
Efficiently Supporting Order in XML Query
Processing

Maged El-Sayeda,∗, Katica Dimitrova b,∗∗,
Elke A. Rundensteinera

aDepartment of Computer Science
Worcester Polytechnic Institute Worcester, MA 01609

bMicrosoft Corporation
One Microsoft Way, Redmond, WA 98052

Abstract

XML is an ordered data model and XQuery expressions return results that have a well-
defined order. However, little work on how order is supportedin XML query processing
has been done to date. In this paper we study the issues related to handling order in the
XML context, namely challenges imposed by the XML data model, the variety of order
requirements of the XQuery language, and the need to maintain order in the presence of
updates to the XML data. We propose an efficient solution thataddresses all these issues.
Our solution is based on a key encoding for XML nodes that serves as node identity and
at the same time encodes order. We design rules for encoding order of processed XML
nodes based on the XML algebraic query execution model and the node key encoding.
These rules do not require any actual sorting for intermediate results during execution. Our
approach enables efficient order-sensitive incremental view maintenance as it makes most
XML algebra operators distributive with respect to bag union. We prove the correctness of
our order encoding approach. Our approach is implemented and integrated withRainbow,
an XML data management system developed at WPI. We have tested the efficiency of
our approach using queries that have different order requirements. We have also measured
the relative cost of different components related to our order solution in different types of
queries. In general the overhead of maintaining order in ourapproach is very small relative
to the query processing time.

Key words: XML Query, XQuery, Order in XML, Query Algebra, XML Data
Management Systems.

∗ Corresponding author.Email address: maged@cs.wpi.edu (M. El-Sayed).
∗∗All work done by Katica Dimitrova for this paper has been accomplished while she was a
graduate student in the Department of Computer Science at Worcester Polytechnic Institute,
Worcester, MA.

Preprint submitted to Elsevier Science

1 Introduction

1.1 XML and Order

XML has been widely accepted as data format for modeling and exchanging data
for internet applications. Unlike most common data models including semi-structured,
relational and object-oriented data models, XML data is order-sensitive. Support-
ing XML’s ordered data model is crucial for many domains. An example is content
management where document data is intrinsically ordered and where queries often
need to rely on this order [20]. For example, if Shakespeare’s plays are modeled as
XML documents, the order among acts in plays is relevant. Then queries asking for
a certain act in a play given its order must be supported.

XQuery [26], a World Wide Web Consortium (W3C) working draftof an XML
query language, has been proposed as standard for querying XML. By the W3C
specifications [26], XQuery expressions return results that have a well-defined or-
der, unless otherwise is specified. The result of a path expression is always returned
in document order [24]. The order in the result of aFLWOR expression can in ad-
dition be imposed by the expression itself in many ways, as wewill describe next.
Hence, the result of an XQuery expression reflects in an interrelated manner both
the implicit XML document order and the explicitly imposed order by the XQuery
expression.

1.2 Problem Description

Support for such order when processing XQuery queries can severely affect query
optimization opportunities. Thus, a major performance hitmay result [26]. For this
reason the XQuery language provides a function, namedunordered(), that can be
used for those expressions where the order of the result is not significant [26]. This
allows us to turn sequences processed during query execution into sets. Set-oriented
processing is known to offer potential opportunities for optimization.

One challenge in handling XML order is that the order of the result of an XQuery
expression may follow (1) document order, (2) query order imposed by theorder
byclause, (3) query order imposed by the nesting of the queryfor andlet clauses,
and (4) query order imposed by the queryreturn clause or by the new result con-
struction, or (5) a combination of any of the above.

The problem of incremental XML view maintenance poses unique challenges com-
pared to the incremental maintenance of relational or even object-oriented views.
XML views have to be refreshed correctly not only concerningthe view content
but also concerning the order of the view result document. Inthe relational context,

2

for example, order is of interest only if theOrder Byoperation is explicitly present
in the view definition. Even then, a possible solution is to maintain an unordered
auxiliary view, and only recompute the ordered view on demand on the final out-
put data. This is because all ordering is done uniformly based on sorting on some
attribute value at the end of query processing. Such approach does not apply to
the XML context, where all operations have to be order sensitive. Even if explicit
reordering occurs (for example, due to anOrderBy clause in the view definition)
it does not necessarily completely reorder the XML view result. The internal ele-
ments (i.e., children/descendants elements) of the element(s) on which the ordering
was performed still might be returned in document order.

Given that the order cannot always be ignored, efficient techniques for handling
order in XML query processing must also be devised. That is, we need to have
the ability to support order for processing queries and updates on data and on ma-
terialized views. At the same we need to minimize the overhead that comes with
handling order. Some work has been proposed for supporting order in XML query
processing [6,10,14,20] yet these solutions did not support all types of XQuery
order or came with high overhead cost.

1.3 Our Approach

In this paper, we provide a general solution to the open problem of efficiently han-
dling order in XML query processing and view maintenance. The work presented
here has been conducted as part of the Rainbow system [27], anintegrated XML
data management system that supports XQuery. TheRainbow Storage Manager
supports efficient retrieval and updates for both base XML data and derived inter-
mediate XML data fragments.Rainbowuses a unique node identifier encoding for
efficient reference-based query execution and efficient view maintenance.

Our solution supports all different types of XQuery order, as decried above. It also
migrates the ordered bag semantics of intermediate query results into a non-ordered
bag semantics. This way our approach removes, for most queryoperators, the over-
head of maintaining order at the level of individual algebraoperators. At the same
time the order of intermediate results is preserved implicitly using the proposed
order-encoding scheme. This opens up additional opportunities for query optimiza-
tion. Sorting in our approach is necessary only when de-referencing the final XML
result. Even then, typically, only partial sorting is required. This is mainly because
the storage mechanism we use returns many parts of the resultin the desired order,
as we will describe later.

The contributions of this paper include: (1) We identify thechallenges associated
with handling order in the context of XML query processing and view mainte-
nance. (2) We propose an efficient order encoding strategy that preserves order in

3

XML algebraic query processing. This strategy removes the overhead for each in-
dividual algebra operator to have to maintain order, It alsoremoves the need for
unnecessary sorting of intermediate data. In other words itmigrates the ordered
bag semantics of intermediate data into non-ordered bag semantics. (3) We prove
the correctness of the proposed approach in that it ensures ordered semantics. (4)
We have implemented and integrated our order strategy into the Rainbow XML
data management system [27]. (5) We show, via an experimental study, that our or-
der preserving approach comes with a relatively small overhead on query execution
and view maintenance.

1.4 Paper Outline

The reminder of this paper is organized as follows. Section 2describes related
work. Section 3 introduces the XML algebra. In Section 4 we classify the chal-
lenges of maintaining order in XML query processing, while Section 5 describes
our order solution. Section 6 discusses the cost and implications of our proposed
order solution. Section 7 analyzes the results of our experiments, while Section 8
concludes this paper.

2 Related Work

Many solutions for XML data management use relational database technology
[7,19,20] as the underlying storage medium. Supporting theordered nature of the
XML data in the relational model context is an issue since order information is
lost while converting from XML to the relational data representation [15]. Many
solutions for semi-structured data have been extended to support XML data [8,12].
These solutions tend not to support XQuery, and more importantly, do not support
order requirements of XQuery expressions.

Concurrently with these efforts to exploit existing database technologies, native
XML storage manager systems [3,11] have also been proposed.An advantage of
such native storage is that XML documents may be clustered inphysical XML doc-
ument order, thus facilitating efficient children/descendant access. [3] for example,
supports four different clusterings based on different document order at the index
storage. Such tree navigation is very frequent in XML query processing [10]. [21]
shows that customized XML storage solutions perform betterthan other storage so-
lutions when dealing with XML documents without DTDs or withdocuments with
DTDs that have cycles.

Object identity is widely used in semi-structured databases [12,13] and in object-
oriented databases [5]. W3C recommends that each node in an XML document

4

should have a node identifier [26]. Some XML algebra operators might be able
to perform functionalities like duplicate elimination using only the node identifiers
without the need to access the actual data [26]. An alternative solution in XML is to
use theid attribute to identify XML elements. This is not a good solution since (1)
such attribute is optional and (2) it can only be defined for element nodes. Hence,
XML systems often generate and assign node identifiers for all nodes in the XML
tree. Some of these identifiers can serve both as node identification and node order
at the same time, like in [10,20].

Several techniques have been proposed for encoding order ofXML documents.
[20] describes three order encoding methods: global, localand dewey encodings.
In the global encoding method, each node is assigned a numberthat represents the
node’s absolute position in the document, while in the localencoding method each
node is assigned a number that represents its relative position among its siblings.
The dewey order encodes the full path from the root node to thecurrent node. The
dewey order is shown to outperform the other two on workloadscomposed of both
queries and updates. The main disadvantage of all these order encoding methods is
that in the presence of updates renumbering might be needed for certain portions of
the XML tree. [3] proposed an order encoding for XML documents nodes (called
FlexKey) which is based on dewey. This method avoids the problem of renumbering
in the case of updates by using variable length byte strings instead of numbers.
Another encoding technique, used in [1,10], associates a numeric start andend
label with each data node in the XML document. The intervals between these labels
are defined such that every descendant node has an interval that is strictly included
in its ancestors’s interval. By addinglevel to the label of each node this order
encoding technique allows for parent-child and ancestor-descendant relationships
to be found. One disadvantage of this method is that re-labeling of nodes might be
required if a large number of insertions are taking place within the same small label
range. In addition, it is not possible to derive directly thelabel of a parent (or an
ancestor) of a node given only its label, unlike in the case ofFlexkey[3] and Dewey
[20].

The Agora system [14], which stores XML in relational tables, provides support for
handling order-sensitive XQuery expressions. XQuery queries are first normalized,
then translated and rewritten into SQL queries to be executed over the relational
tables. However, this solution is limited to XQuery queriesthat semantically match
SQL and can successfully be translated and rewritten into SQL. Additionally, order
handling is an expensive process where an XQuery is translated into many SQL
queries requiring several passes and materializing of intermediate XML results.

[2] and [18] introduce mechanisms to publish relational data and object-relational
data as XML documents. These solutions provide support for mainly document or-
der. The use of a sorted outer union approach is proposed to retrieve the relational
data needed for constructing XML documents when the resulting XML document
does not fit into main memory. However, this approach may perform unnecessary

5

additional work as it produces a total ordering even when only partial ordering is
sufficient. [20] proposed a solution for supporting orderedXML query processing
using the relational database technology. This solution mainly focuses on handling
XPath expressions order, and provides support for some XQuery order-based func-
tionalities like Beforeand after operators and therange predicate. The work in
[20] focuses on document order and does not handle differenttypes of order im-
posed by XQuery expressions. Timber [10], a native XML data management sys-
tem, provides support for document order and query order. However, to preserve
order, sorting for some of the intermediate results appearsto be required during
execution [10]. The order handling strategy in Timber is built on top of the node
start-end-level labeling described above. Hence, it suffers from the disadvantages
of that labeling techniques described above. [6] introduces a solution for maintain-
ing XML document order that works in both a static and dynamicdatabase envi-
ronment. However, re-labeling of nodes might be required insome cases. Also [6]
does not address order imposed by XML queries.

Many incremental solutions have been proposed for the problem of maintaining
semi-structured and XML views [13,16,29], none of these solutions have supported
order-sensitive view maintenance. Our order solution establishes the foundation for
the first order-sensitive view maintenance solution for XMLviews [4].

Our proposed order approach supports different types of XQuery order, namely
document order and order imposed by the query itself in a variety of ways. A key
point in our solution is that the order is implicitly encodedin the node identifier and
in the intermediate result schema in a way that allows the migration of intermediate
results from ordered bag semantics into non-order bag semantics. Unlike in [10]
most of our operators no longer need to be aware of the order ofdata they process.
Also we do not need to incorporate any sorting operations forintermediate results.
Our operators are distributive with respect to bag union. This opens up more opti-
mization opportunities and allows for efficient incremental view maintenance [4].

3 Background: XML Algebra

In this section we introduce the XML algebra of Rainbow [28].While our order
handling solution is illustrated using this algebra, its principles are generally appli-
cable.

3.1 Basic Notations

We adopt the XML standard defined by W3C [22]. An XML node refers to either
an element, attribute, or text in an XML document. XML nodes are considered

6

duplicates based on their equality by node identity denotedby n1 == n2 [25].

Definition 3.1 Givenm sequences of XML nodes, letseqj = (n1j , n2j , ..nkjj), 1 ≤
j ≤ m, kj ≥ 0, nij is an XML node,1 ≤ i ≤ kj . Order sensitive bag union of such

sequences is defined as:
◦⊎m

j=1seqj
def
= (n11, n21, ...nk11, n12, ...nk22, ..., n1m, ...nkmm).

Union of such sequences is defined as
⋃m

j=1 seqj
def
= {c1, c2, ..., cs}

|(∀nij , 1 ≤ j ≤ m, 1 ≤ i ≤ kj)(∃!cl, 1 ≤ l ≤ s)(nij == cl).

