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Abstract

XML is an ordered data model and XQuery expressions retwsultsethat have a well-
defined order. However, little work on how order is supportecKML query processing
has been done to date. In this paper we study the issuesdrétateandling order in the
XML context, namely challenges imposed by the XML data mptted variety of order
requirements of the XQuery language, and the need to maiotder in the presence of
updates to the XML data. We propose an efficient solution dkdresses all these issues.
Our solution is based on a key encoding for XML nodes thateseas node identity and
at the same time encodes order. We design rules for encoditey of processed XML
nodes based on the XML algebraic query execution model amchdlde key encoding.
These rules do not require any actual sorting for intermtedisults during execution. Our
approach enables efficient order-sensitive incremengad waintenance as it makes most
XML algebra operators distributive with respect to bag anid/e prove the correctness of
our order encoding approach. Our approach is implementédnéegrated witiRainbow

an XML data management system developed at WPI. We havel tdsteefficiency of
our approach using queries that have different order remeénts. We have also measured
the relative cost of different components related to ouepslution in different types of
gueries. In general the overhead of maintaining order irapproach is very small relative
to the query processing time.
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1 Introduction

1.1 XML and Order

XML has been widely accepted as data format for modeling asdanging data
for internet applications. Unlike most common data modediding semi-structured,
relational and object-oriented data models, XML data isoknsitive. Support-
ing XML’s ordered data model is crucial for many domains. Aample is content
management where document data is intrinsically orderddhduere queries often
need to rely on this order [20]. For example, if Shakespsariays are modeled as
XML documents, the order among acts in plays is relevantnTheries asking for

a certain act in a play given its order must be supported.

XQuery [26], a World Wide Web Consortium (W3C) working draft an XML
guery language, has been proposed as standard for queriihg By the W3C
specifications [26], XQuery expressions return resultshlase a well-defined or-
der, unless otherwise is specified. The result of a path egfmeis always returned
in document order [24]. The order in the result df &1/ O R expression can in ad-
dition be imposed by the expression itself in many ways, asvil@lescribe next.
Hence, the result of an XQuery expression reflects in anrgleged manner both
the implicit XML document order and the explicitly imposeuier by the XQuery
expression.

1.2 Problem Description

Support for such order when processing XQuery queries caralg affect query
optimization opportunities. Thus, a major performancerial result [26]. For this
reason the XQuery language provides a function, nameaddered(), that can be
used for those expressions where the order of the result @graficant [26]. This
allows us to turn sequences processed during query exacntamsets. Set-oriented
processing is known to offer potential opportunities fotimzation.

One challenge in handling XML order is that the order of theuleof an XQuery
expression may follow (1) document order, (2) query ordgrased by therder
by clause, (3) query order imposed by the nesting of the qfieryandiet clauses,
and (4) query order imposed by the queryurn clause or by the new result con-
struction, or (5) a combination of any of the above.

The problem of incremental XML view maintenance poses uaithallenges com-
pared to the incremental maintenance of relational or elgectoriented views.
XML views have to be refreshed correctly not only concerrtimng view content
but also concerning the order of the view result documerthérrelational context,



for example, order is of interest only if tli@der Byoperation is explicitly present
in the view definition. Even then, a possible solution is tanten an unordered
auxiliary view, and only recompute the ordered view on desnaim the final out-
put data. This is because all ordering is done uniformly éasesorting on some
attribute value at the end of query processing. Such apprdaes not apply to
the XML context, where all operations have to be order seesiEven if explicit
reordering occurs (for example, due to@nder By clause in the view definition)
it does not necessarily completely reorder the XML view hedthe internal ele-
ments (i.e., children/descendants elements) of the elgs)@m which the ordering
was performed still might be returned in document order.

Given that the order cannot always be ignored, efficientriiegles for handling
order in XML query processing must also be devised. That sneed to have
the ability to support order for processing queries and tgsdan data and on ma-
terialized views. At the same we need to minimize the ovettibat comes with
handling order. Some work has been proposed for supportdey an XML query
processing [6,10,14,20] yet these solutions did not supgbtypes of XQuery
order or came with high overhead cost.

1.3 Our Approach

In this paper, we provide a general solution to the open prolf efficiently han-
dling order in XML query processing and view maintenancee Work presented
here has been conducted as part of the Rainbow system [2ifjteaymated XML
data management system that supports XQuery. Rénebow Storage Manager
supports efficient retrieval and updates for both base XMia dad derived inter-
mediate XML data fragment&Rainbowuses a unique node identifier encoding for
efficient reference-based query execution and efficient wi@intenance.

Our solution supports all different types of XQuery ordergdacried above. It also
migrates the ordered bag semantics of intermediate quemjtsento a non-ordered
bag semantics. This way our approach removes, for most @penators, the over-
head of maintaining order at the level of individual algebperators. At the same
time the order of intermediate results is preserved inplicising the proposed
order-encoding scheme. This opens up additional oppdiesrior query optimiza-
tion. Sorting in our approach is necessary only when dergategng the final XML
result. Even then, typically, only partial sorting is re@a. This is mainly because
the storage mechanism we use returns many parts of the irethudt desired order,
as we will describe later.

The contributions of this paper include: (1) We identify ttiellenges associated
with handling order in the context of XML query processinglanew mainte-
nance. (2) We propose an efficient order encoding strateggyptieserves order in



XML algebraic query processing. This strategy removes tleghtead for each in-
dividual algebra operator to have to maintain order, It atsooves the need for
unnecessary sorting of intermediate data. In other wordsgtates the ordered
bag semantics of intermediate data into non-ordered bagrgas. (3) We prove
the correctness of the proposed approach in that it enswlesenl semantics. (4)
We have implemented and integrated our order strategy medRainbow XML
data management system [27]. (5) We show, via an experifrsgatly, that our or-
der preserving approach comes with a relatively small aamllon query execution
and view maintenance.

1.4 Paper Outline

The reminder of this paper is organized as follows. Sectiade&cribes related
work. Section 3 introduces the XML algebra. In Section 4 wassify the chal-
lenges of maintaining order in XML query processing, whiex®on 5 describes
our order solution. Section 6 discusses the cost and imitaof our proposed
order solution. Section 7 analyzes the results of our erpats, while Section 8
concludes this paper.

2 Related Work

Many solutions for XML data management use relational degalktechnology
[7,19,20] as the underlying storage medium. Supportingtidered nature of the
XML data in the relational model context is an issue sinceepidformation is

lost while converting from XML to the relational data repeagation [15]. Many

solutions for semi-structured data have been extendegmostXML data [8,12].

These solutions tend not to support XQuery, and more imptiytado not support
order requirements of XQuery expressions.

Concurrently with these efforts to exploit existing datsdaechnologies, native
XML storage manager systems [3,11] have also been propédseddvantage of
such native storage is that XML documents may be clusterplysical XML doc-
ument order, thus facilitating efficient children/descamchccess. [3] for example,
supports four different clusterings based on differentuthoent order at the index
storage. Such tree navigation is very frequent in XML quencpssing [10]. [21]
shows that customized XML storage solutions perform bétim other storage so-
lutions when dealing with XML documents without DTDs or withcuments with
DTDs that have cycles.

Object identity is widely used in semi-structured databafgk?,13] and in object-
oriented databases [5]. W3C recommends that each node invind$cument



should have a node identifier [26]. Some XML algebra opesatoight be able
to perform functionalities like duplicate elimination ngionly the node identifiers
without the need to access the actual data [26]. An altermatlution in XML is to
use thdd attribute to identify XML elements. This is not a good sabutisince (1)
such attribute is optional and (2) it can only be defined fereint nodes. Hence,
XML systems often generate and assign node identifiers fooales in the XML
tree. Some of these identifiers can serve both as node idatitfi and node order
at the same time, like in [10,20].

Several techniques have been proposed for encoding ordéMbfdocuments.
[20] describes three order encoding methods: global, lacdldewey encodings.
In the global encoding method, each node is assigned a nuhddeepresents the
node’s absolute position in the document, while in the leredoding method each
node is assigned a number that represents its relativd@oaitnong its siblings.
The dewey order encodes the full path from the root node touh@nt node. The
dewey order is shown to outperform the other two on worklaamsposed of both
gueries and updates. The main disadvantage of all theseadeding methods is
that in the presence of updates renumbering might be neededrtain portions of
the XML tree. [3] proposed an order encoding for XML docunsembdes (called
FlexKey which is based on dewey. This method avoids the problemmuofmbering
in the case of updates by using variable length byte stringeead of numbers.
Another encoding technique, used in [1,10], associatesweria start andend
label with each data node in the XML document. The intervats/igen these labels
are defined such that every descendant node has an inteava gtrictly included
in its ancestors’s interval. By addingvel to the label of each node this order
encoding technique allows for parent-child and ancestgcendant relationships
to be found. One disadvantage of this method is that reilapef nodes might be
required if a large number of insertions are taking placéwithe same small label
range. In addition, it is not possible to derive directly thbel of a parent (or an
ancestor) of a node given only its label, unlike in the caddexkey{3] and Dewey
[20].

The Agora system [14], which stores XML in relational tabl@®vides support for
handling order-sensitive XQuery expressions. XQueryigseare first normalized,
then translated and rewritten into SQL queries to be exdoover the relational
tables. However, this solution is limited to XQuery quetieast semantically match
SQL and can successfully be translated and rewritten into 8Qditionally, order
handling is an expensive process where an XQuery is traslato many SQL
gueries requiring several passes and materializing affirédiate XML results.

[2] and [18] introduce mechanisms to publish relationabdatd object-relational
data as XML documents. These solutions provide support éanipdocument or-
der. The use of a sorted outer union approach is proposetrievesthe relational
data needed for constructing XML documents when the regsuXiML document
does not fit into main memory. However, this approach maygperfunnecessary



additional work as it produces a total ordering even whely paktial ordering is
sufficient. [20] proposed a solution for supporting ordexddL query processing
using the relational database technology. This solutiomijnéocuses on handling
XPath expressions order, and provides support for some KQuder-based func-
tionalities like Beforeand after operators and theange predicate. The work in
[20] focuses on document order and does not handle difféypet of order im-
posed by XQuery expressions. Timber [10], a native XML datmagement sys-
tem, provides support for document order and query ordeweder, to preserve
order, sorting for some of the intermediate results appeabe required during
execution [10]. The order handling strategy in Timber idtbom top of the node
start-end-level labeling described above. Hence, it suffers from the digathges
of that labeling techniques described above. [6] introdwceolution for maintain-
ing XML document order that works in both a static and dynadatabase envi-
ronment. However, re-labeling of nodes might be requiresbime cases. Also [6]
does not address order imposed by XML queries.

Many incremental solutions have been proposed for the enoldf maintaining
semi-structured and XML views [13,16,29], none of theseatomhs have supported
order-sensitive view maintenance. Our order solutiondistzes the foundation for
the first order-sensitive view maintenance solution for Xwéws [4].

Our proposed order approach supports different types ofex@arder, namely
document order and order imposed by the query itself in a&waadf ways. A key
point in our solution is that the order is implicitly encodadhe node identifier and
in the intermediate result schema in a way that allows theatia@n of intermediate
results from ordered bag semantics into non-order bag sesabinlike in [10]
most of our operators no longer need to be aware of the ord#atafthey process.
Also we do not need to incorporate any sorting operationgtermediate results.
Our operators are distributive with respect to bag uniorns ©pens up more opti-
mization opportunities and allows for efficient increméniaw maintenance [4].

