17(6): 8-19 (1984)

10. Xerces C++ parser. The Apache XML Project.
http://xml.apache.org/xerces-c/index.html

11. I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita,
and C. Zhang: Storing and querying ordered XML using a relational
database system. SIGMOD Conference 2002: 204-215

12. B. Cooper, N. Sample, M. Franklin, G. Hjaltason, and M. Shadmon: A
Fast Index for Semistructured Data. VLDB 2001: 341-350.

13. R. Goldman and J. Widom: DataGuides: Enabling Query Formulation
and Optimization in Semistructured Databases. VLDB 1997: 436-445

14. Xmark-The XML-Benchmark Project.
http://monetdb.cwi.nl/xml/index.html

15. J. Clark and S. DeRose. XML Path Language (XPath)
http://www.w3.org/TR/xpath.html

16. C. Chung, J. Min, and K. Shim: APEX: an adaptive path index for
XML data. SIGMOD Conference 2002: 121-132

17. H. Liefke and D. Suciu. XMILL: An Efficient Compressor for XML
Data. SIGMOD Conference 2000: 153-164.

18. John Bosak. XML markup of Shakespeare's plays.
http://www.ibiblio.org/pub/suninfo/ standards/xml/eg/.

Figure 7: XMark Q6, Q7

0.01

0.1

1

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Q6
Q7

Figure 8: Incremental Update Performance

0.1

1

10

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Add 100 bidders

Figure 6: XMark Q2, Q3

0.01

0.1

1

10

100

0.1 1 10 100

Ti
m

e
(s

ec
)

Size (MB)

Q2
Q3