Order sensitive bag union of sequences concatenates the sequences into one re-
sulting sequence. Union creates a set of all the unique nodescontained in the input
sequences, i.e., duplicates are removed. We use

⊎
to denote bag union of sequences

of XML nodes and
.
− to denote bag difference of sequences of XML nodes. When

a single XML node appears as argument for
◦⊎
,
⋃

,
⊎

or
.
−, it is treated as a singleton

sequence [23].

We use the termpath to refer to a path expression [26] consisting of any combi-
nation of forward steps, including// and∗. The sequence of children of the XML
noden located by the pathpath and arranged in document order is denoted as
◦

φ(path : n). The notation
◦

φ(path : n)[i] represents theith element in that sequence.
The number of children of the XML noden that can be reached by following the

pathpath is denoted as|
◦

φ(path : n)|. Hence,
◦

φ(path : n)
def
= (n1, n2, ...nk)|(ni =

◦

φ(path : n)[i], 1 ≤ i ≤ k) ∧ (k = |
◦

φ(path : n)|). For example, forn being the

XML node prices from Figure 1 (a), andpath = “//price”, then
◦

φ(path : n) =
(<price>39.95</price>, <price>65.95</price>).

The sequence of extracted children located by the pathpath from each of the nodes

in the sequenceseq = (r1, r2, ...rk) respectively is denoted as
◦

φ(path : seq).

That is,
◦

φ(path : seq)
def
=
◦⊎k

i=1

◦

φ(path : ri). The notation
◦

φ(path : seq)[i] stands

for the ith element of that sequence.|
◦

φ(path : seq)| =
∑k

i=1 |
◦

φ(path : ri)|.
The notationφ(path : seq) stands for the corresponding unordered sequence.

As |φ(path : seq)| = |
◦

φ(path : seq)|, for convenience we also use the notation

|φ(path : seq)| for the cardinality of
◦

φ(path : seq) in later sections.

3.2 The XML Algebra XAT

We use XQuery [26], a World Wide Web Consortium working draftfor an XML
query language, as query language. Figure 1 shows our running example in par-
ticular (a) two source XML documents “bib.xml” and “price.xml”, (b) an XQuery
expression defined over these two documents and (c) the result “result.xml” gener-
ated by executing the XQuery expression over the source documents. The XQuery

7

<bib>
<book>
<title>TCP/IP Illustrated</title>
<author><last>Stevens</last>

<first>W.</first></author>
</book>
<book>

<title>Advanced Programming in
the Unix environment</title>

<author><last>Stevens</last>
<first>W.</first></author>

</book>
<book>

<title>Data on the Web</title>
<author><last>Abiteboul</last>

<first>Serge</first></author>
</book>

</bib>

<result>
<entry>

<title>TCP/IP Illustrated</title>
<price> 65.95</price>
<author><last>Stevens</last>

<first>W.</first></author>
</entry>
<entry>

<title>Data on the Web</title>
<price>39.95</price>
<author><last>Abiteboul</last>

<first>Serge</first></author>
</entry>

</result>

<result>
{

for $b in doc("bib.xml")/book,
$e in doc(“prices.xml")/entry

where $b/title = $e/b-title
return

<entry>
{$b/title} {$e/price} {$b/author}

</entry>
}
</result>

(a)

(b)

(c)

<prices>
<entry>

<price>39.95</price>
<b-title>Data on the Web</b-title>

</entry>
<entry>

<price> 65.95</price>
<b-title>TCP/IP Illustrated</b-title>

</entry>
</prices> prices.xml

bib.xml

result.xml

Query

Fig. 1. (a) Two source XML documents “bib.xml” and “price.xml”, (b) XQuery expression
and (3) XML result “result.xml”

expression is translated into an XML algebraic representation. Given that to date
no standard XML algebra for XQuery processing has emerged, we use the XML
algebra called XAT [28]. The Rainbow XML data management system [27] de-
veloped at WPI is based on this algebra. The data model for theXAT algebra is
a tabular model called XAT table. Typically, an XAT operatortakes as input one
or more XAT tables and produces an XAT table as output. AnXAT table R is an
order-sensitive table ofp tuplestj , 1 ≤ j ≤ p, p ≥ 0 that isR = (t1, t2, .., tp). The
column names in an XAT table schema ofR represent either a variable binding
from the user-specified XQuery, e.g.,$b, or an internally generated variable name,
e.g.,$col1. Each tupletj (1 ≤ j ≤ p) is a sequence ofk cellscij (1 ≤ i ≤ k), that is
tj = (c1j , c2j , ..., ckj), wherek is the number of columns. Each cellcij (1 ≤ i ≤ k,
1 ≤ j ≤ p) with coli in a tupletj , denoted bytj[coli], can store an XML node or a
sequence of nodes. Atomic values are treated as text nodes.

XAT Operators. In general, an XAT operator is denoted asopout
in (s), whereop is

the operator type symbol,in represents the input parameters,out the newly pro-
duced output column that is to be appended to the output tablegenerated by the
operator ands the input XAT table(s) (an exception is theSource operator where
s represents an XML document). Some of the XAT operators alongside with their
XAT tables are shown in Figure 2. The XAT algebra tree in Figure 2 is one possible
execution plan for the query in Figure 1(b). Below we introduce the core subset of
the XAT algebra operators [28].

8

A subset of the XAT operators corresponds to the relational complete subset of the
XAT algebra includingSelectσc(R), Cartesian Product×(R, P), Theta Join1c

(R, P), Left Outer Join
◦
1Lc(R, P), Distinct δcol(R), Group Byγcol[1..n](R, func),

Order By τcol[1..n](R) , whereR andP denote XAT tables. Those operators are
equivalent to their relational counterparts1 , with the additional responsibility to
reflect the order among the tuples in their input XAT table(s)to the order among
the tuples in their output XAT table.Distinct andGroup Byare the only operators
in the XAT algebra that output an unordered XAT table, following the specification
in [26]. Order By, like its relational counterpart, orders the tuples by the values in
the columns given as arguments.

S ”bib.xml”
$S1

f $S1, book
$b

f $b, title
$col1

F $b, author
$col4

Join $col1 = $col2

T<entry>$col1 $col3 $col4</entry>
$col5

C $col5

T <result>$col4</result>
$col6

<b-title>TCP..</b-title><entry>… </entry>

<b-title>Dat.. </b-title><entry>… </entry>

$col2$e

<b-title>TCP..</b-title><entry>… </entry>

<b-title>Dat.. </b-title><entry>… </entry>

$col2$e

<entry>… </entry>

<entry>… </entry>

$e

<entry>… </entry>

<entry>… </entry>

$e

<prices>… </prices>

$S2

<prices>… </prices>

$S2

<entry><title>.. </title><price>..</price><author>..</author></entry>

<entry><title>.. </title><price>..</price><author>..</author></entry>

$col5

<entry><title>.. </title><price>..</price><author>..</author></entry>

<entry><title>.. </title><price>..</price><author>..</author></entry>

$col5

{<entry><title>.. </title><price>..</price><author>..</author></entry>
<entry><title>.. </title><price>..</price><author>..</author></entry>}

$col5

{<entry><title>.. </title><price>..</price><author>..</author></entry>
<entry><title>.. </title><price>..</price><author>..</author></entry>}

$col5

<result> <entry>…</entry> <entry> …</entry></result>

$col6

<result> <entry>…</entry> <entry> …</entry></result>

$col6

bib.xml

result.xml

e $col6

F $e, price
$col3

S ”prices.xml”
$S2

f $S2, entry
$e

f $e, b-title
$col2

prices.xml

<title>Adv.. </title><book>… </book>

<title>Dat.. </title><book>… </book>

<title>TCP..</title><book>… </book>

$col1$b

<title>Adv.. </title><book>… </book>

<title>Dat.. </title><book>… </book>

<title>TCP..</title><book>… </book>

$col1$b <entry>… </entry>

<entry>… </entry>

$e

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<book>… </book>

<book>… </book>

$b

<entry>… </entry>

<entry>… </entry>

$e

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<book>… </book>

<book>… </book>

$b

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<price>39.95 </price>

<price>65.95 </price>

$col3

<book>… </book>

<book>… </book>

$b

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<price>39.95 </price>

<price>65.95 </price>

$col3

<book>… </book>

<book>… </book>

$b

<price>39.95 </price>

<price>65.95 </price>

$col3

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<author>… </ author >

<author>… </ author >

$col4

<price>39.95 </price>

<price>65.95 </price>

$col3

<title>Dat.. </title>

<title>TCP.. </title>

$col1

<author>… </ author >

<author>… </ author >

$col4

<book>… </book>

<book>… </book>

<book>… </book>

$b

<book>… </book>

<book>… </book>

<book>… </book>

$b

<bib>… </bib>

$S1

<bib>… </bib>

$S1

Storage ManagerStorage Manager

Fig. 2. The algebra tree for the XQuery in Figure1(b)

We now describe the XML-specific operators. The full description of the XAT al-
gebra can be found in [28].

SourceScol′

xmlDoc is always a leaf node in an algebra tree. It takes the XML document
xmlDoc and outputs an XAT table with a single columncol′ and a single tuple
tout1 = (c11), wherec11 contains the entire XML document.

1 The operatorGroup Byhere is more powerful than its relational counterpart as it may
take any arbitrary sub-query or function. This allows theGroup By to perform nesting
operations as well as grouping operations.

9

Navigate Unnestφcol′

col,path(R) unnests the element-subelement relationship. For
each tupletinj from the input XAT tableR, it creates a sequence ofm output tu-

plestout
(l)
j , where1 ≤ l ≤ m, m = |φ(path : tinj [col])|, tout

(l)
j [col′] =

◦

φ(path :

tinj [col])[l]. The tuplestout
(l)
j are ordered by major order onj and minor order on

l. Theφ$col1
$b,title operator in Figure 2 generates one tuple for each “title” element we

navigate to form the “book” elements in the input XAT table. This result in three
tuples in the output XAT table, a tuple for each “title” element.

Navigate CollectionΦcol′

col,path(R) is similar toNavigate Unnest, except it places all
the extracted children of one input tuple into one single cell. Thus it outputs only
one single output tuple for each tuple in the input. For each tuple tinj from R, it

creates one output tupletoutj, wheretoutj [col
′] =

◦

φ(path : tinj [col]).

Combine Ccol(R) groups the content of all cells corresponding tocol into one se-
quence (with duplicates). Given the inputR with m tuplestinj , 1 ≤ j ≤ m, Com-

bineoutputs one tupletout = (c), wheretout[col] = c =
◦⊎m

j=1tinj [col]. Combine
has only columncol in its output XAT table. TheC$col5 operator in Figure 2 grouped
all the “entry” elements in$col5 tuples into one cell.

Tagger T col
p (R) constructs new XML nodes by applying the tagging patternp to

each input tuple. A patternp is a template of a valid XML fragment [22] with
parameters being column names, e.g.,<result>$col5</result>. For each tupletinj

from R, it creates one output tupletoutj , wheretoutj [col] contains the constructed
XML node obtained by evaluating the patternp for the values intinj . For example,
theT $col5

<entry>$col1$col3$col4</entry> in Figure 2 constructs a new “entry” node from the
“title”, “price”, and “author” nodes for each input tuple.

XML Unique υcol′

col (R) removes duplicate for sequences of XML nodes by node
identifier. For each tupletinj from R, it creates one output tupletoutj, where
toutj[col

′] is a sequence containing the unique members intinj [col] after removing

duplicates by node identifier.XML Union
x
∪

col

col1,col2(R) is used to union multi-
ple sequences into one sequence. For each tupletinj from R, it creates one out-
put tupletoutj , wheretoutj[col] is a sequence containing the members of the set
tinj [col1] ∪ tinj [col2]. The other two XML collection operators,XML Intersec-

tion
x
∩

col

col1,col2(R) andXML Difference
x
−

col

col1,col2(R), perform intersection and dif-
ference between two sequences. Note that the operatorsXML Union, XML Inter-
sectionandXML Differenceperform set operations on columns in a single XAT
table, not on multiple XAT tables.

Exposeǫcol(R) appears as a root node of an algebra tree. It outputs the content of
columncol into textual XML.

By definition, all columns from the input table are retained in the output table of an

10

operator. An additional column may be added the output tableof an operator, ex-
cept for some operators that do not require an additional column (e.g. theCombine
operator). Such schema of a table is calledFull Schema (FS). However, not all the
columns may be utilized by operators higher in the algebra tree.Minimum Schema
(MS) of the output XAT table of an operator is defined as the subsequence of all
columns, retaining only the columns needed later by the ancestors of that operator
[28]. The process of determining theMinimum Schemais calledSchema Cleanup
and is described in [28].

In the XAT algebra tree shown in Figure 2 wenavigate to “title” elements from
“book” elements in “bib.xml” andnavigate to “b-title” elements from “entry” el-
ements in “prices.xml”. We then perform ajoin operation based on the “title” and
“b-title” elements values. We thennavigate to the “price” elements from the “en-
try” elements andnavigate to the “author” elements from the “book” elements.
Next weconstruct new “entry” nodes from the “title”, the “price”, and the “au-
thor” elements. We place all the created “result” node in a collection, using the
Combineoperator, andtag this collection of “entry” nodes using the “result” tag.
Finally we use theexpose operator to extract the result as an XML document (“re-
sult.xml”). In Figure 2 we only show the columns that are in theMinimum Schema
for each table. All other columns have been removed due toSchema Cleanup[28].