3 Background: XML Algebra

In this section we introduce the XML algebra of Rainbow [28]hile our order
handling solution is illustrated using this algebra, itmpiples are generally appli-
cable.

3.1 Basic Notations

We adopt the XML standard defined by W3C [22]. An XML node refar either
an element, attribute, or text in an XML document. XML nodes eonsidered



duplicates based on their equality by node identity denbyedl == n2 [25].

Definition 3.1 Givenm sequences of XML nodes, let;; = (n1;, noj, ..nx5), 1 <
J <m,k;j >0,n,isan XML node] < ¢ < k;. Order sensitive bag union of such

. . o def
sequences is defined &$;_, seq; = (11, M1y oo My 15 112, - Toig2y wees Mgy - Mok ) -

Union of such sequences is defined 8%, seqjdéf{cl, €y ey Cs )

Order sensitive bag union of sequences concatenates thersss into one re-
sulting sequence. Union creates a set of all the unique romfgained in the input
sequences, i.e., duplicates are removed. WéJusedenote bag union of sequences
of XML nodes and—- to denote bag difference of sequences of XML nodes. When

a single XML node appears as argument#pt J, ¥ or —, it is treated as a singleton
sequence [23].

We use the ternpath to refer to a path expression [26] consisting of any combi-
nation of forward steps, including’ andx. The sequence of children of the XML
noden located by the patlpath and arranged in document order is denoted as

o

¢(path : n). The notation;)(path : n)[i] represents thé" element in that sequence.

The number of children of the XML node that can be reached by following the
pathpath is denoted asp(path : n)|. Hence¢(path : n)déf(nl,ng, )| (ng =

¢(path = n)li],1 < i < k) A (k = |¢(path : n)|). For example, forn being the

XML node prices from Figure 1 (a), angath = “//price”, then;S(path in) =
(<price>39.95< /price >, <price>65.95< /price>).

The sequence of extracted children located by the patthfrom each of the nodes
in the sequenceeq = (ry,79,...11) respectively is denoted as(path : seq).

[e] Ok [e] [¢]
That is, ¢(path : seq)défbjizlé(path : ;). The notationp(path : seq)[i] stands

for the i"* element of that sequencﬁ?)(path :oseq)| = Zf:1|<ob(path Do)l
The notation¢(path : seq) stands for the corresponding unordered sequence.

As |p(path : seq)| = |¢(path : seq)|, for convenience we also use the notation

o

|op(path : seq)| for the cardinality ofp(path : seq) in later sections.

3.2 The XML Algebra XAT

We use XQuery [26], a World Wide Web Consortium working dfaftan XML
guery language, as query language. Figure 1 shows our miex@mple in par-
ticular (a) two source XML documents “bib.xml” and “priceaX’, (b) an XQuery
expression defined over these two documents and (c) the fessult.xml” gener-
ated by executing the XQuery expression over the sourcendlests. The XQuery



<bib>
<book> <result>
<title>TCP/IP lllustrated</title> { . .
<author><last>Stevens</last> for $b in doc("bib.xml")/book,
<first>W.</first></author> $e in doc(“prices.xml")/entry
</book> where $b/title = $e/b-title
<book> return
<tit|e>Atc:]va[1JCt_ed Prqgrammi:lg/ti_rtll § <entry>
e Unix environment</title . .
<author><last>Stevens</last> {Sbrtitie} {3e/price} {$b/author}
<first>W.</first></author> </entry>
</book> }
<book> </result> Query|
<title>Data on the Web</title> (b)
<author><last>Abiteboul</last>
<first>Serge</first></author> <result>
</book> <entry>
</bib> bib.xml <title>TCP/IP lllustrated</title>
<price> 65.95</price>
<prices> <author><last>Stevens</last>
<entry> <first>W.</first></author>
<price>39.95</price> </entry>
<b-title>Data on the Web</b-title> <entry>
</entry> <tittle>Data on the Web</title>
<entry> <price>39.95</price>
<price> 65.95</price> <author><last>Abiteboul</last>
<b-title>TCP/IP lllustrated</b-title> <first>Serge</first></author>
</entry> </entry>
</prices> prices.xml </result> result.xml
(a) (c)

Fig. 1. (a) Two source XML documents “bib.xml” and “price.Kn(b) XQuery expression
and (3) XML result “result.xml”

expression is translated into an XML algebraic represemtaGiven that to date
no standard XML algebra for XQuery processing has emerged,)se the XML
algebra called XAT [28]. The Rainbow XML data managementeays[27] de-
veloped at WPI is based on this algebra. The data model foX&fealgebra is

a tabular model called XAT table. Typically, an XAT operatakes as input one
or more XAT tables and produces an XAT table as outputXAT table R is an
order-sensitive table gftuplest;, 1 < j < p,p > 0thatisR = (t,ts,..,%,). The
column names in an XAT table schema Bfrepresent either a variable binding
from the user-specified XQuery, e.gb, or an internally generated variable name,
e.g.,$coly. Each tuple; (1 <j < p) is a sequence dfcellsc;; (1 <i <k), thatis

t; = (c14, 2y, -, cij), Wherek is the number of columns. Each cel| (1 <i <Kk,

1 <j < p) with col; in a tuplet;, denoted by;|col;], can store an XML node or a
sequence of nodes. Atomic values are treated as text nodes.

XAT Operators. In general, an XAT operator is denoted@g'’(s), whereop is
the operator type symbolp represents the input parameters{ the newly pro-
duced output column that is to be appended to the output teslerated by the
operator and the input XAT table(s) (an exception is tt¥@urce operator where
s represents an XML document). Some of the XAT operators asbahg with their
XAT tables are shown in Figure 2. The XAT algebra tree in Feg2iis one possible
execution plan for the query in Figure 1(b). Below we introelthe core subset of
the XAT algebra operators [28].



A subset of the XAT operators corresponds to the relatioo@lpiete subset of the
XAT algebra includingSelecto..(R), Cartesian Productx (R, P), Theta JoinX,

(R, P), Left Outer JoinX, (R, P), Distinct d.,;(R), Group By~.o.n (R, func),
Order By 7.q1.,)(R) , where R and P denote XAT tables. Those operators are
equivalent to their relational counterpartswith the additional responsibility to
reflect the order among the tuples in their input XAT tableég¢s)he order among
the tuples in their output XAT tabld)istinct andGroup Byare the only operators
in the XAT algebra that output an unordered XAT table, follogvthe specification

in [26]. Order By, like its relational counterpart, orders the tuples by takigs in
the columns given as arguments.

$col6
| <result> <entry>...</entry> <entry> ...</entry></result> |

$col5

{<entry><title>.. </title><price>..</price><author>..</author></entry>
<entry><title>.. </titte><price>..</price><author>..</author></entry>}

T Sco
<result>$col4</result>

.

C $col5
’ $col5 ‘ <entry><title>.. </title><price>..</price><author>..</author></entry>
T—» <entry><title>.. </title><price>..</price><author>..</author></entry>
T Scol5 ‘ $col1 $col3 $cold
< > < >
’ gyl Sl el </giiny <iile>TCP.. </tile> | <price>65.95 </price> | <author>... </ author >
<title>Dat.. </title> | <price>39.95 </price> | <author>... </ author >
’ D@ g, quihor ‘ $b $colt $col3
- <book>... </book> | <title>TCP.. </title> | <price>65.95 </price>
’ <book>... </book> | <title>Dat.. </title> | <price>39.95 </price>
’ D, o $col3 ‘ $b $e $colt
. <book>... </book> | <entry>... </entry> | <title>TCP.. </title>
$b $colt %’ <book>... </book> | <entry>... </entry> | <title>Dat.. </title>

<book>... </book>
<book>... </book>

<title>TCP..</title>
<title>Adv.. </title>

$e

<entry>... </entry>

$col2
<b-title>Dat.. </b-title>

JOln.$coll = $col2 ‘

<book>... </book> | <fitie>Dat. </title> | « ‘i’ <entry>... </entry> | <b-title>TCP..</b-title>
Scoll $col2
$b ’ O sb, tite ‘ ’ ® se, boitte 5
<book>... </book>
<book>... </book> < ] '%’ <entry>... </entry>

<book>... </book> ’

$s1
<bib>... </bib> ’

| |

=] [

S “bib.xml”_

‘ <entry>... </entry>

(I) $b ¢ Se
$S1, book $S2, entry

$S2

<prices>... </prices>

. $S2
“prices.xml”

Storage Manager i i i i

Fig. 2. The algebra tree for the XQuery in Figurel(b)

We now describe the XML-specific operators. The full desmipof the XAT al-
gebra can be found in [28].

SourceS® . . is always a leaf node in an algebra tree. It takes the XML dasum
xmlDoc and outputs an XAT table with a single columal’ and a single tuple

tout; = (c11), Wherecy; contains the entire XML document.

I The operatoGroup Byhere is more powerful than its relational counterpart asaym
take any arbitrary sub-query or function. This allows thmup Byto perform nesting
operations as well as grouping operations.



Navigate Unnestgbggf:path(R) unnests the element-subelement relationship. For

each tuplein,; from the input XAT tableR, it creates a sequence wof output tu-
plestouty), wherel < < m, m = |p(path : tin;[col])|, touty) [col'] = gob(path ;

tinj[col])[l]. The tupIeSOut§-l) are ordered by major order grand minor order on
L. The¢§g%€ operator in Figure 2 generates one tuple for each “titlefnelet we

navigate to form the “book” elements in the input XAT tabldigresult in three
tuples in the output XAT table, a tuple for each “title” elemhe

Navigate CoIIectionCDEgﬁipath(R) is similar toNavigate Unnesiexcept it places all
the extracted children of one input tuple into one singlé délus it outputs only

one single output tuple for each tuple in the input. For eaghettin; from R, it

o

creates one output tupteut;, wheretout;[col’| = ¢(path : tin;|col]).

Combine C,,;(R) groups the content of all cells corresponding:#binto one se-
quence (with duplicates). Given the inpidtwith m tuplestin;, 1 < j < m, Com-

bineoutputs one tupléout = (c), wheretout|col] = ¢ = W;_,tin;[col]. Combine
has only colummol in its output XAT table. Th€s.,;5 operator in Figure 2 grouped
all the “entry” elements if$col5 tuples into one cell.

Tagger T;Ol(R) constructs new XML nodes by applying the tagging patieto
each input tuple. A patterp is a template of a valid XML fragment [22] with
parameters being column names, e<gesult>$col5</result>. For each tupleéin;
from R, it creates one output tupteut;, wheretout;|col| contains the constructed
XML node obtained by evaluating the patterfor the values irtin;. For example,
the TS0l in Figure 2 constructs a new “entry” node from the

=~ <entry>8coll$col3$cold</entry> g
“title”, “price”, and “author” nodes for each input tuple.