4 Challenges of Handling in XML Query Processing

4.1 Challenges Posed by the Data Model

The query execution model of ordered-sensitive XML views can be seen as ase-
quence of sequences, where each of the sequences can have one or more XML
nodes. An XML node in a sequence can be a simple node like an attribute or a text
node or it can be an XML tree (an element node). In terms of our data model, the
XAT table corresponds to the container sequence and the tuples in that table are the
sequences inside the container sequence. Each cell (in a tuple) can store a single
node or a sequence of nodes. Given such a data model, three order levels exist:

1) Order among processed sequences (tuples in an XAT table).

2) Order among nodes in a processed sequence of XML nodes (nodes in a cell in
an XAT table).

3) Order among internal nodes (children/descendants) of processed XML nodes.

The processed nodes themselves may be either original nodesfrom the source doc-
ument or nodes constructed during query execution. And the order defined for any

11

of those three levels may follow the source document order ormay follow a new
order imposed by the query. In some cases order might not be ofimportance.

4.2 Challenges Posed by the Different Order Requirements ofthe XML Query
Language

We classify the order that an XQuery expression can reflect toits result into four
main types:

1) Document Order. Document order is the order of nodes as they appear in the
source XML documents. XQuery expressions typically returnresult in document
order unless otherwise is specified by the query. This order might be present in
base nodes exposed in the result. It also might be present in constructed nodes that
follow the document order of the base nodes they are derived from.

2) Query Order Imposed By the Query order by Clauses.The query might have
one or moreorder byclause(s) imposing new order to certain parts of the returned
result.

3) Query Order Imposed by the Nesting of Variable Binding in theQuery for
and let Clauses.Nesting of variables in thefor and let clauses in an XQuery
FLWOR expression also imposes a certain order based the order of the variables.
For example, for aFLWOR expression embedded into anotherFLWOR expres-
sion we expect that, in general, a variable in the outsidefor clause places a major
influence on the order while a variable in the insidefor clause places a minor in-
fluence on the order. The same order semantics applies to the order among multiple
variable bindings in the samefor or let clause.

4) Query Order Imposed by the Query return clauses and by the New Re-
sult Construction. The order in which variables are specified in the return clause
determines the order of data bound to these variables.

Often the XQuery result reflects a mixture of more than one of the order types listed
above. This makes handling XQuery order a complex issue.

On the query algebra level, different operators in the XML algebra deal with order
in a different way. Here are some examples:

• The operatorNavigate CollectionΦcol′

col,path(R) processes one tuple at a time,
without requiring to access other tuples nor modifying the order among the tu-
ples. Moreover, for each tuple in the input table it produce exactly one tuple in
the output table.

• The operatorTagger TaggerT col
p (R) also preserves the relative order among the

tuples it process. In addition it defines order among its internal nodes.

12

• The operatorCombineCcol(R) destroys the order among the tuples it process.
It groups all the nodes from its input column in one cell and outputs only one
tuple in the output XAT table that contains that cell. This raises the issue of
maintaining order between those nodes.

• For theJoin operator1c (R, P), the order of tuples in the output table of the
Join operator depends on the order of tuples in its input tables. The order in its
output table follows the order of the left input tableR as a major order and the
right tableP as a minor order.

• TheOrder Byoperatorτcol[1..n](R) destroys the order of the input table and im-
poses a new order based on a certain criteria. Hence the output table will have a
new computed order based on the order of some column values.

• The operatorExpose ǫcol(R) outputs an XML document rather than an XAT
table. This document is extracted as a tree from acol in the input XAT table.
The extracted tree has order among its elements that reflectsall previous order
decisions.

We will discuss how different operators handle order in moredetail in Section 5.

4.3 Challenges Posed by Order-sensitive View Maintenance

The problem of the incremental maintenance of XML views poses additional chal-
lenge. View maintenance of ordered XML data is difficult for two reasons [13]:
(1) positions of the element may change dynamically during update time and (2)
positions of elements may be different in views and in the source data.

It is essential to have a mechanism for encoding source XML nodes in a way that
avoids reordering (re-labeling) source nodes on updates. It is also essential to main-
tain the order among the propagated nodes and sequences. This issue is similar
to the that of maintaining order among processed nodes and sequences discussed
above. Two other issues appear here (1) how to derive and maintain the relative or-
der of the propagated updates to the order of the previously processed data, and (2)
how to avoid re-ordering of nodes in the result when applyingpropagated update to
the view result. Without an efficient solution, materialization of large auxiliary data
structures and expensive scans of them might be needed to enable order-sensitive
view maintenance. For example, to determine the order of an inserted tuple in an
XAT table we might need to materialize and to scan the input oroutput tables to
determine the right order of the inserted tuple. Our goal here is to provide an order
handling technique that facilitates not only efficient order-sensitive query process-
ing but also efficient order-sensitive view maintenance.

13

5 Maintaining XML Order

The requirement of preserving order, as described in Section 4, makes the XML
query execution and view maintenance significantly different from the relational
case. The two obvious solutions are: (1) relying on the physical sequential storage
medium to be always ordered, or (2) assigning order values toprocessed sequences
and nodes. Both solutions are not efficient especially in thepresence of incremental
updates.

Our solution for handling order relies on three main principles: (1) the underlying
Storage Mangeris capable of returning source document nodes in document or-
der, (2) order is ignored when processing XML intermediate results, and (3) at the
end of query processing and when generating the final result sorting is performed
(typically only partial sorting) to return the result in thedesired order. OurStor-
age Managerrelies on theMASSsystem [3], also developed at WPI, for providing
scalable storage and indexing for XML data with efficient update performance. The
Storage Managerprovides interfaces for storing and retrieving XML nodes (both
original nodes and constructed nodes).MASSguarantees that when retrieving de-
scendants of original XML nodes they are returned in document order, eliminating
the need for sorting them at the result generation time.MASSprovides scalable
I/O performance for allXPathaxes. Moreover, it provides an integrated indexing
support forXPathnode tests, position predicates and count aggregations.

5.1 Node Identifier and Node Order

In many cases the order among processed XML nodes and collections depends on
the order of their source document. In other words, the orderamong the tuples in
an XAT table (and among nodes in a cell) depends on the source document order
of the XML nodes present in these tuples (cell). Our query processing model uses
node identifiers during query execution time. Hence, a node identity that serves
the dual purpose of node identifier and order encoding is beneficial for both query
processing and order handling. We also require the node identity of a base node to
encode the unique path of that node in the XML tree and captures the order at each
level along the path. We have thus considered techniques proposed in the literature
for encoding order in XML data [1,3,10,20]. The lexicographical order encoding
technique proposed in [3] that does not require reordering on updates is proposed.
It is analogous to the Dewey ordering [20], except rather than using numbers in the
encoding, it uses variable length strings. First, for each document node a variable
length byte string key is assigned, such that lexicographical ordering of all sibling
nodes yields their relative document ordering. The identity of each node is equal to
the concatenation of all keys of its ancestor nodes and of that node’s own key (see
Figure 3). This order-reflecting node identity encoding is calledFlexKey. We use

14

the notationk1 ≺ k2 to note thatFlexKeyk1 lexicographically precedesFlexKey
k2.

bib

book

title

b

b.b

b.b.b

author

b.b.f

first

b.b.f.l

last

b.b.f.b

book

title

b.f

b.f.b

author

b.f.f

first

b.f.f.l

last

b.f.f.b

book

title

b.l

b.l.b

author
b.l.f

first

b.l.f.l

last

b.l.f.b

prices

entry

b-titleprice

e

e.b

e.b.fe.b.b

entry

b-titleprice

e.f

e.f.fb.f.b

(a) (b)

Fig. 3. Lexicographical order encoding of the two XML documents “bib.xml” and
“prices.xml” presented in Figure 1(a).

TheFlexKey encoding is well suited for query execution and for view maintenance
because it has the following properties:

• It identifies a unique path from the root to the node. Hence theparent-child and
ancestor-descendant containment relationships between nodes can easily be de-
termined without the need to access the actual data. Accessing this relationship
is a frequent operation in XML query execution.

• It embeds the relative order among nodes in the same XML tree in each node.
Hence the order between any nodes can easily be determined (regardless of the
level) by comparing theirFlexKeys lexicographically.

• It does not require reordering on updates because of the use of variable length
strings instead of numbers for encoding order. We can alwayscreate new gaps
by extending the string by adding more letters. We discuss that in more detail in
Section 6.

Base Nodes.We useFlexKeys for encoding the node identities of all nodes in the
source XML document. That is, we assume that any given XML document used as
source data hasFlexKeys assigned to all of its nodes. For reducing redundant up-
dates and avoiding duplicated storage we mainly store references (FlexKeys) in the
XAT tables rather than actual XML data. This is sufficient as theFlexKeys serve as
node identifiers and also capture the order. From here on, when we refer to a cell in
a tuple we mean theFlexKeyor the collection (or sequence) ofFlexKeys stored in
that cell. The actual XML data is stored only once in theStorage Manager. Figure 4
illustrates the usage ofFlexKeys as references to source XML nodes.FlexKeys are
used for accessing that data when needed by some operator. For example, theNav-
igateoperatorφ$col1

$S1,book retrieves the “book” children of the root node of “bib.xml”
from theStorage Manager, and places theirFlexKeys in the output XAT table.

Constructed Nodes.We also useFlexKeys to encode the node identity of any con-
structed nodes either in the intermediate result or in the final extent. TheFlexKeys
assigned to constructed nodes are locally unique. Rather than instantiating the ac-
tual XML fragments in our system, we only store a skeleton representing their

15

Storage ManagerStorage Manager

bib.xml

Constructed XDOMs

tr

tb

XDOMKey

entry

b.b.b e.f.b

resulttr

tb

XDOMKey

entry

b.b.b e.f.b

result

entry

b.l.b e.b.f

tc

tb tc
[b.b.b..e.f.f] [b.b.l..e.b.f]

[b] [f]

[b]
[f]

prices

entry

b-titleprice

e

e.b

e.b.fe.b.b
book

b-titleprice

e.f

e.f.fe.f.b

bib

book

title

b

b.b

b.b.b

author
b.b.f

first

b.b.f.l

last

b.b.f.b

book

title

b.f

b.f.b

author
b.f.f

first

b.f.f.l

last

b.f.f.b

book

title

b.l

b.l.b

author

b.l.f

first
b.l.f.l

last

b.l.f.b

prices.xml

S ”bib.xml”
$S1

f $S1, book
$b

f $b, title
$col1

F $b, author
$col4

Join $col1 = $col2

T<entry>$col1 $col3 $col4</entry>
$col5

C $col5

T <result>$col4</result>
$col6

result.xml

e $col6

F $e, price
$col3

S ”prices.xml”
$S2

f $S2, entry
$e

f $e, b-title
$col2

e.f.fe.f

e.b.fe.b

$col2$e

e.f.fe.f

e.b.fe.b

$col2$e

e.f

e.b

$e

e.f

e.b

$e

e

$S2

e

$S2

b.l

b.f

b.b

$b

b.l

b.f

b.b

$b

b

$S1

b

$S1

b.l.bb.l

b.f.bb.f

b.b.bb.b

$col1$b

b.l.bb.l

b.f.bb.f

b.b.bb.b

$col1$b b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.fe.b

e.f.fe.f

$col2$e

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.fe.b

e.f.fe.f

$col2$e

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.b

e.f.b

$col3

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l.f

b.b.f

$col4

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l.f

b.b.f

$col4

tc

tb

$col5

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

tc

tb

$col5

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

{ tb [b.b.b..e.f.f] ,
tc [b.b.l..e.b.f] }

$col5

{ tb [b.b.b..e.f.f] ,
tc [b.b.l..e.b.f] }

$col5

tr

$col6

tr

$col6

b.b.f
[l]

b.l.f
[l]

Fig. 4. Execution usingFlexKeys for the XQuery expression in Figure1(b). Shaded columns
representOrder Schema.

structure in theStorage Manager. References (FlexKeys) to other source data or
to constructed nodes that are included in the newly constructed node are kept. For
example, in Figure 4, although the constructed nodetr is representing the whole
output view extent, it is only stored as<result>tb tc</result>. When the con-
structed node is created, theFlexKeyassigned to it reflects only its identifier and
does not reflect its order. This is because the order of a constructed node at its cre-
ation time is just an intermediate order at a certain point ofquery execution. It does
not necessarily reflect the desired final result order. We assign the order information
to the constructed node at a later stage (when the constructed nodes are placed into
a sequence with other nodes or when it becomes part of other constructed nodes).
When defining the order of a constructed node we use an additional key for en-
coding order that we attach to theFlexKeyof the constructed node. We call such
additional keyOverriding Order. We will discuss theOverriding Orderencoding
in more detail in Section5.3.

Composed Keys.In addition to theFlexKeys described above, we may also use
FlexKeys created as a composition of otherFlexKeys. This is mainly for maintaining
any order that is different than the document order in sequences of XML nodes (see
Section 5.3). For example, theFlexKeyk = “b.b.b..b.b.d” is a composition of the
FlexKeysk1 = “b.b.b” andk2 = “b.b.d”, where “..” is used as delimiter. We denote

16

this byk = compose(k1, k2).

Now we discuss in detail how we maintain the order of processed XML data. We or-
ganize our discussion based on the query execution data model into (1) order among
sequences of XML nodes, (2) order among nodes in a sequence ofXML nodes, and
(3) order among internal (children/descendant) nodes of processed nodes (XML
fragments).

5.2 Maintaining Order Among Sequences of XML Nodes

We observe that the order among the tuples (sequences of XML nodes) in an XAT
table can be determined, in some cases, by comparing theFlexKeys stored in cells
corresponding to some of the columns. For two tuples in an XATtable, we define
the expressionbefore(t1, t2) to betrue if the tuplet1 should semantically be or-
dered before the tuplet2, false if t2 is semantically beforet1 andundefined if
the order between the two tuples is irrelevant. For example,consider the tuplest1
= (b.b.b, e.f.f, e.f.b, b.b.f) andt2 = (b.l.b, e.b.f, e.b.b, b.l.f) in the input XAT table
of the operatorT $col5

<entry>$col1$col3$col4</entry> in Figure 4. Heret1 should be before
t2, that isbefore(t1, t2) is true. This can be deduced by comparing theFlexKeys
in t1[$col1, $col2] andt2[$col1, $col2] lexicographically. We will show that this is
not a coincidence. That is, the relative order among the tuples in an XAT table is
indeed encoded in the keys contained in certain columns. Thus it can be determined
solely by comparing thoseFlexKeys. Such columns are said to compose theOrder
Schemaof the table. For any two tuples in the output XAT table of theDistinct
operator the relative order is undefined.

Definition 5.1 TheOrder Schema OSR = (on1, on2, ...onm) of an XAT tableR in
an algebra tree is a sequence of column namesoni, 1 ≤ i ≤ m, computed following
the rules in Table 1 in a postorder traversal of the algebra tree.

Two tuples are compared lexicographically as follows.

Definition 5.2 For two tuplest1 andt2 from an XAT tableR withOSR = (on1, on2, ...onm),
the comparison operation≺ is defined by:t1 ≺ t2 ⇔ (∃j, 1 ≤ j ≤ m)(((∀i, 1 ≤
i < j)(t1[oni] == t2[oni])) ∧ (t1[onj] ≺ t2[onj]))

The rules in Table 1 guarantee that cells corresponding to the Order Schemanever
contain sequences, only single keys. The rules are derived from the semantics of
the operators and rely on the properties of theFlexKeys.

For example, let us consider the rule for computing theOrder Schemaof the op-
eratorNavigate Unnestφcol′

col,path(R), when the columncol is the last column in the

2 The columncol′′ by definition is responsible for holding keys such that (I) and (II) hold.

17

Cat. Operatorop OS∗Q

I T col
p (R), Φcol′

col,path(R),
x
∪

col

col1,col2(R), υcol′

col (R), OSR

x
∩

col

col1,col2(R),
x
−

col

col1,col2(R), σc(R)

II Scol′

xmlDoc, Ccol(R), δcol(R), γcol[1..n](R, fun) ø

III ×(R,P), 1c (R,P),
◦
1Lc(R,P) (on

(R)
1 , on

(R)
2 , ...on

(R)
mr , on

(P)
1 , on

(P)
2 , ...on

(P)
mp)

mr = |OSR|, mp = |OSP |

IV φcol′

col,path(R) (on
(R)
1 , on

(R)
2 , ...on

(R)
p , col′)

if on
(R)
m = col thenp = m − 1, elsep = m.

V τcol[1..n](R) (col′′), col′′ is new column2

VI ǫcol(R) N/A

* Q = opout
in (R), OSR = (onR

1 , onR
2 , ...onR

m)

Table 1
Rules for computingOrder Schema

Order Schemaof the input XAT tableR. By the semantics of this operator pre-
sented in Section 3, it processes one tuple at a time. However, it may produce zero
or more tuples in its output XAT tableQ for each tuple inR. The order of any two
tuples inQ derived from two different tuples inR should be same as of those they
are derived from inR. The order among two tuples derived from the same tuple
in R should correspond to the document order of the nodes presentin their cells
corresponding tocol′.

For any two tuplest1 andt2 in any XAT table in an XAT algebra tree, if tuplet1
should semantically be before tuplet2, then the lexicographical comparison from
Definition 5.2 of the tuples always yieldst1 ≺ t2. On the contrary, ift1 ≺ t2, then
eithert1 should semantically be beforet2 or otherwise the order between these two
tuples is irrelevant. This means that the relative order among the tuples is correctly
preserved in theOrder Schema, but theOrder Schemamay impose order among
the tuples when such order is semantically irrelevant. In the following theorem, we
state this observation more formally. We also prove its correctness.

All columns contained in theOrder Schemaof any table are also contained in the
Full Schemaof that table, except for the column in theOrder Schemaof the output
table of theOrder Byoperator. Thus, no extra computation is needed for evaluating
theOrder Schema. Moreover, they are often present even in theMinimum Schema.
The order among the tuples in the output XAT table of theOrder Byoperator de-
pends on the values present in the tuples. Thus it is not captured by any of the
FlexKeys present in the tuple. Thus we explicitly encode it in a new column created
for that purpose.

18

Theorem 5.1 shows that the relative position among the tuples in an XAT table is
correctly preserved by the cells in theOrder Schemaof that table.

Theorem 5.1 For every two tuplest1, t2 ∈ R, whereR is an XAT table in an XAT
algebra tree, withbefore(t1, t2) defined as in Section 3, (I)before(t1, t2) ⇒ (t1 ≺
t2), and (II) (t1 ≺ t2) ⇒ (before(t1, t2) ∨ (before(t1, t2) = undefined)).

Proof: We prove (I) by induction over the heighth of the algebra tree, i.e., the
maximum number of ancestors of any leaf node. To simplify theproof, we consider
any algebra tree even if it does not have anExpose operator as a root, i.e., a
superset of what is necessary.

Base Case:For h = 0, the algebra tree has a single operator node, which is both a
root and a leaf. That node must be aSource operator, as each leaf in a valid XAT
algebra tree is aSource operator. As the input ofSource is an XML document, the
output XAT table is the only table in the tree. Since theSource operator outputs
only one tuplet, the expressionbefore(t, t) is nevertrue. Thus the theorem trivially
holds.

Induction Hypothesis: For every two tuplest1, t2 ∈ R, whereR is any XAT table
in an XAT algebra tree with heightl, 1 ≤ l ≤ h, it is true thatbefore(t1, t2) ⇒
(t1 ≺ t2).

Induction Step: We now consider an XAT algebra tree of heighth + 1. Let op
be the operator at the root of such algebra tree. All childrennodes of the root
must themselves be roots of algebra trees each of a height notexceedingh. By the
induction hypothesis, (I) must hold for all XAT tables in those algebra trees. Thus,
(I) holds for all the XAT table(s) that are sources for the operator op. It is only left
to show thatbefore(t1, t2) ⇒ (t1 ≺ t2) holds for any two tuplest1 and t2 in the
output XAT tableQ of the operatorop.

The operatorop can be any XAT operator, excluding theSource operator, ash +
1 > 1 and Source can only appear as a leaf node in an XAT algebra tree. We
proceed by inspecting the different cases depending on the type of the operatorop,
following the classification presented in Table 1.

Category I. These operators process one tuple at a time, without requiring to access
other tuples nor modifying the order among the tuples. Moreover, for each tuple in
the input table they produce exactly one tuple in the output table, except for the
Select, which may filter out some tuples. The later is not of significance, as only
the relative order among tuples is addressed in this theorem. Hence, if the theorem
holds for the tuples in their input XAT tableR andOSQ = OSR, it must also hold
for the tuples in their output XAT tableQ.

To prove that formally, we consider any two tuplestout1, tout2 ∈ Q. Let tin1,

19

tin2 ∈ R, such thattout1 derived fromtin1 and tout2 derived fromtin2. By
the induction hypothesis, (I) holds for any two tuples inR, hence also for
tin1 and tin2. As before(tin1, tin2) ⇔ before(tout1, tout2), in order to prove
before(tout1, tout2) ⇒ (tout1 ≺ tout2) we only need to show that(tin1 ≺
tin2) ⇒ (tout1 ≺ tout2).

As the operators considered do not modify any values in the columns retained from
the input tuple, but may only append new columns, it holds that (∀i, 1 ≤ i ≤ |OSR|)
(tout1[oni] == tin1[oni]). Therefore, by Definition 5.2, we have(tin1 ≺ tin2) ⇒
(tout1 ≺ tout2).

Category II. For the operatorCombine, there is at most one tuple in the output
XAT table. Hence the reasoning is same as presented for the operatorSource in the
proof for the base case. The operatorDistinct by definition outputs an unordered
XAT tableQ. Hence for any two tuplest1, t2 ∈ Q, before(t1, t2) = undefined.
Thus the left hand side of (I) is nevertrue, so (I) trivially holds.

Category III. All the operators in this category belong to the Join family of oper-
ators and regarding order have the same behavior. Their output is sorted by the
left input tableR as major order and the right tableP as minor order (see Sec-
tion 3). Consider any two tuplestout1 and tout2 from the output XAT tableQ.
Let tout1 be derived fromtin

(R)
1 and tin

(P)
1 and tout2 be derived fromtin

(R)
2 and

tin
(P)
2 , wheretin

(R)
1 , tin

(R)
2 ∈ R and tin

(P)
1 , tin

(P)
2 ∈ P . Thus, by the definition

of these operators:before(tout1, tout2) ⇔ before(tin
(R)
1 , tin

(R)
2) ∨ ((tin

(R)
1 =

tin
(R)
2)∧ before(tin

(P)
1 , tin

(P)
2)). Note that for theLeftOuterJoin operator there

could exist zero to many output tuples that are not derived from any tuple inP . But,
as there could be at most one such tuple derived from each tuple in R, the above
statement is still valid.

There are two cases: (1)tin(R)
1 and tin

(R)
2 are two different tuples fromR, or (2)

bothtout1 andtout2 are derived from the same tupletin(R), i.e.,tin(R)
1 = tin

(R)
2 =

tin(R).

For case (1) it holds thatbefore(tout1, tout2) ⇔ before(tin
(R)
1 , tin

(R)
2). Hence,

this case can be easily reduced to that for the operators in Category I.

For case (2), whentin(R)
1 = tin

(R)
2 = tin(R), as before(tout1, tout2) ⇔

before(tin
(P)
1 , tin

(P)
2) and by the induction hypothesisbefore(tin

(P)
1 , tin

(P)
2) ⇒

(tin
(P)
1 ≺ tin

(P)
2), in order to provebefore(tout1, tout2) ⇒ (tout1 ≺ tout2), it is

sufficient to show(tin(P)
1 ≺ tin

(P)
2) ⇒ (tout1 ≺ tout2). By the rules in Table 1,

theOrder Schemaof Q contains all the columns from theOrder Schemaof R, fol-
lowed by all the columns from theOrder Schemaof P . As the operators considered
do not modify any values in the columns retained from the input tuples, it holds
that (∀i, 1 ≤ i ≤ |OSR|)((tout1[on

(R)
i] == tin(R)[on

(R)
i]) ∧ (tout2[on

(R)
i] ==

20

tin(R)[on
(R)
i])) and (∀j, 1 ≤ j ≤ |OSP |)((tout1[on

(P)
i] == tin

(P)
1 [on

(P)
i]) ∧

(tout2[on
(P)
i] == tin

(P)
2 [on

(P)
i])). Thus,(∀i, 1 ≤ i ≤ |OSR|)(tout1[on

(R)
i] ==

tout2[on
(R)
i]) and then by Definition 5.2(tin(P)

1 ≺ tin
(P)
2) ⇒ (tout1 ≺ tout2).

Category IV. The operatorNavigate Unnestφcol′

col,path(R) by its definition presented
in Section 3 processes one tuple at time. However, it may produce zero or more
tuples in its output XAT tableQ for each tuple inR. Consider any two tuplestout1
andtout2 fromQ. There are two cases: (1) Bothtout1 andtout2 are derived from
the same tupletin, or (2) tout1 is derived fromtin1 andtout2 is derived fromtin2,
tin1 6= tin2.

For case (1), letl1 and l2 be indexes such thattout1[col
′] = φ(path : tin[col])[l1]

and tout2[col
′] = φ(path : tin[col])[l2]. As(l1 < l2) ⇔ before(tout1, tout2), in

order to provebefore(tout1, tout2) ⇒ (tout1 ≺ tout2), it is sufficient to show
(l1 < l2) ⇒ (tout1 ≺ tout2). Supposel1 < l2. Then, due to the properties of
theFlexKeys we havetout1[col

′] ≺ tout2[col
′]. By the rule in Table 1,col′ is now

part of theOrder Schemafor the output tableQ. The fact thattout1 andtout2 are
derived from the same tupletin implies that(∀i, i ≤ p)(tout1[oni] == tout2[oni]),
with p the maximum index of theOrder Schema(basically the new column) as
defined in Table 1. Thus, by Definition 5.2,onj = col andtout1 ≺ tout2.