XML Unique v (R) removes duplicate for sequences of XML nodes by node

identifier. For each tupléin; from R, it creates one output tupleut;, where
tout;[col’] is a sequence containing the unique membetsificol| after removing

duplicates by node identifie XML Union 6231,0012(3) is used to union multi-
ple sequences into one sequence. For each tup)€rom R, it creates one out-
put tupletout;, wheretout;[col] is a sequence containing the members of the set
tinj[coll] U tin;[col2]. The other two XML collection operatorXML Intersec-

tion rg‘cwzz;l’wlz(R) andXML Difference iEZLC()ZQ(R), perform intersection and dif-
ference between two sequences. Note that the operéddksUnion, XML Inter-
sectionand XML Differenceperform set operations on columns in a single XAT
table, not on multiple XAT tables.

Exposec.,(R) appears as a root node of an algebra tree. It outputs thentafte
columncol into textual XML.

By definition, all columns from the input table are retainedhe output table of an

10



operator. An additional column may be added the output tabén operator, ex-
cept for some operators that do not require an additionahaeol(e.g. the&Combine
operator). Such schema of a table is calledl Schema (FS)However, not all the
columns may be utilized by operators higher in the algel@@ Minimum Schema
(MS) of the output XAT table of an operator is defined as the sulescpiof all
columns, retaining only the columns needed later by thestoreof that operator
[28]. The process of determining tihdinimum Schem@s calledSchema Cleanup
and is described in [28].

In the XAT algebra tree shown in Figure 2 weuvigate to “title” elements from
“book” elements in “bib.xml” andhavigate to “b-title” elements from “entry” el-
ements in “prices.xml”. We then performjain operation based on the “title” and
“b-title” elements values. We themvigate to the “price” elements from the “en-
try” elements anchavigate to the “author” elements from the “book” elements.
Next we construct new “entry” nodes from the “title”, the “price”, and the “au-
thor” elements. We place all the created “result” node in Bection, using the
Combineoperator, andag this collection of “entry” nodes using the “result” tag.
Finally we use thexzpose operator to extract the result as an XML document (“re-
sult.xml”). In Figure 2 we only show the columns that are ia ktinimum Schema
for each table. All other columns have been removed d&hema Cleanuf28].

4 Challenges of Handling in XML Query Processing

4.1 Challenges Posed by the Data Model

The query execution model of ordered-sensitive XML views ba seen as se-
guence of sequenceshere each of the sequences can have one or more XML
nodes. An XML node in a sequence can be a simple node like i@louat or a text
node or it can be an XML tree (an element node). In terms of ata thodel, the
XAT table corresponds to the container sequence and thesupthat table are the
sequences inside the container sequence. Each cell (iHeg tgm store a single
node or a sequence of nodes. Given such a data model, thexd@rels exist:

1) Order among processed sequences (tuples in an XAT table).

2) Order among nodes in a processed sequence of XML nodesqmoa cell in
an XAT table).

3) Order among internal nodes (children/descendants)aaigssed XML nodes.

The processed nodes themselves may be either original frodethe source doc-
ument or nodes constructed during query execution. And rither alefined for any

11



of those three levels may follow the source document ordenay follow a new
order imposed by the query. In some cases order might not ingpofrtance.

4.2 Challenges Posed by the Different Order RequirementeeXML Query
Language

We classify the order that an XQuery expression can refleits t@sult into four
main types:

1) Document Order. Document order is the order of nodes as they appear in the
source XML documents. XQuery expressions typically ret@sult in document
order unless otherwise is specified by the query. This ordghtibe present in
base nodes exposed in the result. It also might be preseanstracted nodes that
follow the document order of the base nodes they are derroeal. f

2) Query Order Imposed By the Query order by Clauses.The query might have
one or moreorder byclause(s) imposing new order to certain parts of the retrne
result.

3) Query Order Imposed by the Nesting of Variable Binding in theQuery for
and let Clauses.Nesting of variables in thgor andlet clauses in an XQuery
FLWOR expression also imposes a certain order based the ordez ghtlables.
For example, for & LW OR expression embedded into anot#&i 1V O R expres-
sion we expect that, in general, a variable in the outgigleclause places a major
influence on the order while a variable in the insjde clause places a minor in-
fluence on the order. The same order semantics applies todeeamong multiple
variable bindings in the samy@r or let clause.

4) Query Order Imposed by the Query return clauses and by the New Re-
sult Construction. The order in which variables are specified in the return @aus
determines the order of data bound to these variables.

Often the XQuery result reflects a mixture of more than oneefirder types listed
above. This makes handling XQuery order a complex issue.

On the query algebra level, different operators in the XMiehlra deal with order
in a different way. Here are some examples:

e The operatoNavigate CoIIectiorrbggffpath(R) processes one tuple at a time,
without requiring to access other tuples nor modifying thédeo among the tu-
ples. Moreover, for each tuple in the input table it producacdy one tuple in
the output table.

e The operatoiffagger TaggefT;OZ(R) also preserves the relative order among the

tuples it process. In addition it defines order among itsmakenodes.
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e The operatolCombineC,,(R) destroys the order among the tuples it process.
It groups all the nodes from its input column in one cell antpats only one
tuple in the output XAT table that contains that cell. Thisses the issue of
maintaining order between those nodes.

e For theJoin operatoriX. (R, P), the order of tuples in the output table of the
Join operator depends on the order of tuples in its input tabllee.drder in its
output table follows the order of the left input taldkeas a major order and the
right tableP as a minor order.

e TheOrder Byoperatorr,,;;. ., (1) destroys the order of the input table and im-
poses a new order based on a certain criteria. Hence thetaakpe will have a
new computed order based on the order of some column values.

e The operatorExzpose €., (R) outputs an XML document rather than an XAT
table. This document is extracted as a tree fromalain the input XAT table.
The extracted tree has order among its elements that refliégisevious order
decisions.

We will discuss how different operators handle order in nawtail in Section 5.

4.3 Challenges Posed by Order-sensitive View Maintenance

The problem of the incremental maintenance of XML views gaadditional chal-
lenge. View maintenance of ordered XML data is difficult farotreasons [13]:
(1) positions of the element may change dynamically duripdate time and (2)
positions of elements may be different in views and in thes®data.

It is essential to have a mechanism for encoding source XMleadn a way that
avoids reordering (re-labeling) source nodes on updatissalso essential to main-
tain the order among the propagated nodes and sequencesis3ime is similar
to the that of maintaining order among processed nodes ansees discussed
above. Two other issues appear here (1) how to derive andairathe relative or-
der of the propagated updates to the order of the previoustiegsed data, and (2)
how to avoid re-ordering of nodes in the result when applyrapagated update to
the view result. Without an efficient solution, materiatina of large auxiliary data
structures and expensive scans of them might be needed liteeorder-sensitive
view maintenance. For example, to determine the order ohserted tuple in an
XAT table we might need to materialize and to scan the inpuuiput tables to
determine the right order of the inserted tuple. Our goat neto provide an order
handling technique that facilitates not only efficient ardensitive query process-
ing but also efficient order-sensitive view maintenance.
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5 Maintaining XML Order

The requirement of preserving order, as described in Sedtionakes the XML
guery execution and view maintenance significantly difiefeom the relational
case. The two obvious solutions are: (1) relying on the gaysiequential storage
medium to be always ordered, or (2) assigning order valupsimessed sequences
and nodes. Both solutions are not efficient especially iptlesence of incremental
updates.

Our solution for handling order relies on three main pritesp (1) the underlying
Storage Mangers capable of returning source document nodes in document or
der, (2) order is ignored when processing XML intermediagilts, and (3) at the
end of query processing and when generating the final resuibg is performed
(typically only partial sorting) to return the result in tkesired order. Ougtor-
age Managerelies on theMASSsystem [3], also developed at WPI, for providing
scalable storage and indexing for XML data with efficientafgdoerformance. The
Storage Manageprovides interfaces for storing and retrieving XML nodestfb
original nodes and constructed nodddASSguarantees that when retrieving de-
scendants of original XML nodes they are returned in docurogter, eliminating
the need for sorting them at the result generation tiMMASSprovides scalable
I/O performance for alXPathaxes. Moreover, it provides an integrated indexing
support forXPathnode tests, position predicates and count aggregations.

5.1 Node ldentifier and Node Order

In many cases the order among processed XML nodes and catiectepends on
the order of their source document. In other words, the cadesng the tuples in
an XAT table (and among nodes in a cell) depends on the soo@etkent order

of the XML nodes present in these tuples (cell). Our querg@ssing model uses
node identifiers during query execution time. Hence, a ndéatity that serves
the dual purpose of node identifier and order encoding isflxéalefor both query

processing and order handling. We also require the nodditigena base node to
encode the unique path of that node in the XML tree and captheeorder at each
level along the path. We have thus considered technique®ged in the literature
for encoding order in XML data [1,3,10,20]. The lexicogragah order encoding

technique proposed in [3] that does not require reordemmgpmates is proposed.
It is analogous to the Dewey ordering [20], except rathemn thging numbers in the
encoding, it uses variable length strings. First, for eamtudhent node a variable
length byte string key is assigned, such that lexicogragluiering of all sibling

nodes yields their relative document ordering. The idgmiittach node is equal to
the concatenation of all keys of its ancestor nodes and ohibde’s own key (see
Figure 3). This order-reflecting node identity encodingaied FlexKey. We use
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the notationk; < ko to note that~FlexKeyk; lexicographically precedeslexKey
k.

Fig. 3. Lexicographical order encoding of the two XML docurtee “bib.xml” and
“prices.xml” presented in Figure 1(a).

TheFlexKey encoding is well suited for query execution and for view netance
because it has the following properties:

e It identifies a unique path from the root to the node. Hencegotrent-child and
ancestor-descendant containment relationships betwessrcan easily be de-
termined without the need to access the actual data. Aogetss relationship
is a frequent operation in XML query execution.

¢ It embeds the relative order among nodes in the same XML treach node.
Hence the order between any nodes can easily be determagatdtess of the
level) by comparing theiFlexKeys lexicographically.

¢ It does not require reordering on updates because of thefuseiable length
strings instead of numbers for encoding order. We can alwegate new gaps
by extending the string by adding more letters. We discuatsithmore detail in
Section 6.

Base NodesWe useFlexKeys for encoding the node identities of all nodes in the
source XML document. That is, we assume that any given XMludwent used as
source data hallexKeys assigned to all of its nodes. For reducing redundant up-
dates and avoiding duplicated storage we mainly storeaefess FlexKes) in the
XAT tables rather than actual XML data. This is sufficientlasRlexKeys serve as
node identifiers and also capture the order. From here om whkeefer to a cell in

a tuple we mean thElexKeyor the collection (or sequence) BfexKeys stored in
that cell. The actual XML data is stored only once in 8terage ManageliFigure 4
illustrates the usage é#flexKeys as references to source XML nodEkexKeys are
used for accessing that data when needed by some operatexdrople, théNav-
igate operatorgb%goll}bwk retrieves the “book” children of the root node of “bib.xml”
from theStorage Managerand places theiflexKeys in the output XAT table.

Constructed NodesWe also usélexKeys to encode the node identity of any con-
structed nodes either in the intermediate result or in tred &rtent. Tha-lexKeys
assigned to constructed nodes are locally unique. Ratharitistantiating the ac-
tual XML fragments in our system, we only store a skeletorresenting their
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Fig. 4. Execution usin§lexKeys for the XQuery expression in Figurel(b). Shaded columns
represenOrder Schema

structure in theStorage ManagerReferencesKlexKeys) to other source data or
to constructed nodes that are included in the newly corstlutode are kept. For
example, in Figure 4, although the constructed nodes representing the whole
output view extent, it is only stored asresult-tb tc</result>. When the con-
structed node is created, théexKeyassigned to it reflects only its identifier and
does not reflect its order. This is because the order of amaretl node at its cre-
ation time is just an intermediate order at a certain poimfuary execution. It does
not necessarily reflect the desired final result order. Wigasise order information
to the constructed node at a later stage (when the consirmoties are placed into
a sequence with other nodes or when it becomes part of otnstraoted nodes).
When defining the order of a constructed node we use an addliti@y for en-
coding order that we attach to tirdexKeyof the constructed node. We call such
additional keyOverriding Order We will discuss theverriding Orderencoding
in more detail in Section5.3.

Composed KeyslIn addition to theFlexKeys described above, we may also use
FlexKeys created as a composition of otlidexKeys. This is mainly for maintaining
any order that is different than the document order in secegeaf XML nodes (see
Section 5.3). For example, thdexKeyk = “b.b.b..b.b.d” is a composition of the
FlexKey k; = “b.b.b” andks, = “b.b.d”, where “..” is used as delimiter. We denote
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this by k = compose(ky, k3).

Now we discuss in detail how we maintain the order of procd¥ddL data. We or-
ganize our discussion based on the query execution datd mtmél) order among
sequences of XML nodes, (2) order among nodes in a sequexddlohodes, and
(3) order among internal (children/descendant) nodes a¢gssed nodes (XML
fragments).

5.2 Maintaining Order Among Sequences of XML Nodes

We observe that the order among the tuples (sequences of Xddés) in an XAT
table can be determined, in some cases, by comparingléx&eys stored in cells
corresponding to some of the columns. For two tuples in an ¥le, we define
the expressiote fore(ty, t2) to betrue if the tuplet; should semantically be or-
dered before the tuple, false if t5 is semantically before, andunde fined if
the order between the two tuples is irrelevant. For exangalesider the tuples

= (b.b.b, e.f.f, e.f.b, b.b.f) anth = (b.l.b, e.b.f, e.b.b, b.Lf) in the input XAT table
of the operato 5y ¢ < osscolic Jentry> 1N Figure 4. Here, should be before
to, that isbe fore(ty,t5) is true. This can be deduced by comparing fhexKeys
in t;[$coll, $col2] andty[$coll, $col2] lexicographically. We will show that this is
not a coincidence. That is, the relative order among thestuppl an XAT table is
indeed encoded in the keys contained in certain columnss iflean be determined
solely by comparing thoselexKeys. Such columns are said to compose@mnder
Schemaof the table. For any two tuples in the output XAT table of Distinct
operator the relative order is undefined.

Definition 5.1 TheOrder Schema OSy = (ony, ona, ...on,,) of an XAT tableR in
an algebra tree is a sequence of column namegsl < i < m, computed following
the rules in Table 1 in a postorder traversal of the algebesetr

Two tuples are compared lexicographically as follows.

Definition 5.2 For two tupleg; andt, from an XAT tabl&? with O S = (onq, ons, ...on,,),
the comparison operatior is defined byt;, < ¢, < (37,1 < 7 < m)(((Vi,1 <
i < J)(tafoni] == tofoni])) A (talon] < t2lon]))

The rules in Table 1 guarantee that cells correspondinget@ttler Schemaever
contain sequences, only single keys. The rules are dermeed the semantics of
the operators and rely on the properties of ffexKeys.

For example, let us consider the rule for computing@der Schemaf the op-

eratorNavigate Unne ggﬁ:path(R), when the colummol is the last column in the

2 The columncol” by definition is responsible for holding keys such that (10l éi) hold.
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Cat. | Operatorop 055

 col

| T (R), 507 parn (B)s Ueoin coi2(R), vey (R), | OSk

col,path ' Yeol
xcol z col

mcoll,colZ (R) 1~ coll,col2 (R) 1 O¢ (R)

Il sl Ceol(R), dcor(R), Yeol[1..n] (R, fun) | o

xzmlDoc’

(R) Py (P)

1] x (R, P), X, (R,P),DOQLC(R,P) (ongR),on2 ,...on%?,onl 0Ny .0y

mr = |OSg|, mp = |0Sp|

(P)

)

\Y ¢23§:path(R) (ongR) , ongR) , ...onéR) ,col)
if on,(f) = col thenp = m — 1, elsep = m.
V| Teapn(R) (col”), col” is new columr?
VI | €col(R) N/A
*Q = opd™(R), OSg = (onf,on&, ...onk)

Table 1
Rules for computingdrder Schema

Order Schemaf the input XAT tableR. By the semantics of this operator pre-
sented in Section 3, it processes one tuple at a time. Honiewealy produce zero

or more tuples in its output XAT tabl@ for each tuple inR. The order of any two
tuples in@ derived from two different tuples i should be same as of those they
are derived from ink. The order among two tuples derived from the same tuple
in R should correspond to the document order of the nodes presémeir cells
corresponding teol’.

For any two tupleg; andt,; in any XAT table in an XAT algebra tree, if tuplg
should semantically be before tuplg then the lexicographical comparison from
Definition 5.2 of the tuples always yields < t;. On the contrary, it; < t,, then
eithert; should semantically be befotgor otherwise the order between these two
tuples is irrelevant. This means that the relative orderragbe tuples is correctly
preserved in th®©rder Schemabut theOrder Schemanay impose order among
the tuples when such order is semantically irrelevant. éfdfiowing theorem, we
state this observation more formally. We also prove itsextness.

All columns contained in th®rder Schemaf any table are also contained in the
Full Schemaof that table, except for the column in tReder Schemaf the output
table of theOrder Byoperator. Thus, no extra computation is needed for evalgiati
the Order SchemaMoreover, they are often present even inieimum Schema
The order among the tuples in the output XAT table of @rder Byoperator de-
pends on the values present in the tuples. Thus it is not &ptoy any of the
FlexKeys present in the tuple. Thus we explicitly encode it in a nelurom created
for that purpose.
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Theorem 5.1 shows that the relative position among the suplan XAT table is
correctly preserved by the cells in tReder Schemaf that table.

Theorem 5.1 For every two tuple$;, t, € R, whereR is an XAT table in an XAT
algebra tree, withbe fore(t1, t2) defined as in Section 3, @y fore(ty, ts) = (t; <
ty), and (I1) (t; < to) = (before(ty,ta) V (before(ty,ts) = unde fined)).

Proof: We prove (I) by induction over the heightof the algebra tree, i.e., the
maximum number of ancestors of any leaf node. To simplifgrinaf, we consider
any algebra tree even if it does not have Bnpose operator as a root, i.e., a
superset of what is necessary.

Base CaseFor h = 0, the algebra tree has a single operator node, which is both a
root and a leaf. That node must beSaurce operator, as each leaf in a valid XAT
algebratree is a&Source operator. As the input dfource is an XML document, the
output XAT table is the only table in the tree. Since $la@rce operator outputs
only one tuple, the expressiobe fore(t, t) is nevertrue Thus the theorem trivially
holds.

Induction Hypothesis: For every two tuples;, ¢, € R, whereR is any XAT table
in an XAT algebra tree with heiglit 1 < [ < h, itis true thatbe fore(t;,ty) =
(tl =< tg)

Induction Step: We now consider an XAT algebra tree of height 1. Let op
be the operator at the root of such algebra tree. All childresdes of the root
must themselves be roots of algebra trees each of a heigletxaeeding:. By the
induction hypothesis, (I) must hold for all XAT tables ingdb@lgebra trees. Thus,
() holds for all the XAT table(s) that are sources for the iger op. It is only left
to show thate fore(t,,t2) = (t1 < t2) holds for any two tuples, andt, in the
output XAT table) of the operatowp.

The operatorp can be any XAT operator, excluding tReurce operator, ash +

1 > 1 and Source can only appear as a leaf node in an XAT algebra tree. We
proceed by inspecting the different cases depending orypieedf the operatoop,
following the classification presented in Table 1.

Category |. These operators process one tuple at a time, without reqmito access
other tuples nor modifying the order among the tuples. Meeedor each tuple in
the input table they produce exactly one tuple in the outpblet except for the
Select, which may filter out some tuples. The later is not of signifoea as only
the relative order among tuples is addressed in this theokéemce, if the theorem
holds for the tuples in their input XAT tableandOSg = OSg, it must also hold
for the tuples in their output XAT tablg.

To prove that formally, we consider any two tuptest,, tout, € Q). Let ting,
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ting € R, such thattout; derived fromt¢in,; and tout, derived fromtin,. By
the induction hypothesis, (I) holds for any two tuples ) hence also for
tiny and tiny. Asbefore(ting, ting) < before(touty,touty), in order to prove
be fore(touty, touty) = (tout; < touty) we only need to show thdtin, <

ting) = (tout; < touts).

As the operators considered do not modify any values in themats retained from
the input tuple, but may only append new columns, it holds(thal < ¢ < |OSk|)
(touty[on;] == tiny[on;]). Therefore, by Definition 5.2, we ha{ién, < tiny) =
(tout; < toutsy).

Category I1. For the operatorCombine, there is at most one tuple in the output
XAT table. Hence the reasoning is same as presented for gratopSource in the
proof for the base case. The operaiOistinct by definition outputs an unordered
XAT table@. Hence for any two tupleg,t; € Q, before(ti,ts) = undefined.
Thus the left hand side of (1) is nevetue, so (1) trivially holds.

Category I11. All the operators in this category belong to the Join famifyoper-
ators and regarding order have the same behavior. Their aiuip sorted by the
left input tableR as major order and the right tabl& as minor order ( see Sec-
tion 3). Consider any two tuplels)ut1 and touty from the output XAT tablé).
Let tout1 be derived fron’tz’n( andtz'n1 and tout, be derived fromng) and
tmg Wheretmg ), tméR € R and tm tm(P € P. Thus, by the definition
of these Operatorsbefore(toutl,toutg) & before(ting ' tind™) v ((tind? =
tin$ )/\be fore(tmg ) tind” )) Note that for theLe ftOuter Join operator there
could exist zero to many output tuples that are not derivechfany tuple inP. But,
as there could be at most one such tuple derived from eachk tagt, the above
statement is still valid.

There are two cases: (]:)ng andtm2 are two dlfferent tuples fronk, or (2)

bothtout, andtout, are derived from the same tupia(®, i.e. tm(R) = tng) =
tin@®

For case (1) it holds thabe fore(touty, touts) < before(tingR), tingR)). Hence,
this case can be easily reduced to that for the operators ire@ay I.