For case (2), becausebefore(tin1, tin2) ⇔ before(tout1, tout2) and by the
induction hypothesisbefore(tin1, tin2) ⇒ (tin1 ≺ tin2), in order to prove
before(tout1, tout2) ⇒ (tout1 ≺ tout2), it is sufficient to show(tin1 ≺ tin2) ⇒
(tout1 ≺ tout2). Supposetin1 ≺ tin2. Thus aj as specified in Definition 5.2 must
exist. There are two sub-cases: (2.a)j ≤ p, and (2.b)j > p, with p as in Table 1.
Case (2.a) can be easily reduced to that for the operators in Category I, as the cells
corresponding to all thej columns belonging to theOrder Schemafrom tin1 (tin2)
are present in an unmodified format intout1 (tout2).

For (2.b), when(j > p), it must be thatp = m − 1 (which also implies
onm = col) and j = m by the rules in Table 1. This is becausetin1 ≺ tin2,
and thus they must differ on cells corresponding to columns that are in theOrder
Schemaof the input XAT table, but are not retained in the output XAT table. Thus,
tin1[col] ≺ tin2[col]. The two output tuplestout1 andtout2 on the other hand differ
only in the keys in their cells corresponding tocol′. By the definition of theNavi-
gate Unnest(see Section 3):(∃l1, l1 > 0)|(tout1[col

′] = φ(path : tin1[col])[l1]),
and (∃l2, l2 > 0)|(tout2[col

′] = φ(path : tin2[col])[l2]). As theFlexKey as-
signed to a node always has the keys of all its ancestors as prefixes,tout1[col

′]
has the key intin1[col] as prefix andtout2[col

′] has the key intin2[col] as prefix.
Thereforetin1[col] ≺ tin2[col] ⇒ tout1[col

′] ≺ tout2[col
′] and consequentially

(tin1 ≺ tin2) ⇒ (tout1 ≺ tout2).

Category V. The theorem holds by definition.

21

Category VI. If op is the operatorExpose, it outputs an XAT document rather
than an XAT table. Thus all the XAT tables in the algebra tree have already been
covered.

We have shown that (I) holds for the output XAT table of the operator op, whenop is
any operator and thus completed the proof for (I). Using thatresult, we can easily
prove (II), that when(t1 ≺ t2) eitherbefore(t1, t2) is true or the order between the
tuples is irrelevant. Suppose the opposite holds, that there exist two tuplest1 and
t2 in an XAT table in the algebra tree such that(t1 ≺ t2) ∧ before(t2, t1). By (I),
which has been proven,before(t2, t1) ⇒ t2 ≺ t1. But t2 ≺ t1 andt1 ≺ t2 cannot
be true simultaneously. Thus we get a contradiction.2

5.3 Maintaining Order Among XML Nodes in Sequences

For sequences of XML nodes in a single cell that have to be in document order,
namely those created by theXML Difference, XML IntersectionandNavigate Col-
lection, the FlexKeys of the nodes reflect their order. This is due to the fact that
theFlexKeys capture the correct document order among the base XML nodesand
the semantics of these operators do not specify the order among constructed nodes.
However, theCombine algebra operator creates a sequence of XML nodes that are
not necessarily in document order and whose relative position depends on the rel-
ative position of the tuples in the input XAT table that they originated from. Thus
the order among the XML nodes in the created sequence may be different from the
order captured by the node identityFlexKeys of these XML nodes. We thus must
provide a different scheme for maintaining this order.

function combine (Sequencein, Tuplet, ColumnNamecol)
Sequenceout← copy(in)
if (col = OSR[i] 3, 1 < i ≤ |OSR|)

for all k in out
k.overridingOrder← compose(ΠOSR[1]t, ..,ΠOSR[i]t)

else if (col 6∈ OSR)
for all k in out

k.overridingOrder← (ΠOSR[1]t, ..,ΠOSR[m]t, order(k)), m = |OSR|
return out

Fig. 5. The functioncombine

For two XML nodesn1 andn2 in the same cell in a tuple in an XAT table, we
define the expressionbefore(n1, n2) to betrue if the noden1 should semantically
be ordered before the noden2, false if n2 is beforen1 andundefined if the order
between the two nodes is irrelevant.

To represent an order that is different than the one encoded in theFlexKeyk serving
as the node identity of the node, we attach an additionalFlexKeyto k (calledOver-

3 OSR, theOrder Schemaof the input XAT tableR, is known to theCombine operator
performing thecombine function.

22

riding Order) which reflects the node’s proper order. We denote that ask.overridingOrder
and we useorder(k) to refer to the order represented byk. When theFlexKeyk
has overriding orderko it is denoted ask[ko]. If the overriding order ofk is set, then
order(k) = k.overridingOrder, otherwiseorder(k) = k. When comparing lex-
icographically twoFlexKeys k1 andk2, order(k1) andorder(k2) are really being
compared. Thusk1 ≺ k2 is equivalent toorder(k1) ≺ order(k2).

TheCombine operator sets the overriding order for theFlexKeys in its output XAT
table, as described in Figure 5. Thus, assuming that the input R containsp tuples
tinj , 1 ≤ j ≤ p, then the output ofCombine Ccol(R) can now be denoted as
Ccol(R) = tout = (

⊎p
j=1 combine(tinj [col], tinj , col)). How Combine Ccol(R)

sets the overriding order depends on the presence of the column col in the Order
SchemaOSR of the input XAT tableR. For the combine operatorC$col5 in Figure
4,$col1 and$col2 are in theOrder Schemaof the input. Thus, when the input XML
node referenced bytb is placed in the output XAT table it is assigned anOverriding
Ordercomposed of the order represented by theFlexKeys present in columns$col1
and$col2 in the tuple it is derived from, that isb.b.b..e.f.f . Thustb after being
processed byCombine becomestb[b.b.b..e.f.f] 4 .

The XML collection operatorXML Union
x
∪

col

col1,col2(R) creates a new collection,
for each tuple it process, from the contents of two input columnscol1 andcol2 .
A new order is imposed by this process among the nodes originating from each of
the input columns. We define this order by assigning anOverriding Orderfor each
node that reflects its input column order in the union operation, if no Overriding
Order keys are already defined. For example, ifcol1 contains (b.f, b.l) andcol2
contains (f.b) the output columncol3 will contain (b.f[b], b.l[b], f.b[f]). If nodes
in the input columns already haveOverriding Orderkeys we extend these keys
by adding a prefix to it that reflects the input column order. For example, ifcol1
contains (b.f[b], b.l[f]) andcol2 contains (f.b) the output columncol3 will contain
(b.f[b.b], b.l[b.f], f.b[f]). This order encoding ensuresthat we maintain order among
nodes from different input columns and at the same time maintain the original order
among nodes from the same input source. Other XML collectionoperators (XML
Unique, XML Difference, andXML Intersection) remove the overriding order (if
present) of the node identityFlexKeys that they place in their output XAT tables.
By definition (see Section 3) they produce a column in which the nodes are in
document order.

TheGroup Byoperatorγcol[1..n](R, func) does not define or maintain order among

4 Note that if we have schema information about the source XML documents, it is possible
to optimizeOrder Schemain a way that reduces the size ofOverriding Order, as discussed
earlier. For example, knowing that there is only one possible “title” child for each input
“book” node and only one possible “b-title” child for each input “entry” node allows us
to use columns$b and$e as theOrder Schemainstead of columns$col1 and$col2. This
result in generating anOverriding Orderkeyb.b..e.f instead ofb.b.b..e.f.f for the nodetb

23

the created groups. TheGroup Byin the XAT algebra might create collections. This
is mainly when theGroup Byperforms nesting operations (when itsfunc argument
is composed of aCombineoperator). In such a case nodes are grouped creating
collections based on the grouping columns. Order among nodes of each collection
is of importance. This order is already maintained through the F lexKeys of the
nodes (the id key or the nodes’Overriding Orderkey if it was set in a previous
step). TheGroup Byoperator does not have to perform any further order operations.

Theorem 5.2 Letkout1 andkout2 be twoFlexKeys in a same cell in an XAT table
R in an XAT algebra tree. Let theseFlexKeys serve as node identities of the XML
nodesn1 andn2 respectively. Then withbefore(n1, n2) defined as in Section 3:
(I) before(n1, n2) ⇒ (kout1 ≺ kout2), and (II)(kout1 ≺ kout2) ⇒ (before(n1, n2)∨
(before(n1, n2) = undefined)).

Proof: For proving (I), we inspect the different cases depending onthe type of
the operatorop that outputs the XAT tableR. The operators of interest are those
that output columns that may contain collections ofFlexKeys. Such operators are
Navigate Collection, XML Union, XML Difference, XML Intersectionm Group
By, andCombine. All the other operators do not create collections ofFlexKeys, but
may only retain in their output the collections present in their input in unmodified
format.

The case when the operatorop isNavigate Collectionis trivial. For any twoFlexKeys
kout1 and kout2 in the output XAT table ofNavigate Collection, before(n1, n2)
holds only whenn1 is ordered beforen2 regarding document order. In such case,
(kout1 ≺ kout2) also holds, and thus (I) holds. Note that theFlexKeyskout1 and
kout2 can not have an overriding order set, as they are retrieved from the Storage
Manger byop.

The case when the operatorop is any ofXML Unique, XML Difference, or XML
Intersectionis similar. Again,before(n1, n2) holds only whenn1 is ordered be-
fore n2 based on document order. These operators remove the overriding order
of the FlexKeys kout1 and kout2 if present, thus,(kout1 ≺ kout2) must also
hold. TheXML Union assigns (or maintain) theOverriding Orderfor nodes hence
before(n1, n2) holds only whenn1 is ordered beforen2 based on theOverriding
Orderkeys order. For any two nodes in a collection created by theGroup Byopera-
tor before(n1, n2) holds only whenn1 is ordered beforen2 based on theOverriding
Orderkeys order or on document order ifOverriding Orderkeys are not assigned.

For proving (I) whenop is the operatorCombine Ccol(R), we inspect the possible
cases depending on the presence of the columncol in the Order SchemaOSR of
the input XAT tableR: (1) col = OSR[1], (2) col = OSR[l], 1 < l ≤ |OSR|, or (3)
col 6∈ OSR.

Let kin1 andkin2 be theFlexKeys from whichkout1 andkout2 are derived. Thus

24

bothkin1 andkout1 (kin2 andkout2) are node identities forn1 (n2), but may have
different overriding order. Lett1 andt2 be the tuples inR such thatkin1 ∈ t1[col]
andkin2 ∈ t2[col].

For both case (1) and case (2), when the columncol is part of theOrder Schemaof
R, it must be thatkin1 = t1[col] andkin2 = t2[col], as cells corresponding to the
Order Schemanever contain sequences, only single keys.

For case (1), we observe thatbefore(n1, n2) can only hold ift1[col] ≺ t2[col]. The
functioncombine does not modify the overriding order in this case, thuskout1 ≺
kout2. Note that ift1 ≺ t2 but t1[col] ≺ t2[col] does not hold, then by Definition 5.2
it must be thatt1[col] == t2[col]. In such casekin1 == kin2 implyingkout1 ==
kout2, which in turn yieldsn1 == n2. Hence, in such case the order betweenn1

andn2 is irrelevant.

Similarly, for case (2), given that theOrder SchemaofR isOSR = (on1, on2, ...onm),
before(n1, n2) can only hold if(∃j, 1 ≤ j ≤ l)(((∀i, 1 ≤ i < j)(t1[oni] ==
t2[oni]))∧(t1[onj] ≺ t2[onj])). As shown in Figure 5, the functioncombine sets the
overriding order ofkout1 andkout2 as a concatenation of allt1[onj] and t2[onj]
respectively,1 ≤ j ≤ l. Thus,before(n1, n2) ⇒ (kout1 ≺ kout2). Again, if
t1 ≺ t2 but (∀i, 1 ≤ i ≤ l)(t1[oni] == t2[oni]), then askin1 == kin2, and
(kin1 == kin2) ⇒ (kout1 == kout2) ⇒ (n1 == n2), the order betweenn1 and
n2 is irrelevant.

For case (3), the columncol may also hold sequences of XML nodes. Therefore,
there are two subcases: (3.a)kin1 and kin2 are in the same tuplet, i.e., t1 =
t2 = t, or (3.b)t1 andt2 are two different tuples. For case (3.a),order(kout1) and
order(kout2) are composed of the same keys except for the last key that represents
the order ofkin1 andkin2 within the collection contained int[col]. As in this case
before(n1, n2) for n1 andn2 in the output XAT table may only hold when it holds
for n1 and n2 in the input XAT table, the overriding order is correctly set. For
case (3.b),before(t1, t2) ⇔ before(n1, n2). As the overriding order ofkout1 and
kout2 is composed of all the keys corresponding to theOrder Schemain t1 andt2
respectively,before(t1, t2) ⇒ (kout1 ≺ kout2). By transitivity,before(t1, t2) ⇔
before(n1, n2) and before(t1, t2) ⇒ (kout1 ≺ kout2) imply before(n1, n2) ⇒
(kout1 ≺ kout2).

We have proven (I) for all the cases. Using that result, (II) can be proven by con-
tradiction, using the same arguments used for proving (II) in Theorem 5.1.2

5.4 Maintaining Order of Internal Nodes of Processed XML Nodes

Order of Internal Nodes of Base XML Nodes.Some base XML nodes (frag-
ments) might be processed and exposed in the result as whole pieces without in-

25

serting, deleting or changing any of their contents. The relative local order among
internal (children/descendant) nodes of a base XML fragment does not change dur-
ing execution time even if the order of the whole fragment is changed. Hence the
FlexKeys of those internal nodes remain to reflect the relative orderamong them.
For example, in Figure 4 the “author” node with theFlexKeyb.b.f is processed as
one XML fragment without any changes to its components. Hence theFlexKeys of
its children remain to reflect their local order.

Order of Internal Nodes of Constructed XML Nodes. Order among internal
(children/descendant) nodes of a constructed node is determined by theTagger
pattern. Such order might be different than the order of the underlying XML doc-
ument. Moreover, children nodes of a constructed node mightbe themselves con-
structed nodes and/or originating from different source XML documents. Hence,
there is no relationship between theirFlexKeys. For example, the constructed node
tb in Figure 4 has three children nodes withFlexKeys b.b.b, e.f.b, andb.b.f (as
shown in theStorage Manger) corresponding to the “title”, the “price”, and the
“author” nodes respectively. These three nodes are originating from two different
source XML document. The local order among them is defined by theTagger pat-
tern.

We encode the local order among internal nodes of constructed nodes by assigning
Overriding Orderkeys. This applies to any type of internal nodes (base or con-
structed). We assign theOverriding Order keysb, f , andl to the “title”, “price”, and
“author” nodes respectively. Note that using such order encoding leaves a space for
updates. For example, if a source update inserts a new “author” node withFlexKey
b.b.d before the existing “author” node withFlexKeyb.b.f , the new “author” node
should be inserted as a child of the constructed nodetb (shown in Figure 4). The
correct order treatment for that new “author” node is to insert it between the “price”
node (with ide.f.b and local orderf) and the “author” node (with idb.b.f and local
orderl). This is easily archived by assigning anOverriding Order Keythat is lexi-
cographically betweenf andl (i for example) to the new “author” node. Note that
we never run of out of keys between any twoFlexKeyas we will discuss in Section
6.

5.5 De-referencing the Final Result.

Generally, when de-referencing the final result we may require partial reordering
as we will discussed later. For the example in Figure 4, the result of the XQuery
expression is obtained by de-referencing theFlexKeytr. First, the skeleton of the
constructed node identified bytr is retrieved and theFlexKeys contained in that
skeleton are de-referenced. The children oftr need to be returned in the correct
order. We sort these nodes based on theirOverriding Orderand return nodetb

26

first thentc 5 . Now we take these two nodes one by one and de-reference them
recursively so that the resulting XML document is obtained.When de-referencing
the nodetb we obtain the “title” nodeb.b.b first, the “price”e.f.b second, and fi-
nally the “author” nodeb.b.f . This nodes are returned in their tagging order as was
maintained by theStorage Managed. If any of these three returned terms were a
collection a local sort among its collection content might be required. Recursively,
we de-reference each of the nodes we obtained so far. Since they are all base nodes,
their descendants (if any) are returned in document order without any sorting. Note
that because the collections returned in the result are de-referenced one collection
at a time and they are often small sets of nodes, sorting can often be done in main
memory thus becoming very efficient.

5.6 Discussion On Different Types of Order

Document Order. Given the order encoding schema discussed above we can now
maintain document order. This provides support for XQuery queries that return
the result (or part of it) in document order. It also providessupport for XQuery
functions and predicates that exploit document order likebefore, after, range, and
position. Figure 4 shows the full intermediate result for the execution of our running
example XQuery in Figure 1. The order schema columns of intermediate result
tables are shaded. The figure also shows, on the right hand side, the storage manager
and how the source XML document and the constructed nodes arestored there. We
note that for the query shown in Figure 4 columns$col1 and$col2 serve as the
order determining columns (Order Schema) for all intermediate XAT tables below
theCombine operator. SuchOrder Schemais composed of theOrder Schemas of
the input tables of theJoin operator. TheCombine operator creates a collection out
of all its input tuples. At this point order between tuples disappears. TheCombine
operator instead defines order between nodes in the collection it creates. This is
done by assigning anOverriding Orderkey for each node in the created collection.
This Overriding Orderkey is composed of the keys in the corresponding order
determining columns in the input XAT table. Note that in thisexample the way
theseOverriding Orderkeys are assigned ensures that the order between the two
newly constructed ”entry” nodes still follows the underlying documents order.

Query Order Imposed By the Query order by Clauses.Theorder byclauses in
XQuery expressions are translated intoOrderBy operators in XAT query plans.
Maintaining order in such queries is also done using order determining columns
(Order Schema). The main difference is that we discard the order that is based on

5 The order of these nodes follows the underlying document order of the “book” and the
“entry” elements. Although we do not require the physical order of processed nodes to
be retained during execution time (to open up query optimization opportunities), if such
physical order happens not to be destroyed we might avoid sorting of some of the returned
nodes. For example, we may get nodestb andtc in the right order without any sorting.

27

document order (Only at the node level manipulated by theorder byclauses) when
theOrderBy operator is encountered during execution. Instead we use a newOrder
Schemathat is generated by theOrderBy operator.

Figure 6 shows an execution plan similar to the one in Figure 4with an added
OrderBy operator that sorts based on book prices in a descending order. In this
query plan, below theOrderBy operator, order still follows the document order
represented by column$b. Hence it is similar to the order in the other query plan
in Figure 4. When theOrderBy operator is processed, it removes columns$col1
and$col2 from the order schema and adds a new column$Ord1 to it. This new
column has new order keys that are assigned based on the ascending values of price
elements (values not shown in intermediate result) in column $col3. Starting from
this point this new order is to be used instead of the order of$col1 and $col2.
TheCombine operator will use the new order keys in column$Ord1 to override
order of nodes in the collection it creates. In this case the order between the newly
constructed ”entry” nodes will follow the order specified bythese keys (ascending
order based on book prices).

Storage ManagerStorage Manager

bib.xml

Constructed XDOMs

tr

tb

XDOMKey

entry

b.b.b e.f.b

resulttr

tb

XDOMKey

entry

b.b.b e.f.b

result

entry

b.l.b e.b.f

tc

tb tc
[k] [e]

[b] [f]

[b]
[f]

prices

entry

b-titleprice

e

e.b

e.b.fe.b.b
book

b-titleprice

e.f

e.f.fe.f.b

bib

book

title

b

b.b

b.b.b

author
b.b.f

first

b.b.f.l

last

b.b.f.b

book

title

b.f

b.f.b

author
b.f.f

first

b.f.f.l

last

b.f.f.b

book

title

b.l

b.l.b

author

b.l.f

first
b.l.f.l

last

b.l.f.b

prices.xml

S ”bib.xml”
$S1

f $S1, book
$b

f $b, title
$col1

F $b, author
$col4

Join $col1 = $col2

T<entry>$col1 $col3 $col4</entry>
$col5

C $col5

T <result>$col4</result>
$col6

result.xml

e $col6

F $e, price
$col3

S ”prices.xml”
$S2

f $S2, entry
$e

f $e, b-title
$col2

e.f.fe.f

e.b.fe.b

$col2$e

e.f.fe.f

e.b.fe.b

$col2$e

e.f

e.b

$e

e.f

e.b

$e

e

$S2

e

$S2

b.l

b.f

b.b

$b

b.l

b.f

b.b

$b

b

$S1

b

$S1

b.l.bb.l

b.f.bb.f

b.b.bb.b

$col1$b

b.l.bb.l

b.f.bb.f

b.b.bb.b

$col1$b b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.fe.b

e.f.fe.f

$col2$e

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.fe.b

e.f.fe.f

$col2$e

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l

b.b

$b

e.b.b

e.f.b

$col3

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l.f

b.b.f

$col4

e.b.b

e.f.b

$col3

e.b.f

e.f.f

$col2

b.l.b

b.b.b

$col1

b.l.f

b.b.f

$col4

e

k

$Ord1

tc

tb

$col5

e

k

$Ord1

tc

tb

$col5

{ tb [k] , tc [e] }

$col5

{ tb [k] , tc [e] }

$col5

tr

$col6

tr

$col6

b.b.f
[l]

b.l.f
[l]

OrderBy$col3

b.l.f

b.b.f

$col4

e.b.b

e.f.b

$col3

b.l.b

b.b.b

$col1

e

k

$Ord1

b.l.f

b.b.f

$col4

e.b.b

e.f.b

$col3

b.l.b

b.b.b

$col1

e

k

$Ord1

Fig. 6. A query plan similar to the one in Figure 1 extended with anOrderByoperator.
Shaded columns represent order schema

Query Order Imposed by the Nesting of Variable Binding in the Query for
and let Clauses.Such variable nesting is translated intoJoin operations on the
algebra level. Hence the order treatment follows the rules described in Section 5.2.

28

These rules gives a major influence on the order to the data bound to the outside
variable of thefor clause and a minor influence on the order to data bound to the
inside variable of thefor clause. Such order is encoded only at theOrder Schema
level and no extra keys are needed to reflect it at this point.

Query Order Imposed by the Query return clauses and by the New Result
Construction. On the algebra level this type of order is handled by theCombine,
theXML Union, theTagger, and theGroup Byoperators. TheCombine, theXML
Union, and theTagger operators all set theOverriding Orderkeys for the nodes
they process. SuchOverriding Ordernow reflects the relative order between the
processed nodes. TheGroup Byoperator preserves the original order between the
nodes in each created group. Such order is reflected by the nodes’FlexKeys (the id
key or theOverriding Orderkey if assigned at earlier stage).

6 Discussion on our Proposed Order Solution

6.1 The Cost of our Solution

Cost Components.The cost of handling order in our approach is composed of
three main cost elements:

1) The cost of computing theOrder Schema. This cost depends on the number of
operators in the query plan and does not depend on the size of processed data. It
involves traversing the algebra tree and assigning anOrder Schemafor each XAT
table in the algebra tree. This step can be integrated with the query plan generation
and optimization phases to avoid a separate traversal for the tree.

2) The cost of assigningOverriding Orderkeys for processed XML nodes. Only
three operators out of all the seventeen operators shown in Table 1 need to as-
sign Overriding Order for the nodes they process. These three operators are the
Combine, theXML Union, and theTagger. Integrating the process of assigning
theOverriding Orderkeys with the actual query execution of these operators would
result in a lot of time saving.

3) The cost of sorting when we de-reference the final result. Such sorting is a key-
based sorting (on theFlexKeys), and is typically a partial sorting. Sorting might be
required mainly for collections created by the query duringexecution (using the
Combine, theXML Union, or theGroup Byoperators). In many cases such sorting
might involve only one scan over the nodes, if they are already sorted. This may
occur when the correct order of the processed nodes has not been destroyed by the
query execution. All internal nodes (children/descendants) of returned base nodes
are directly de-referenced from theStorage Mangerin document order [3], thus no

29

sorting is required. For internal nodes of constructed nodes sorting depends on what
is included under the constructed node. A constructed node may tag single nodes,
collections of nodes, or combinations of them. The skeletonrepresentation of a
constructed node created and stored during execution time reflects the structure and
the relative order among its internal nodes and/or collections. Our system ensures
that all internal nodes and collections of constructed nodes are returned in the result
directly in their tagging order, hence not sorting is required. Sorting might only be
required for contents of collections as discussed above. Inthe worst case, total
sorting for all nodes in the result of an XQuery might be required only if the result
returns one collection of base leaf nodes or of constructed nodes each of which is a
parent of one base leaf node.

Proposed Optimizations.Here are some ideas on how to optimize our proposed
order solution:

• Some of the rules presented in Table 1 can be further optimized by remov-
ing/replacing certain columns in theOrder Schema. This would reduce the num-
ber of columns in theOrder Schemaor replace them with columns with smaller
FlexKeys. Hence when producing order keys based on theOrder Schemawe get
smaller keys. For example, for the operatorsSelectandTheta Joinif any of the
columns present in the selection or joining condition are not in the Minimum
Schemaof the output XAT table, they can be dropped from theOrder Schema
of output XAT table (if it has other columns) or replaced by the column(s) in
which they originate from (if theOrder Schemahas no other columns). This is
because such columns are created to be used in theSelector Joinpredicates and
are not part of any later processing operations. Hence theirspecific order is not
of interest to the query. For example, if an input XAT table for a Selectoperator
has anOrder Schemathat is composed of columns$a and$p, and assuming that
column$p is used in theSelectcondition and it is not in theMinimum schema
of the output XAT table of that operator. This signifies that column $p is not
needed for any next operation and its order is not of importance to the result of
the query. Hence, we can drop column$p from theOrder Schemaof that oper-
ator output XAT table. This makes the order among tuples in that output XAT
table determined only by the contents of column$a. Another example is column
$col1 in Figure 4. This column is used in theJoin operator and is not part of the
Minimum Schemaof the output table of that operator (since it is not needed for
any next operation). Since this is the only column in theOrder Schema, of the
input XAT table of the operator, we replace it by the column itoriginally came
from (column$b). Column$b is hence used to reflect the order instead of column
$col1. In this case if we are to extract the order of that table, at a later stage, we
get the smallerFlexKeys based on column$b instead of the largerFlexKeys in
column$col1.