For case (2), Whel’tinl) = tingR) = tin'®, as before(tout,,touty) <
before(tz’ng ) tm ) and by the induction hypothes&sfore(tmg ) tm(P)) =
(tm(P) =< tm(P)) in order to provebe fore(touty, touts) = (tout; < touts), itis

sufficient to shovvtingp) =< tm(P)) = (tout; < touts). By the rules in Table 1,
the Order Schemaf () contains all the columns from ti@rder Schemaf R, fol-
lowed by all the columns from tt@@rder Schemaf P. As the operators considered
do not modify any values in the columns retained from thetityples, it holds
that (Vi,1 < i < |OSg|)((tout:[on'™] == tin®[on{™)) A (touts[on!™] ==
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tin®on(™))) and (vj,1 < j < |0Sp|)((toutsfon”] == tin{”[on")) A
(toutyont”)] == tin§"[on{™])). Thus,(Vi,1 < i < |OSg|)(tout;[on'™] ==

1 7

touts [onf—R)]) and then by Definition 5.2t7;n§P ) < tind" )) = (tout; < touts).

Category 1 V. The operatomlNavigate Unnesqbggfjpath(R) by its definition presented
in Section 3 processes one tuple at time. However, it mayusedero or more
tuples in its output XAT tabl@ for each tuple ink. Consider any two tuple®ut,
andtout, from Q. There are two cases: (1) Bothut,; andtout, are derived from
the same tupléin, or (2) tout, is derived fromiin,; andtout, is derived fronmtin,,

tinl 7& tm2

For case (1), let; andl, be indexes such thabut,[col’| = ¢(path : tin[col])[l1]
andtouty[col’] = ¢(path : tin[col])[lz]. AS(ly < l3) < before(touty, toutsy), in
order to provebe fore(touty,touty) = (tout; < touty), it is sufficient to show
(I; < ly) = (tout; < touty). Supposeé; < l,. Then, due to the properties of
the FlexKeys we haveout, [col’] < touts[col’]. By the rule in Table 1gol’ is now
part of theOrder Scheméor the output table&). The fact thatout; andtout, are
derived from the same tupte: implies that(Vi, i < p)(tout,[on;| == toutson,]),
with p the maximum index of th@rder Schemdbasically the new column) as
defined in Table 1. Thus, by Definition 502,; = col andtout; < tout.

For case (2), becauséefore(tin, tiny) < before(touty,touts) and by the
induction hypothesi$e fore(tin,,tiny) = (tiny < ting), in order to prove
be fore(touty, touty) = (tout; < touts), it is sufficient to showtin, < ting) =
(tout, < touty). SUpPOSEin, < tiny. Thus aj as specified in Definition 5.2 must
exist. There are two sub-cases: (2jaX p, and (2.b); > p, withp as in Table 1.
Case (2.a) can be easily reduced to that for the operatorsate@ory I, as the cells
corresponding to all thg columns belonging to th@rder Schem&omtin, (tins)
are present in an unmodified formattiout, (touts).

For (2.b), when(; > p), it must be thatp = m — 1 (which also implies
on,, = col) andj = m by the rules in Table 1. This is because; < tins,
and thus they must differ on cells corresponding to colurhatsare in theOrder
Schemaof the input XAT table, but are not retained in the output Xa{ld. Thus,
ting [col] < ting[col]. The two output tuple®ut;, andtout, on the other hand differ
only in the keys in their cells correspondingd@’. By the definition of thé&avi-
gate Unnesfsee Section 3)(3l,l; > 0)|(touti[col’] = ¢(path : ting[col])[l1]),
and (Jly, 1o > 0)|(touts|col']| = ¢(path : ting|col])[l2]). As theFlexKey as-
signed to a node always has the keys of all its ancestors dxgsetout; [col’|
has the key irtin;[col] as prefix andout,|col’] has the key irtins[col] as prefix.
Thereforetin, [col] < ting[col] = tout;[col’] < touts]col’] and consequentially
(ting < ting) = (tout; < touts).

Category V. The theorem holds by definition.
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Category VI. If op is the operatorExpose, it outputs an XAT document rather
than an XAT table. Thus all the XAT tables in the algebra techalready been
covered.

We have shown that (I) holds for the output XAT table of theaipeop, whenop is
any operator and thus completed the proof for (I). Using tlegult, we can easily
prove (), that whert; < t,) eitherbe fore(ty, t2) istrue or the order between the
tuples is irrelevant. Suppose the opposite holds, thaetegist two tuples; and
to in an XAT table in the algebra tree such thHat < ¢5) A before(ts,t1). By (1),
which has been provebhe fore(ts, t1) = to < t;. Butty < t; andt; < t, cannot
be true simultaneously. Thus we get a contradiction.

5.3 Maintaining Order Among XML Nodes in Sequences

For sequences of XML nodes in a single cell that have to be cuhent order,
namely those created by tik@/IL Difference XML IntersectiorandNavigate Col-
lection the FlexKeys of the nodes reflect their order. This is due to the fact that
the FlexKeys capture the correct document order among the base XML raoaks
the semantics of these operators do not specify the ordem@uounstructed nodes.
However, the_'ombine algebra operator creates a sequence of XML nodes that are
not necessarily in document order and whose relative positepends on the rel-
ative position of the tuples in the input XAT table that theigmated from. Thus
the order among the XML nodes in the created sequence mayfeeedt from the
order captured by the node identfjexKey of these XML nodes. We thus must
provide a different scheme for maintaining this order.
function combine (Sequenceén, Tuplet, ColumnName:ol)
Sequenceut «— copy(in)
if (col = OSgli] 3,1 < i <|OSg|)
for all & in out
k.overridingOrder « compose(Ilps (11t; - Hosz[i)t)
else if col € OSR)
forall & in out

k.overridingOrder «— (lps 1)t - Hosz[mt, order(k)), m = [OSR|
return out

Fig. 5. The functiorcombine

For two XML nodesn; andn, in the same cell in a tuple in an XAT table, we
define the expressidw fore(ny, ns) to betrue if the noden; should semantically
be ordered before the node, false if ny is beforen; andunde fined if the order
between the two nodes is irrelevant.

To represent an order that is different than the one encodibeFFlexKeyk serving
as the node identity of the node, we attach an additibledKeyto k (calledOver-

3 OSg, the Order Schemaf the input XAT tableR, is known to theCombine operator
performing thecombine function.
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riding Order) which reflects the node’s proper order. We denote thatasrridingOrder
and we userder (k) to refer to the order represented byWhen theFlexKeyk

has overriding ordet, it is denoted ag|k,]. If the overriding order of: is set, then
order(k) = k.overridingOrder, otherwiseorder(k) = k. When comparing lex-
icographically twoFlexKeys k; and ks, order(k;) andorder(ky) are really being
compared. Thus; < ks is equivalent torder (k) < order(ks).

TheCombine operator sets the overriding order for thlexKe)s in its output XAT
table, as described in Figure 5. Thus, assuming that the iRmontainsp tuples
tin;, 1 < j < p, then the output ofombine C.,(R) can now be denoted as
Ceot(R) = tout = (Wi, combine(tin;[col], tin;, col)). How Combine Ce(R)
sets the overriding order depends on the presence of thennal! in the Order
SchemaD Sy of the input XAT tableR. For the combine operatdrs..;5 in Figure
4, 3%coll and$col2 are in theOrder Schemaf the input. Thus, when the input XML
node referenced by is placed in the output XAT table it is assigned@verriding
Ordercomposed of the order represented byRhexKeys present in columnoll
and $col2 in the tuple it is derived from, that i&b.0..c.f.f. Thustb after being
processed b¢'ombine becomesb[b.b.b..e.f. f]*.

The XML collection operatoiXXML Union @igil,ww(R) creates a new collection,
for each tuple it process, from the contents of two input goiacoll andcol2 .

A new order is imposed by this process among the nodes otiggniom each of
the input columns. We define this order by assignin@arrriding Orderfor each
node that reflects its input column order in the union operatif no Overriding
Order keys are already defined. For example¢all contains (b.f, b.l) anaol2
contains (f.b) the output columeol3 will contain (b.f[b], b.I[b], f.b[f]). If nodes
in the input columns already haw@verriding Orderkeys we extend these keys
by adding a prefix to it that reflects the input column order. &ample, ifcoll
contains (b.f[b], b.I[f]) andcol2 contains (f.b) the output colunsol3 will contain
(b.f[b.b], b.I[b.f], f.b[f]). This order encoding ensurdsat we maintain order among
nodes from different input columns and at the same time raiie original order
among nodes from the same input source. Other XML colleatjgerators XML
Unique XML Difference and XML Intersectiof remove the overriding order (if
present) of the node identifylexKeys that they place in their output XAT tables.
By definition (see Section 3) they produce a column in whiah nlodes are in
document order.

The Group Byoperatory.,1..,|( R, func) does not define or maintain order among

4 Note that if we have schema information about the source Xbttudhents, it is possible
to optimizeOrder Schemin a way that reduces the size@ferriding Order as discussed
earlier. For example, knowing that there is only one possititle” child for each input
“book” node and only one possible “b-title” child for eactpint “entry” node allows us
to use column$b and$e as theOrder Schemanstead of column$coll and$col2. This
result in generating a@verriding Orderkey b.b..e. f instead ob.b.b..e. f. f for the nodeb

23



the created groups. Tl&roup Byin the XAT algebra might create collections. This

is mainly when thé&roup Byperforms nesting operations (when fisnc argument

is composed of &ombineoperator). In such a case nodes are grouped creating
collections based on the grouping columns. Order amongshoieach collection

is of importance. This order is already maintained throughAlex Keys of the
nodes (the id key or the node®verriding Orderkey if it was set in a previous
step). Thesroup Byoperator does not have to perform any further order operstio

Theorem 5.2 Letkout; andkout, be twoFlexKeys in a same cell in an XAT table
R in an XAT algebra tree. Let the$dexKeys serve as node identities of the XML
nodesn; andn, respectively. Then witbe fore(n;, no) defined as in Section 3:

() be fore(ny,ny) = (kout; < kouts),and (Il) (kout, < kouts) = (before(ny, ny)V
(be fore(ny,ny) = undefined)).

Proof: For proving (I), we inspect the different cases dependinghmntype of
the operatorop that outputs the XAT tabl&. The operators of interest are those
that output columns that may contain collectiong-déxKeys. Such operators are
Navigate CollectionXML Union, XML Difference, XML Intersectiorm Group
By, andCombine All the other operators do not create collectionFdéxKeys, but
may only retain in their output the collections present iaithnput in unmodified
format.

The case when the operatgris Navigate Collectiots trivial. For any twoFlexKeys
kout, and kout, in the output XAT table oNavigate Collectionbe fore(ny, ns)
holds only whem; is ordered before:, regarding document order. In such case,
(kout, < kout,) also holds, and thus (1) holds. Note that thiexKeys kout; and
kout, can not have an overriding order set, as they are retrievechfthe Storage
Manger byop.

The case when the operatgy is any of XML Unique, XML Difference, or XML
Intersectionis similar. Again,before(ni,ny) holds only whem, is ordered be-
fore n, based on document order. These operators remove the oweyradder
of the FlexKeys kout; and kout, if present, thus{kout; < kouts) must also
hold. TheXML Union assigns (or maintain) th®verriding Orderfor nodes hence
be fore(ni, n2) holds only whem; is ordered before, based on théverriding
Orderkeys order. For any two nodes in a collection created byGheup Byopera-
tor be fore(ny, ny) holds only whem, is ordered before., based on th©verriding
Orderkeys order or on document order@verriding Ordeikeys are not assigned.

For proving (I) wherop is the operatoiCombine C.,(R), we inspect the possible
cases depending on the presence of the colashim the Order Schema) Sy of
the input XAT tabl&?: (1) col = OSg[1], (2) col = OSg[l], 1 <1 < |OSg|, or (3)
col € OSR.

Let kin, andkin, be theFlexKeys from whichkout,; and kout, are derived. Thus
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bothkin, andkout; (kin, andkout,) are node identities for, (n;), but may have
different overriding order. Let; andt, be the tuples iR such thatkin, € ¢;[col]
andking € ty[col].

For both case (1) and case (2), when the columins part of theOrder Schemaf
R, it must be thatkin, = t;[col] andkin, = ts[col], as cells corresponding to the
Order Schemaever contain sequences, only single keys.

For case (1), we observe th&ifore(n,, n2) can only hold ift,[col] < ta[col]. The
functioncombine does not modify the overriding order in this case, thust; <
kout,. Note that ift; < ¢, butt; [col] < ts[col] does not hold, then by Definition 5.2
it must be that, [col] == t5[col]. In such caséin, == kin, implyingkout; ==
kouty, which in turn yieldsh; == n,. Hence, in such case the order betwegn
andns is irrelevant.

Similarly, for case (2), given that tl@rder Schemaf Ris OSr = (ony, ona, ...on,,),
before(ny,n2) can only hold if(35,1 < 7 < D(((Vi,1 < i < j)(t1fon;] ==
talons])) A (t1on;] < ta]on,])). As shown in Figure 5, the functienmbine sets the
overriding order ofkout,; and kout, as a concatenation of ath [on;] andt;[on;]
respectivelyl < j < [. Thus,before(ni,ny) = (kout; < kouty). Again, if
t1 < to but (Vi,1 < i < )(t1[on;] == tz]ony]), then askin; == kiny, and
(kiny == king) = (kout; == kouts) = (n; == ny), the order between; and
ny IS irrelevant.

For case (3), the columnol may also hold sequences of XML nodes. Therefore,
there are two subcases: (3.&)n; and kin, are in the same tuple, i.e.,t; =

ty = t, or (3.b)¢; andt, are two different tuples. For case (3.a);der(kout;) and
order(kouty) are composed of the same keys except for the last key thasesis
the order ofkin,; and kin, within the collection contained it]col]. As in this case
be fore(nyi, ns) for n; andn, in the output XAT table may only hold when it holds
for n; and n, in the input XAT table, the overriding order is correctly .sebr
case (3.b)pefore(ty, ta) < before(ny,ns). As the overriding order ofout; and
kout, is composed of all the keys corresponding to@rder Scheman ¢, andt,
respectivelype fore(ty,ts) = (kout; < kouty). By transitivity,be fore(ty,ts) <
before(ni,ns) andbefore(ty,ts) = (kout; < kouty) imply before(ny,ny) =
(kout; < kouts).

We have proven (I) for all the cases. Using that result, (dh de proven by con-
tradiction, using the same arguments used for proving (l)heorem 5.1

5.4 Maintaining Order of Internal Nodes of Processed XML &kd

Order of Internal Nodes of Base XML Nodes.Some base XML nodes (frag-
ments) might be processed and exposed in the result as wieakespwithout in-
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serting, deleting or changing any of their contents. Thatned local order among
internal (children/descendant) nodes of a base XML fragmees not change dur-
ing execution time even if the order of the whole fragmentharged. Hence the
FlexKeys of those internal nodes remain to reflect the relative oadesng them.
For example, in Figure 4 the “author” node with thkexKeyb.b. f is processed as
one XML fragment without any changes to its components. dé¢heFlexKeys of
its children remain to reflect their local order.

Order of Internal Nodes of Constructed XML Nodes. Order among internal
(children/descendant) nodes of a constructed node isndieted by theT agger
pattern. Such order might be different than the order of tidedying XML doc-
ument. Moreover, children nodes of a constructed node nhighhemselves con-
structed nodes and/or originating from different sourcelXtébcuments. Hence,
there is no relationship between thElexKeys. For example, the constructed node
tb in Figure 4 has three children nodes wklexKeys b.b.b, e.f.b, andb.b.f (as
shown in theStorage Mangércorresponding to the “title”, the “price”, and the
“author” nodes respectively. These three nodes are otigmn&rom two different
source XML document. The local order among them is definethé¥'t.gger pat-
tern.

We encode the local order among internal nodes of consttunddes by assigning
Overriding Orderkeys. This applies to any type of internal nodes (base or con-
structed). We assign ti@verriding Order kegb, f, andl to the “title”, “price”, and
“author” nodes respectively. Note that using such ordeodimg leaves a space for
updates. For example, if a source update inserts a new “dutbde with FlexKey
b.b.d before the existing “author” node witflexKeyb.b. f, the new “author” node
should be inserted as a child of the constructed rntédshown in Figure 4). The
correct order treatment for that new “author” node is toihis&etween the “price”
node (with ide. f.b and local order) and the “author” node (with ié.b. f and local
order!). This is easily archived by assigning @verriding Order Keyhat is lexi-
cographically betweeri and! (i for example) to the new “author” node. Note that
we never run of out of keys between any tilexKeyas we will discuss in Section
6.

5.5 De-referencing the Final Result.

Generally, when de-referencing the final result we may mreqopartial reordering
as we will discussed later. For the example in Figure 4, tealtef the XQuery
expression is obtained by de-referencing BtexKeytr. First, the skeleton of the
constructed node identified by is retrieved and th&lexKeys contained in that
skeleton are de-referenced. The childreryoheed to be returned in the correct
order. We sort these nodes based on tlaierriding Orderand return nodeb
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first thentc®. Now we take these two nodes one by one and de-reference them
recursively so that the resulting XML document is obtainathen de-referencing
the nodetb we obtain the “title” nodé.b.b first, the “price”e. f.b second, and fi-
nally the “author” nodé.b. f. This nodes are returned in their tagging order as was
maintained by the&Storage Managedf any of these three returned terms were a
collection a local sort among its collection content migatrbquired. Recursively,
we de-reference each of the nodes we obtained so far. Siegaré all base nodes,
their descendants (if any) are returned in document ordéowt any sorting. Note
that because the collections returned in the result aref@eenced one collection

at a time and they are often small sets of nodes, sorting ¢an bé done in main
memory thus becoming very efficient.

5.6 Discussion On Different Types of Order

Document Order. Given the order encoding schema discussed above we can now
maintain document order. This provides support for XQuargrges that return

the result (or part of it) in document order. It also providegpport for XQuery
functions and predicates that exploit document orderbigiore after, range and
position Figure 4 shows the full intermediate result for the exemutf our running
example XQuery in Figure 1. The order schema columns of imédrate result
tables are shaded. The figure also shows, on the right hamdIsedstorage manager
and how the source XML document and the constructed nodessaaesl there. We
note that for the query shown in Figure 4 colun#®I|l and $col2 serve as the
order determining column®fder Schemygfor all intermediate XAT tables below

the Combine operator. SuclOrder Schemas composed of th®rder Schems of

the input tables of théoin operator. Th& ombine operator creates a collection out

of all its input tuples. At this point order between tuplesatipears. Th€ombine
operator instead defines order between nodes in the colteittcreates. This is
done by assigning a@verriding Orderkey for each node in the created collection.
This Overriding Orderkey is composed of the keys in the corresponding order
determining columns in the input XAT table. Note that in teisample the way
theseOverriding Orderkeys are assigned ensures that the order between the two
newly constructed "entry” nodes still follows the undengidocuments order.

Query Order Imposed By the Query order by Clauses.The order byclauses in
XQuery expressions are translated iddoder By operators in XAT query plans.
Maintaining order in such queries is also done using ordérdening columns
(Order Schempa The main difference is that we discard the order that igtham

> The order of these nodes follows the underlying documergronfithe “book” and the
“entry” elements. Although we do not require the physicalesrof processed nodes to
be retained during execution time (to open up query optitiwraopportunities), if such
physical order happens not to be destroyed we might avoithgasf some of the returned
nodes. For example, we may get nodieandic in the right order without any sorting.
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document order (Only at the node level manipulated byotider byclauses) when
theOrder By operator is encountered during execution. Instead we uee ®rder
Schemdhat is generated by th@erder By operator.

Figure 6 shows an execution plan similar to the one in Figureth an added
Order By operator that sorts based on book prices in a descending ¢tmdéis
guery plan, below thé&rder By operator, order still follows the document order
represented by colum$b. Hence it is similar to the order in the other query plan
in Figure 4. When thé&rder By operator is processed, it removes colurfing 1
and$col2 from the order schema and adds a new col#tmd1 to it. This new
column has new order keys that are assigned based on thelamrealues of price
elements (values not shown in intermediate result) in cal@ioal3. Starting from
this point this new order is to be used instead of the ordescofl and $col2.
The Combine operator will use the new order keys in colufirdl to override
order of nodes in the collection it creates. In this case tderdbetween the newly
constructed "entry” nodes will follow the order specifiedthgse keys (ascending
order based on book prices).

$
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Fig. 6. A query plan similar to the one in Figure 1 extendechveih OrderBy operator.
Shaded columns represent order schema

Query Order Imposed by the Nesting of Variable Binding in the Query for
and /et Clauses.Such variable nesting is translated intoin operations on the
algebra level. Hence the order treatment follows the ruéssdbed in Section 5.2.
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These rules gives a major influence on the order to the datacbimuthe outside
variable of thefor clause and a minor influence on the order to data bound to the
inside variable of thg'or clause. Such order is encoded only at@rder Schema
level and no extra keys are needed to reflect it at this point.

Query Order Imposed by the Query return clauses and by the New Result
Construction. On the algebra level this type of order is handled byGlhenbine,

the XML Union, theTagger, and theGroup Byoperators. Th€'ombine, the XML
Union, and theT agger operators all set th@®verriding Orderkeys for the nodes
they process. SucBverriding Ordernow reflects the relative order between the
processed nodes. Tl@&roup Byoperator preserves the original order between the
nodes in each created group. Such order is reflected by tresiedxKeys (the id
key or theOverriding Orderkey if assigned at earlier stage).

6 Discussion on our Proposed Order Solution

6.1 The Cost of our Solution

Cost Components.The cost of handling order in our approach is composed of
three main cost elements:

1) The cost of computing th@rder SchemaThis cost depends on the number of
operators in the query plan and does not depend on the sizecégsed data. It
involves traversing the algebra tree and assignin@uater Schemdor each XAT
table in the algebra tree. This step can be integrated watlytiery plan generation
and optimization phases to avoid a separate traversalédréb.

2) The cost of assignin@verriding Orderkeys for processed XML nodes. Only
three operators out of all the seventeen operators showmabie TL need to as-
sign Overriding Orderfor the nodes they process. These three operators are the
Combine, the XML Union, and theT'agger. Integrating the process of assigning
theOverriding Orderkeys with the actual query execution of these operatorsavoul
result in a lot of time saving.