• It is also possible to optimize theOrder Schemausing schema information of
the source XML documents if available. Such optimization may again result
in generating smaller order keys. For example, theNavigate Unnestoperator

30

φ$col1
$b,tite(R), shown in Figure 4, has column$b (that represents the “book” nodes)

as theOrder Schemaof its input XAT table. Based on the rules presented in Table
1 theOrder Schemaof the output XAT table of that operator becomes column
$col1. If schema information exists that specifies that there is only one possible
“title” child for each “book” node, we may keep using column$b as theOrder
Schemaof the output XAT table instead of column$col1. Again, the size of or-
der keys extracted from column$b is smaller than that order keys extracted from
column$col1. Such reduction in order keys size is more significant when the
navigation operation involves many navigation steps.

• In many cases the query may not destroy the desired order of the returned result.
But we may still need to perform one scan over the returned collections to con-
clude that it is in the desired order. One possible optimization to eliminate such
unnecessary scan is to maintain a flag for processed collection (might be anno-
tated at the XAT table schema level). This flag specifies if theorder of processed
collection(s) is preserved or not. The value of this flag is set by different opera-
tors in the algebra tree. When returning a collection in the final query result, if
its flag reflects that the collection order is not destroyed wecan directly return
the nodes in the collection without checking if it is in the desired order or not.

• It might be also possible to tune the query optimization and execution itself to
achieve better overall performance in terms of the total cost of execution and
order. For example, if savings form certain optimization orexecution strategy
is wiped out by an added final sorting cost we might choose another strategy,
possibly of higher cost, that results in less overall cost for the execution and
order together. For example, if a hash-basedJoin hashes the smallest table and
scans the biggest table and joins tuples from the biggest table with the hashed
tuples, the result will be sorted based on the order of the biggest table. Hence,
in some cases (for example, if the two tables are close in size) we may choose
to hash the right input table in particular so we generate a result that reflects the
major order of the left input table. Since the order of theJoin output follows the
order of its left input table as a major order and then the order of its right input
table as a minor order, this treatment reduces the final sorting time (or eliminate
it if the minor order of the right table is not of importance).

• In some cases it might be possible to avoid assigningOverriding Orderkeys
for nodes. For example, if aTaggeroperator constructs a new node and assigns
some base nodes as children for it. If the tagging pattern places these nodes in a
relative order similar to that of their source XML document,there is no need to
assignOverriding Orderkeys for these nodes.

6.2 Implications of our Proposed Solution

Migration to Non-ordered Bag Semantics.Our technique of encoding order with
FlexKeys and intermediateOrder Schemaenables migration of the XAT algebra
semantics from ordered bag semantics to non-ordered bag semantics. That is, (1)

31

the physical order among the tuples is no longer of significance and (2) the physical
order among the nodes in a cell is not of significance. This implies that we separate
out the reasoning about order into a separate abstraction independent of each oper-
ator’s logic. In general, algebra operators are thus not responsible for maintaining
order of intermediate results. One exception is theOrder Byoperator. TheOrder By
operator has to define a new order among the data it processes.This cost is encoun-
tered anyways regardless of the order solution used. The only added cost in our
approach for maintaining order while processing theOrder Byoperator is the cost
of assigning new order keys to the data. Also, while theCombine, theXML Union,
and theTagger operators do not perform any sorting, they assign new order keys
for nodes while they process them. All other operators process the data while they
are unaware of its order. In general, our solution does not require sorting of any
intermediate results. This is true for all algebra operators (theOrder Byoperator is
the only exception) even while achieving nested ordered XMLrestructuring.

Efficient Order-sensitive Query Processing.This transformation from ordered
to non-ordered bag semantics is the key ingredient to facilitate XML query opti-
mization. It removes the restrictions of manipulating sequences of XML data in
a strict order. Order is encoded at the XML node level and at intermediate result
schema level. Operators do not need to be aware of the order associated with data
they manipulate. For that reason operators have the flexibility to reshuffle data in
any order they wish for efficiency. This way, aJoin operator could use any effi-
cient join algorithm (e.g., hash-based, index-based, or sort-merge join) producing
the output in any order dictated by the join implementation strategy without requir-
ing any intermediate sort. For example, theJoin operator in Figure 7 joins its two
input tables on the values in columnscol2 andcol4. Order-determining columns
(Order Schema) for each XAT table is shaded. The number in a circle that appears
besides each tuple illustrates the implicit order of each tuple implied from theOr-
der Schema. Now assume that the join implementation outputs the resulting tuples
in any arbitrary physical order as in Figure 7. We are still capable of deriving the
right order of tuples in the output table (major order from left input table and minor
order from right input table) by comparing the keys in the columns representing
theOrder Schema(columnscol1 andcol3) of the resulting table. The numbers in
circles that appear next to tuples in the output table in Figure 7 show the order of
tuples as we can derive it using theOrder Schema. Note that this order is only an
implicit order. That is, the tuples are not actually sorted based on this order at this
point of query execution.

Efficient Order-sensitive View Maintenance.The migration to the non-ordered
bag semantics also facilitate efficient XML incremental view maintenance. This is
because it ensures that most XAT XML operators become distributive with respect
to bag union, leading to more efficient view maintenance. As an example, consider
that the input table of aSelect operator has received an update in the form of a tu-
ple insertion. Since theSelect operator becomes distributive, the inserted tuple can
be processed independently of other input tuples. If the inserted tuple satisfies the

32

Join col2= col4

5

3

3

7

$col2

f.kb.b

f.gb.k

f.m

f.b

$col3

b.k

b.g

$col1

5

3

3

7

$col2

f.kb.b

f.gb.k

f.m

f.b

$col3

b.k

b.g

$col1

3

5

3

7

$col4

f.m

f.k

f.g

f.b

$col3

3

5

3

7

$col4

f.m

f.k

f.g

f.b

$col3

3

7

5

$col2

b.k

b.g

b.b

$col1

3

7

5

$col2

b.k

b.g

b.b

$col1

1

2

3

1

2

3

4

1

2

3

4

Fig. 7. An example for order handling in theJoin operator. Shaded columns determine the
Order Schemaof each table and numbers appearing in circles beside tuplesdetermine the
tuple induced order.

operator predicate it is directly propagated to the output table. Without the distribu-
tive feature, the operator would have to determine the relative order of the inserted
tuple among the output table. They may require storing and accessing auxiliary in-
formation to determine that order. See [4] for our work in view maintenance that
exploits this order-encoding schema.

6.3 Other Discussions

The Generality of our Solution. Our solution requires defining rules for main-
taining order (theOrder Schema) on the query execution model level (the XAT
tables). There are two main XML query execution models: (1) the tuple-oriented
model, like the one we use and that is also used in [9], and (2) the pattern tree
model, like the one used in [10]. The tree-oriented model uses pattern trees to
match trees from the input documents. It is easy to generalize our order solution
to the tree-oriented model by understating how the tree-oriented model maps to our
tuple-oriented model. There is a direct mapping between thetwo models as each
attribute in the XAT table maps to a variable binding in the pattern tree. Hence a
tuple in the XAT table is a labeled container that holds all the bindings as well as
binding relationships that exists in pattern trees. A similar mapping is also identi-
fied in [9]. So for the pattern tree execution models we simplyneed to define the
Order Schemafor on the node level of the pattern trees binding variable nodes. This
corresponds to defining them on the column level in the XAT tables.

Re-labeling (Reordering keys) on Updates.Unlike other order approaches [6,10,20]
our order encoding schema guarantees that we do not run out ofkeys even for a
large batch of skewed insertions focused on possibly one small region within the
underlying XML document. The reason is two-fold: (1) we leave gaps between keys

33

when we first assign them (as in Figure 3), and (2) we are capable of producing a
key between any two keys at all times even if there is no gap between them. This
is because our key is composed of variable length byte strings as described earlier.
Thus, even if we run out of keys due to a large number of insertsthat fill the gap
between two keys we can opens up new gaps by adding one more character to the
encoding. For example, if we need to insert a new node betweentwo nodes with
keysb.c andb.d we may simply give the new node the key valueb.ck. This will
open up new gaps betweenb.c andb.ck and betweenb.ck andb.d and so on. This
prevents the need to re-lablel keys not only for the source document node keys but
also for the order encoding of the processed data since we also useF lexKeys to
encode new order imposed by the query. Please, refer to the example of inserting a
new “author” with a keyb.b.d that we have presented in Section 5.4.

Order Among Multiple Documents. Our order approach supports order also for
queries over multiple XML documents. There are two issues toconsider here: (1)
base node key and order encoding and (2) query order encoding. (1) On the base
node level, each XML document has order among its nodes encoded separately
using the keys of its nodes as we have shown earlier. TheStorage Manager[3]
ensures that each document will have a unique key for the rootnode. Hence all
nodes will have a unique key among all documents. For example, although the two
nodesb.b.f ande.b.f share the suffixb.f , but because they are from two different
documents (with root keysb ande), the key for each one of them is unique. For
any base XML node (fragment), originating from any document, the local order of
its internal nodes is reflected by the nodes’FlexKeys, as discussed in Section 5.4.
(2) On the query level, the order among data from different source documents is
determined by the query itself. This is typically handled bythe order imposed by
the nesting of variable binding in thefor andlet clauses, and the order imposed by
the queryreturn clause and the new result construction. Hence, the treatment of
order among multiple documents follow the same guidelines we gave for handling
these types of query imposed order.

7 Experiments

We have tested the efficiency of our solution and have found that our order solution
provides support for different types of XQuery order with little overhead for the
query engine. Our evaluation focuses on two main dimensions. (1) What is the
overhead added to the query processing cost when we support different types of
order-sensitive queries. (2) Where does the cost of handling order come from and
what are the cost elements of order in different types of queries.

We have implemented our order approach in Java and integrated it with the Rain-
bow system [27]. We have run the experiments on a Windows PC with 733 MHz
Pentium processor and 512MB of memory. We have used the XMarkbenchmark

34

people
closed_auctions

site

person

name
address

street city country

profile

education

gender
business

age

@id

@income

Closed_auction

seller

buyer
@person

date

@person

interest

@category

open_auctions

open _auction

initial reserve

@id

Fig. 8. Part of the structure of the “site.xml” file used in theexperiments.

data [17] in our experimental evaluation. Figure 8 shows part of the structure of
the XMark “site.xml” data set that is relevant to the querieswe use. We use XML
files of different sizes in our experiments, varying from 5MBto 25MB. We use four
queries (shown in Figure 9) that come with different order requirements. We have
designed each of the four queries to reflect mainly one form ofthe four order types
that we have discussed earlier. This ensures that we measurethe cost of each type
of order in isolation of the other types. For each of the four queries we show the
overhead of handling order relative to the total query execution time. We also break
down the order cost in each query to its cost elements. We now analyze the results
we have obtained using these queries.

<result>{
for $p in doc(“site.xml")

/people/person/profile
return

$p
}</result>

<result>{
for $c in distinct-values doc(“site.xml")

/people/person/address/city
order by $c/text()
return $c

}</result>

<result>
for $p in doc(“site.xml")/people/person

for $c in doc(“site.xml")/closed_auctions/closed_auction
where $p/@id = $c/seller/@person

return
$c/date

</result>

<result>
{<customers>

for $p IN doc(“site.xml")/ people/person
return

<customer>{<location>$p/address/city/text()</location>} {$p/name}</customer>
</customers>}

{ <open_bids>
for $oa IN doc(“site.xml")/ open_auctions/open_auction
return

<bid> {$oa/reserve} {$oa/intial} </bid>
</open_bids>}
</result>

(a) (b)

(c)

(d)

Query 3

Query 1 Query 2

Query 4

Fig. 9. Different XQuery expressions that are used in the experiments.

35

Query 1.This query navigates to all the “profile” nodes (fragments) reachable from
the root of the XML document “site.xml” through the path “/people/person”. The
extracted XML fragments form a collection that is tagged using the “result” tag.
This query reflects only document order in which order among all nodes in the
result follows the order of the input document. This appliesto the order among the
returned XML fragments and also to the order among their internal nodes.

Figure 10(a) shows that the total cost of handling order in this query is very small
(negligible) compared to the query execution time. The break down of this order
cost is shown in Figure 10(b), measured using the input XML file of size 25MB.
The cost of maintaining order in a query that processes only document order is
mainly composed of two cost elements: (1) theOrder Schemacomputation cost
and (2) final result sorting cost. TheOrder Schemacomputation cost is fixed re-
gardless of the size of the processed data (it only depends onthe number of op-
erators in the query plan). The cost of the final sorting depends on the processed
data size. It also depends on how the query manipulates the order among processed
nodes. ForQuery 1only partial sorting might be needed on the level of the returned
fragments (“profile” elements) if the correct order among those fragments was de-
stroyed during query time. Internal nodes of those nodes arereturned in document
order without any sorting, as discussed earlier. Figure 10(b) shows that the cost of
the final (partial) sorting forQuery 1is very small.Query 1did not perform any
operation that destroys the order among nodes in the returned collection. Hence a
very small cost is needed to conclude that the returned result is in the correct order
and no sorting is needed.