3) The cost of sorting when we de-reference the final resutthSorting is a key-
based sorting (on thielexKes), and is typically a partial sorting. Sorting might be
required mainly for collections created by the query dumxgcution (using the
Combing the XML Union or theGroup Byoperators). In many cases such sorting
might involve only one scan over the nodes, if they are alresmited. This may
occur when the correct order of the processed nodes has elodestroyed by the
guery execution. All internal nodes (children/descensleot returned base nodes
are directly de-referenced from t&¢orage Mangemn document order [3], thus no
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sorting is required. For internal nodes of constructed scoeting depends on what
is included under the constructed node. A constructed nadetay single nodes,
collections of nodes, or combinations of them. The skelegpresentation of a
constructed node created and stored during execution éfieets the structure and
the relative order among its internal nodes and/or cobesti Our system ensures
that all internal nodes and collections of constructed s@de returned in the result
directly in their tagging order, hence not sorting is regdirSorting might only be
required for contents of collections as discussed abovéhdnworst case, total
sorting for all nodes in the result of an XQuery might be reggionly if the result
returns one collection of base leaf nodes or of construabel@s each of which is a
parent of one base leaf node.

Proposed Optimizations.Here are some ideas on how to optimize our proposed
order solution:

e Some of the rules presented in Table 1 can be further optanigeremov-
ing/replacing certain columns in ti@rder Schemarhis would reduce the num-
ber of columns in th®©rder Schemar replace them with columns with smaller
FlexKeys. Hence when producing order keys based orCitteer Schemave get
smaller keys. For example, for the operatBedectand Theta Joinif any of the
columns present in the selection or joining condition areindhe Minimum
Schemaof the output XAT table, they can be dropped from reler Schema
of output XAT table (if it has other columns) or replaced by ttolumn(s) in
which they originate from (if th®©rder Scheméas no other columns). This is
because such columns are created to be used Beleetor Join predicates and
are not part of any later processing operations. Hence sperific order is not
of interest to the query. For example, if an input XAT tabledd&electoperator
has arOrder Schemahat is composed of columi§a and$p, and assuming that
column$p is used in theSelectcondition and it is not in thdlinimum schema
of the output XAT table of that operator. This signifies thatuenn $p is not
needed for any next operation and its order is not of impcodda the result of
the query. Hence, we can drop colusinfrom the Order Schemaf that oper-
ator output XAT table. This makes the order among tuples ab tlutput XAT
table determined only by the contents of colupan Another example is column
$coll in Figure 4. This column is used in tlein operator and is not part of the
Minimum Schemaf the output table of that operator (since it is not needed fo
any next operation). Since this is the only column in @reler Schemgaof the
input XAT table of the operator, we replace it by the columariginally came
from (column$b). Column$b is hence used to reflect the order instead of column
$coll. In this case if we are to extract the order of that table, ater Istage, we
get the smalleFlexKey based on columtib instead of the largeFlexKeys in
column$coll.

e It is also possible to optimize th@rder Schemaising schema information of
the source XML documents if available. Such optimizationyragain result
in generating smaller order keys. For example, Navigate Unnesbperator
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¢§g§l}te(R), shown in Figure 4, has colun$ (that represents the “book” nodes)
as theOrder Schemaf its input XAT table. Based on the rules presented in Table
1 theOrder Schemaf the output XAT table of that operator becomes column
$coll. If schema information exists that specifies that there ig one possible
“title” child for each “book” node, we may keep using colurfilhnas theOrder
Schemaf the output XAT table instead of coluntaol1. Again, the size of or-
der keys extracted from colun®d is smaller than that order keys extracted from
column$coll. Such reduction in order keys size is more significant when th
navigation operation involves many navigation steps.

¢ In many cases the query may not destroy the desired ordee oétarned result.
But we may still need to perform one scan over the returnelécadns to con-
clude that it is in the desired order. One possible optinorad eliminate such
unnecessary scan is to maintain a flag for processed coltegtiight be anno-
tated at the XAT table schema level). This flag specifies ibtfuer of processed
collection(s) is preserved or not. The value of this flag tshyedifferent opera-
tors in the algebra tree. When returning a collection in thalfquery result, if
its flag reflects that the collection order is not destroyedcese directly return
the nodes in the collection without checking if it is in thesoled order or not.

¢ It might be also possible to tune the query optimization axetetion itself to
achieve better overall performance in terms of the totat ob®xecution and
order. For example, if savings form certain optimizationregecution strategy
is wiped out by an added final sorting cost we might choosehenaitrategy,
possibly of higher cost, that results in less overall costtfie execution and
order together. For example, if a hash-badeith hashes the smallest table and
scans the biggest table and joins tuples from the biggek with the hashed
tuples, the result will be sorted based on the order of thgdsigtable. Hence,
in some cases (for example, if the two tables are close ir) sizemay choose
to hash the right input table in particular so we generatesaltréhat reflects the
major order of the left input table. Since the order of Joe output follows the
order of its left input table as a major order and then the rooflé@s right input
table as a minor order, this treatment reduces the finahgptitne (or eliminate
it if the minor order of the right table is not of importance).

e In some cases it might be possible to avoid assig@ngrriding Orderkeys
for nodes. For example, if Baggeroperator constructs a new node and assigns
some base nodes as children for it. If the tagging patterrepléthese nodes in a
relative order similar to that of their source XML documehgre is no need to
assignOverriding Orderkeys for these nodes.

6.2 Implications of our Proposed Solution

Migration to Non-ordered Bag Semantics.Our technique of encoding order with
FlexKeys and intermediat®©rder Schemanables migration of the XAT algebra
semantics from ordered bag semantics to non-ordered bagnses That is, (1)
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the physical order among the tuples is no longer of signiieaand (2) the physical
order among the nodes in a cell is not of significance. Thidigaphat we separate
out the reasoning about order into a separate abstractiep@amdent of each oper-
ator’s logic. In general, algebra operators are thus ngioresible for maintaining
order of intermediate results. One exception is@néer Byoperator. Thérder By
operator has to define a new order among the data it procd$sesost is encoun-
tered anyways regardless of the order solution used. Theamtded cost in our
approach for maintaining order while processing @rder Byoperator is the cost
of assigning new order keys to the data. Also, while@henbine, the XML Union,
and theT'agger operators do not perform any sorting, they assign new orelgs k
for nodes while they process them. All other operators metie data while they
are unaware of its order. In general, our solution does roptire sorting of any
intermediate results. This is true for all algebra opesaftreOrder Byoperator is
the only exception) even while achieving nested ordered X®Atructuring.

Efficient Order-sensitive Query Processing.This transformation from ordered
to non-ordered bag semantics is the key ingredient to fatliXML query opti-
mization. It removes the restrictions of manipulating ssagees of XML data in
a strict order. Order is encoded at the XML node level and tatinediate result
schema level. Operators do not need to be aware of the orsleciated with data
they manipulate. For that reason operators have the fléyibal reshuffle data in
any order they wish for efficiency. This way,Jain operator could use any effi-
cient join algorithm (e.g., hash-based, index-based, dfraerge join) producing
the output in any order dictated by the join implementatibategy without requir-
ing any intermediate sort. For example, th@n operator in Figure 7 joins its two
input tables on the values in columng2 andcol4. Order-determining columns
(Order Schempgfor each XAT table is shaded. The number in a circle that apgpe
besides each tuple illustrates the implicit order of eagietimplied from theOr-
der SchemaNow assume that the join implementation outputs the regultiples
in any arbitrary physical order as in Figure 7. We are stifjaiale of deriving the
right order of tuples in the output table (major order frofft ileput table and minor
order from right input table) by comparing the keys in theuoohs representing
the Order Schemdcolumnscoll andcol3) of the resulting table. The numbers in
circles that appear next to tuples in the output table in feigushow the order of
tuples as we can derive it using teder SchemaNote that this order is only an
implicit order. That is, the tuples are not actually sorteddx on this order at this
point of query execution.

Efficient Order-sensitive View Maintenance.The migration to the non-ordered
bag semantics also facilitate efficient XML incrementalwi@aintenance. This is
because it ensures that most XAT XML operators become loigivie with respect

to bag union, leading to more efficient view maintenance.example, consider
that the input table of &elect operator has received an update in the form of a tu-
ple insertion. Since th&8elect operator becomes distributive, the inserted tuple can
be processed independently of other input tuples. If therted tuple satisfies the
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Fig. 7. An example for order handling in thiin operator. Shaded columns determine the
Order Schemaf each table and numbers appearing in circles beside tdptesmine the
tuple induced order.

operator predicate it is directly propagated to the outgloiiet. Without the distribu-
tive feature, the operator would have to determine theivelarder of the inserted
tuple among the output table. They may require storing andssing auxiliary in-
formation to determine that order. See [4] for our work inwimaintenance that
exploits this order-encoding schema.

6.3 Other Discussions

The Generality of our Solution. Our solution requires defining rules for main-
taining order (theOrder Schempon the query execution model level (the XAT
tables). There are two main XML query execution models: li&) tuple-oriented
model, like the one we use and that is also used in [9], andh@)pattern tree
model, like the one used in [10]. The tree-oriented modek ysstern trees to
match trees from the input documents. It is easy to generaliz order solution
to the tree-oriented model by understating how the treented model maps to our
tuple-oriented model. There is a direct mapping betweerwioemodels as each
attribute in the XAT table maps to a variable binding in thétgra tree. Hence a
tuple in the XAT table is a labeled container that holds al iindings as well as
binding relationships that exists in pattern trees. A ssamihapping is also identi-
fied in [9]. So for the pattern tree execution models we sinmagd to define the
Order Scheméor on the node level of the pattern trees binding variabteso This
corresponds to defining them on the column level in the XATesb

Re-labeling (Reordering keys) on UpdatedJnlike other order approaches [6,10,20]
our order encoding schema guarantees that we do not run datyefeven for a
large batch of skewed insertions focused on possibly ondl seggon within the
underlying XML document. The reason is two-fold: (1) we legaps between keys
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when we first assign them (as in Figure 3), and (2) we are capdlgroducing a
key between any two keys at all times even if there is no gawdst them. This
is because our key is composed of variable length byte stasglescribed earlier.
Thus, even if we run out of keys due to a large number of ingkeatsfill the gap
between two keys we can opens up new gaps by adding one maeetrdo the
encoding. For example, if we need to insert a new node betiveemodes with
keysb.c andb.d we may simply give the new node the key valuek. This will
open up new gaps betweér andb.ck and betweenn.ck andb.d and so on. This
prevents the need to re-lablel keys not only for the sourceihent node keys but
also for the order encoding of the processed data since weauatsl'lex K eys to
encode new order imposed by the query. Please, refer to #mepe of inserting a
new “author” with a keyb.b.d that we have presented in Section 5.4.

Order Among Multiple Documents. Our order approach supports order also for
gueries over multiple XML documents. There are two issuettsider here: (1)
base node key and order encoding and (2) query order encddin@n the base
node level, each XML document has order among its nodes edcseparately
using the keys of its nodes as we have shown earlier. Stbeage Managef3]
ensures that each document will have a unique key for thenodeé. Hence all
nodes will have a unique key among all documents. For exarajpl®ugh the two
nodesh.b.f ande.b. f share the suffix. f, but because they are from two different
documents (with root keys ande), the key for each one of them is unique. For
any base XML node (fragment), originating from any documtd local order of
its internal nodes is reflected by the nodexKeys, as discussed in Section 5.4.
(2) On the query level, the order among data from differenire® documents is
determined by the query itself. This is typically handledtbg order imposed by
the nesting of variable binding in thi@r andlet clauses, and the order imposed by
the queryreturn clause and the new result construction. Hence, the treatafen
order among multiple documents follow the same guidelinegave for handling
these types of query imposed order.

7 Experiments

We have tested the efficiency of our solution and have fouatiar order solution
provides support for different types of XQuery order wittiléi overhead for the
guery engine. Our evaluation focuses on two main dimensid)sWhat is the
overhead added to the query processing cost when we supfferenkt types of
order-sensitive queries. (2) Where does the cost of hajpdlider come from and
what are the cost elements of order in different types ofigaer

We have implemented our order approach in Java and integitatéth the Rain-
bow system [27]. We have run the experiments on a Windows RIC 7@&3 MHz
Pentium processor and 512MB of memory. We have used the Xiemkhmark
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Fig. 8. Part of the structure of the “site.xml” file used in #eriments.

data [17] in our experimental evaluation. Figure 8 shows pathe structure of
the XMark “site.xml” data set that is relevant to the queresuse. We use XML
files of different sizes in our experiments, varying from 5SME25MB. We use four
gueries (shown in Figure 9) that come with different ordguieements. We have
designed each of the four queries to reflect mainly one forthefour order types
that we have discussed earlier. This ensures that we metagucest of each type
of order in isolation of the other types. For each of the foueries we show the
overhead of handling order relative to the total query etiendime. We also break
down the order cost in each query to its cost elements. We nalyze the results
we have obtained using these queries.

<result>{ <result>{
for $p in doc(“site.xml") for $c in distinct-values doc(“site.xml")
/people/person/profile /people/person/address/city
return order by $c/text()
$p return $c
}</result> Query 1| | }</result> Query 2
(a) (b)
<result>

for $p in doc(“site.xml")/people/person
for $c in doc(“site.xml")/closed_auctions/closed_auction
where $p/@id = $c/seller/@person
return
$c/date
</result> Query 3

(€)

<result>
{<customers>

for $p IN doc(“site.xml")/ people/person

return

<customer>{<location>$p/address/city/text()</location>} {$p/name}</customer>

</customers>}
{ <open_bids>

for $oa IN doc(“site.xml")/ open_auctions/open_auction

return

<bid> {$oalreserve} {$oa/intial} </bid>

</open_bids>}
</result> Query 4

(d)

Fig. 9. Different XQuery expressions that are used in theesrgents.
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Query 1. This query navigates to all the “profile” nodes (fragmenesichable from

the root of the XML document “site.xml” through the path “gpe/person”. The
extracted XML fragments form a collection that is taggechggihe “result” tag.

This query reflects only document order in which order amadhgades in the

result follows the order of the input document. This appleethe order among the
returned XML fragments and also to the order among theirmatenodes.

Figure 10(a) shows that the total cost of handling order imdlery is very small
(negligible) compared to the query execution time. The lb@avn of this order
cost is shown in Figure 10(b), measured using the input XM dil size 25MB.
The cost of maintaining order in a query that processes ootuighent order is
mainly composed of two cost elements: (1) theder Schemaomputation cost
and (2) final result sorting cost. THerder Schemaomputation cost is fixed re-
gardless of the size of the processed data (it only dependiseonumber of op-
erators in the query plan). The cost of the final sorting ddpeam the processed
data size. It also depends on how the query manipulatesdiee among processed
nodes. FoQuery lonly partial sorting might be needed on the level of the regdr
fragments (“profile” elements) if the correct order amongsth fragments was de-
stroyed during query time. Internal nodes of those nodesetened in document
order without any sorting, as discussed earlier. Figur®)1§l{ows that the cost of
the final (partial) sorting foQuery lis very small.Query 1did not perform any
operation that destroys the order among nodes in the retuwoliection. Hence a
very small cost is needed to conclude that the returnedtrissualthe correct order
and no sorting is needed.
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Fig. 10. Results obtained for Query 1: (a) the order costacettecution cost on different
input XML file sizes, and (b) the break down of order cost on BXML input file size.

Query 2. This query navigates to the “city” nodes reachable throtglpath “/peo-
ple/person/address”. A collection of distinct cities i®ated using thelistinct-
valuesoperator. This collection of distinct “city” elements isrsal alphabetically
on the “city” name by therder byclause. Finally the collection is tagged using the
“result” tag. This query reflects a query order imposed oniyhe order byclause.
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No document order or any other type of query order is affegdiire result.

Figure 11(a) shows that the total cost of handling order is gluery is also very
small (negligible) compared to the query execution tfm&he break down of this
order cost is shown in Figure 11(b). The cost of maintainirdeoin a query that
imposes order through thader by clause is mainly composed of three cost ele-
ments, (1) theédrder Schema@aomputation cost, (2) the cost of assignitgerrid-

ing Orderkeys, and (3) the final result sorting cost. Teler Schemaomputation
cost is fixed regardless of the size of the processed dataoktef assignin@ver-
riding Orderkeys and the cost of the final sorting depend on the procesdadide.
For Query 2the cost of assigning th@verriding Orderkeys is the highest among
the other order cost elements. This is mainly because atktioened nodes in this
guery are affected by therder byclause and hence are assigri@eerriding Or-
der keys’ . Theorder byoperation in this query performs a sort for the processed
nodes generating an ordered collection at the intermeriatdt. This order is not
destroyed by any other operations in the query. Hence thlestiméng cost shown

in Figure 11 involves mainly verifying that the returnedleotion of “city” nodes

is already in the desired order.
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Fig. 11. Results obtained for Query 2: (a) the order costecettecution cost on different
input XML file sizes, and (b) the break down of order cost on BEXML input file size.

Query 3. This query navigates to two different collections. It natis to “/peo-
ple/person” and navigates to “/closedctions/closeduction”. For all the “per-
son” elements, the query returns a collection of “date” eletsa (of “closedauction”
elements) in which the person is a seller in a closed auctibis. query involves a

6 Note that the cost of the processing (sorting) done byotlder by operator is consid-

ered as part of the query execution cost and not as part ofrder golution since such
cost is encountered anyways regardless of the order solu@ioly cost elements that are
introduced by our order solution itself are measured asqfdite order cost.

7 Note that we are considering this cost as being entirelyqfatte overhead of our order
solution cost although it might be considered (or part chg)part of the cost of executing
the order byoperator.
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join operation on “/person/@id” and “closexiction/seller/@person”. Finally the
collection is tagged using the “result” tag. This query r&fiea query order im-
posed only by the nesting of variable binding in foe clauses. The order of the
returned “date” elements does not follow their documenéeorid follows the order
of the “person” elements as a major order and the order of ¢ctesédauction”
element as a minor order. In other words, the “date” elemargsot returned in
their document order but in the order the “person” elemettiat (join with the
“seller” elements) appear. If there are multiple “date”neénts under different
“closed auction” for the same “person” element, the minor order sgkece here
and determines the order among those elements.

Figure 12(a) shows that the total cost of handling ordeQuery 3is also very
small compared to the query execution cost. The break dowhigforder cost
is shown in Figure 12(b). Th@®rder Schemaomputation cost is slightly higher
than the last two queries because the query plaQuéry 3has more operators.
The cost of assignin@verriding Orderkeys here involves assignir@verriding
Order keys to all the returned “date” elements. Such keys reflestntiajor and
the minor order imposed by tHer clause. The cost of the final sort is affected by
the implementation of thpin operator. The implementation of th@n operation
here is performed using a hash-based join. The XAT tableesgmting the closed
auctions is the one that gets hashed because of its sizecduged only the minor
order of the processed data is destroyed. Hence returnéngetiult in the correct
order requires minor sorting for the returned result. Th& ob this sort is shown
in Figure 12(b).
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Fig. 12. Results obtained for Query 3: (a) the order costacettecution cost on different
input XML file sizes, and (b) the break down of order cost on BXML input file size.

Query 4. This query creates a result with a new structure by perfagnmrany
node construction operations as shown in Figure 9(d). Thesygreflects mainly
a query order that is imposed by new node construction anarther specified
in thereturn clauses . Figure 13(a) shows that the total cost of handling order in

8 Some implicit document order is also present in this queny,which the con-
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this query is very small compared to the query execution. ddst break down of
this order cost is shown in Figure 13(b). TBeder Schemaomputation cost is
higher than that for the last three queries because the quanyof Query 4has
more operators. The cost of assignfdgerriding Orderkeys is also high because
it involves assigningverriding Orderkeys to all the nodes in the returned result
(except for the “result”). Thes®verriding Orderkeys reflect the query imposed
order (and document order for nodes “customer” and “bid"$nall final sort cost

is encountered while deriving the right order among therretd “customer” and
among the returned “bid” elements.

Although all results reported here have been run on the Resitoow system, i.e.,
without employing any of the order-oriented optimizatidrategies pointed out
earlier in Section 6, the cost of handling order has stilllbslkeown to be negli-
gible. We expect that the cost of handling order can be evehdusignificantly
minimized by incorporating these optimization techniqurs the system.
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Fig. 13. Results obtained for Query 4. (a) the order costecettecution cost on different
input XML file sizes, and (b) the break down of order cost on BEXML input file size.

8 Conclusion

In this paper we have presented a novel approach for handlidegr of XML
gueries. Our approach supports different types of ordesiblygoresented by XQuery
expressions. This includes document order and differgrestyof query imposed
order. We have proposed a special encoding mechanism fodegcorder of pro-
cessed XML nodes. For most of the XML algebraic operators neoée order at
the query schema level of the execution model usingQrger SchemaHence,
these operators need not to be aware of the order of the XMesthtky process.

structed nodes “customer” and “bid” follow the documentesrdf the “person” and the
“open.auction” elements respectively. Note that the order amasgehdants of each of
these constructed nodes is different from that of theirs@efements.
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Only few operators need to handle the order at the nodes. [Eked is done by
assigning special order keys, call@erriding Orderkeys, for the nodes. We do
not require any special sorting operations for processestnrediate nodes. The
only sorting required in our solution is when we de-refeeettee final XML re-
sult. Even then, typically only partial sorting is requir€lr solution migrates the
XML algebra to non-ordered bag semantics. Now query opation can be per-
formed without the restrictions typically imposed by thedé¢o support order. Our
approach provides the basis for efficient incremental vieintenance [4].

In this paper we have proven the correctness of our apprémeiuldition we have
implemented our proposed solution and integrated it wigéhRRainbow XML query
engine [27]. For testing our proposed solution we have ugéstent queries that
come with different order requirements. The results of oqpegiments shows that
the overhead of maintaining order of XQuery expressiong dapending on the
type of order supported by the query. There are three mainetesients in our
solution. (1) The cost of computing ti@@der Schemarhis cost is encountered in
all queries. Such cost is very small and is fixed for the saneeygegardless of the
size of processed data. (2) The cost of assig@ugrriding Orderkeys. This cost
is only encountered in queries that involve imposing newepahd it varies with
the input data size. (3) The cost of final sorting. This cogtethels on the size and
nature of collections created in the result. This cost atsgeg with the input data
size. In general, for all the different types of order, th@atoverhead of maintaining
order in our solution is very small compared to the query etien time.
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