14870

25780

38887

48940

64357

0

10000

20000

30000

40000

50000

60000

70000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

33

37

40

43

46

33

0

13

64357

1

10

100

1000

10000

100000

Query

Execuation

Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

(a) (b)

Fig. 10. Results obtained for Query 1: (a) the order cost to the execution cost on different
input XML file sizes, and (b) the break down of order cost on 25MB XML input file size.

Query 2.This query navigates to the “city” nodes reachable through the path “/peo-
ple/person/address”. A collection of distinct cities is created using thedistinct-
valuesoperator. This collection of distinct “city” elements is sorted alphabetically
on the “city” name by theorder byclause. Finally the collection is tagged using the
“result” tag. This query reflects a query order imposed only by theorder byclause.

36

No document order or any other type of query order is affecting the result.

Figure 11(a) shows that the total cost of handling order in this query is also very
small (negligible) compared to the query execution time6 . The break down of this
order cost is shown in Figure 11(b). The cost of maintaining order in a query that
imposes order through theorder byclause is mainly composed of three cost ele-
ments, (1) theOrder Schemacomputation cost, (2) the cost of assigningOverrid-
ing Orderkeys, and (3) the final result sorting cost. TheOrder Schemacomputation
cost is fixed regardless of the size of the processed data. Thecost of assigningOver-
riding Orderkeys and the cost of the final sorting depend on the processed data size.
For Query 2the cost of assigning theOverriding Orderkeys is the highest among
the other order cost elements. This is mainly because all thereturned nodes in this
query are affected by theorder byclause and hence are assignedOverriding Or-
der keys7 . Theorder byoperation in this query performs a sort for the processed
nodes generating an ordered collection at the intermediateresult. This order is not
destroyed by any other operations in the query. Hence the final sorting cost shown
in Figure 11 involves mainly verifying that the returned collection of “city” nodes
is already in the desired order.

(a) (b)

24767

73450

158004

261656

385488

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

5MB 10MB 15MB 20MB 25MB

XML file size (MB)

T
im

e
(m

s
)

Execution Order

223

300

363

400

462

47

397

18

385488

1

10

100

1000

10000

100000

1000000

Query

Execuation

Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

Fig. 11. Results obtained for Query 2: (a) the order cost to the execution cost on different
input XML file sizes, and (b) the break down of order cost on 25MB XML input file size.

Query 3. This query navigates to two different collections. It navigates to “/peo-
ple/person” and navigates to “/closedauctions/closedauction”. For all the “per-
son” elements, the query returns a collection of “date” elements (of “closedauction”
elements) in which the person is a seller in a closed auction.This query involves a

6 Note that the cost of the processing (sorting) done by theorder byoperator is consid-
ered as part of the query execution cost and not as part of our order solution since such
cost is encountered anyways regardless of the order solution. Only cost elements that are
introduced by our order solution itself are measured as partof the order cost.
7 Note that we are considering this cost as being entirely partof the overhead of our order
solution cost although it might be considered (or part of it)as part of the cost of executing
theorder byoperator.

37

join operation on “/person/@id” and “closedauction/seller/@person”. Finally the
collection is tagged using the “result” tag. This query reflects a query order im-
posed only by the nesting of variable binding in thefor clauses. The order of the
returned “date” elements does not follow their document order. It follows the order
of the “person” elements as a major order and the order of the “closedauction”
element as a minor order. In other words, the “date” elementsare not returned in
their document order but in the order the “person” elements (that join with the
“seller” elements) appear. If there are multiple “date” elements under different
“closedauction” for the same “person” element, the minor order takes place here
and determines the order among those elements.

Figure 12(a) shows that the total cost of handling order inQuery 3 is also very
small compared to the query execution cost. The break down ofthis order cost
is shown in Figure 12(b). TheOrder Schemacomputation cost is slightly higher
than the last two queries because the query plan ofQuery 3has more operators.
The cost of assigningOverriding Orderkeys here involves assigningOverriding
Order keys to all the returned “date” elements. Such keys reflect the major and
the minor order imposed by thefor clause. The cost of the final sort is affected by
the implementation of thejoin operator. The implementation of thejoin operation
here is performed using a hash-based join. The XAT table representing the closed
auctions is the one that gets hashed because of its size. Thiscaused only the minor
order of the processed data is destroyed. Hence returning the result in the correct
order requires minor sorting for the returned result. The cost of this sort is shown
in Figure 12(b).

15733

28940

42612

53987

76113

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

195

267

427

170

87

57

333

37

76113

1

10

100

1000

10000

100000

Query

Execuation

Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

(a) (b)

Fig. 12. Results obtained for Query 3: (a) the order cost to the execution cost on different
input XML file sizes, and (b) the break down of order cost on 25MB XML input file size.

Query 4. This query creates a result with a new structure by performing many
node construction operations as shown in Figure 9(d). This query reflects mainly
a query order that is imposed by new node construction and theorder specified
in the return clauses8 . Figure 13(a) shows that the total cost of handling order in

8 Some implicit document order is also present in this query, in which the con-

38

this query is very small compared to the query execution cost. The break down of
this order cost is shown in Figure 13(b). TheOrder Schemacomputation cost is
higher than that for the last three queries because the queryplan of Query 4has
more operators. The cost of assigningOverriding Orderkeys is also high because
it involves assigningOverriding Orderkeys to all the nodes in the returned result
(except for the “result”). TheseOverriding Orderkeys reflect the query imposed
order (and document order for nodes “customer” and “bid”). Asmall final sort cost
is encountered while deriving the right order among the returned “customer” and
among the returned “bid” elements.

Although all results reported here have been run on the basicRainbow system, i.e.,
without employing any of the order-oriented optimization strategies pointed out
earlier in Section 6, the cost of handling order has still been shown to be negli-
gible. We expect that the cost of handling order can be even further significantly
minimized by incorporating these optimization techniquesinto the system.

(a) (b)

16040

29499

44543

61223

83380

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

5MB 10MB 15MB 20MB 25MB

XML file size (MB)

T
im

e
(m

s
)

Execution Order

1330

1720

2537

877

687

60

2410

67

83380

1

10

100

1000

10000

100000

Query

Execuation

Order Schema Overriding Order

Keys

Final Sort

Cost Element

T
im

e
(m

s
)

Fig. 13. Results obtained for Query 4: (a) the order cost to the execution cost on different
input XML file sizes, and (b) the break down of order cost on 25MB XML input file size.

8 Conclusion

In this paper we have presented a novel approach for handlingorder of XML
queries. Our approach supports different types of order possibly presented by XQuery
expressions. This includes document order and different types of query imposed
order. We have proposed a special encoding mechanism for encoding order of pro-
cessed XML nodes. For most of the XML algebraic operators we encode order at
the query schema level of the execution model using theOrder Schema. Hence,
these operators need not to be aware of the order of the XML nodes they process.

structed nodes “customer” and “bid” follow the document order of the “person” and the
“open auction” elements respectively. Note that the order among descendants of each of
these constructed nodes is different from that of their source elements.

39

Only few operators need to handle the order at the nodes level. This is done by
assigning special order keys, calledOverriding Orderkeys, for the nodes. We do
not require any special sorting operations for processed intermediate nodes. The
only sorting required in our solution is when we de-reference the final XML re-
sult. Even then, typically only partial sorting is required. Our solution migrates the
XML algebra to non-ordered bag semantics. Now query optimization can be per-
formed without the restrictions typically imposed by the need to support order. Our
approach provides the basis for efficient incremental view maintenance [4].

In this paper we have proven the correctness of our approach.In addition we have
implemented our proposed solution and integrated it with the Rainbow XML query
engine [27]. For testing our proposed solution we have used different queries that
come with different order requirements. The results of our experiments shows that
the overhead of maintaining order of XQuery expressions vary depending on the
type of order supported by the query. There are three main cost elements in our
solution. (1) The cost of computing theOrder Schema. This cost is encountered in
all queries. Such cost is very small and is fixed for the same query regardless of the
size of processed data. (2) The cost of assigningOverriding Orderkeys. This cost
is only encountered in queries that involve imposing new order and it varies with
the input data size. (3) The cost of final sorting. This cost depends on the size and
nature of collections created in the result. This cost also varies with the input data
size. In general, for all the different types of order, the total overhead of maintaining
order in our solution is very small compared to the query execution time.

References

[1] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu.
Structural joins: A primitive for efficient XML query pattern matching. InProceedings
of the International Conference on Data Engineering (ICDE’02), San Jose, California,
USA, pages 141–153, Feb. 2002.

[2] M. Carey, D. Florescu, Z. Ives, Y. Lu, J. Shanmugasundaram, E. Shekita, and
S. Subramanian. XPERANTO: Publishing object-relational data as XML. In
Workshop on the Web and Databases (WebDB’00), Dallas, Texas, USA, pages 105–
110, 2000.

[3] K. Deschler and E. Rundensteiner. Mass: A multi-axis storage structure for large
XML documents. InProceedings of the International Conference on Information and
Knowledge Managemen (CIKM’03), New Orleans, Louisiana, USA, pages 520–523,
Nov 2003.

[4] K. Dimitrova, M. El-Sayed, and E. A. Rundensteiner. Order-sensitive view
maintenance of materialized XQuery views. InProceedings of the International
Conference on Conceptual Modeling (ER’02), Chicago, Illinois, USA, pages 144–157,
Oct. 2003.

40

[5] L. Fegaras and R. Elmasri. Query engine for web-accessible xml data. InProceedings
of the International Conference on Very Large Data Bases (VLDB’01), Roma, Italy,
pages 251–260, 2001.

[6] D. K. Fisher, F. Lam, W. M. Shui, and R. K. Wong. Efficient ordering for XML
data. InProceedings of the International Conference on Information and Knowledge
Managemen (CIKM’03), New Orleans, Louisiana, USA, pages 350–357, Nov 2003.

[7] D. Florescu and D. Kossman. Storing and querying XML datausing an RDBMS.
IEEE Data Engineering Bulletin, 11(3):27–34, 1999.

[8] R. Goldman, J. McHugh, and J. Widom. From semistructureddata to XML: Migrating
the Lore data model and query language. InProceedings of the Workshop on the Web
and Databases (WebDB’99), Philadelphia, Pennsylvania, USA, pages 25–30, June
1999.

[9] Z. G. Ives, A. Halevy, and D. Weld. An XML query engine for network-bound data.
The VLDB Journal, 11(4):402–402, 2002.

[10] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,
S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. Timber:
A native XML database.VLDB Journal, 11(3):274–291, 2002.

[11] C.-C. Kanne and G. Moerkotte. Efficient storage of XML data. In Proceedings of
the International Conference on Data Engineering (ICDE’00), San Diego, California,
USA, page 198, 2000.

[12] H. Liefke. Horizontal query optimization on ordered semistructured data. In
Proceedings of the Workshop on the Web and Databases (WebDB’99), Philadelphia,
Pennsylvania, USA, pages 61–66, 1999.

[13] H. Liefke and S. B. Davidson. View maintenance for hierarchical semistructured data.
In Proceedings of the International Conference on Data Warehousing and Knowledge
Discovery (DAWAK’00), Greenwich, UK, pages 114–125, 2000.

[14] I. Manolescu, D. Florescu, and D. Kossmann. Answering XML queries on
heterogeneous data sources. InProceedings of the International Conference on Very
Large Data Bases (VLDB’01), Roma, Italy, pages 241–250, Sept. 2001.

[15] U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, and Y. G. Li. XML benchmarks put
to the test. InProceedings of the International Conference on Information Integration
and Web-Based Applications and Services (IIWAS’01), Linz,Austria, September 2001.

[16] L. P. Quan, L. Chen, and E. A. Rundensteiner. Argos: Efficient refresh in an xql-based
web caching system. InProceedings of the Workshop on the Web and Databases
(WebDB’00), Dallas, Taxas, USA, pages 23–28, May 2000.

[17] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,D. Florescu, and
R. Busse. XMARK: A benchmark for XML data management. InProceedings of the
International Conference on Very Large Data Bases (VLDB’02), Hong Kong, China,
pages 974–985, August 2002.

41

[18] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lindsay, H. Pirahesh, and
B. Reinwald. Efficiently publishing relational data as XML documents. VLDB
Journal, 10(2–3):133–154, 2001.

[19] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, and J. Naughton.
Relational databases for querying XML documents: Limitations and opportunities.
In of the International Conference on Very Large Data Bases (VLDB’99), Edinburgh,
Scotland, UK, pages 302–314, 1999.

[20] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and C. Zhang.
Storing and querying ordered XML using a relational database system. InProceedings
of the International Conference on Management of Data (SIGMOD’02), Madison,
Wisconsin, USA, pages 204–215, 2002.

[21] F. Tian, D. J. DeWitt, J. Chen, and C. Zhang. The design and performance evaluation
of alternative XML storage strategies.SIGMOD Record Special Issue on Data
Management Issues in E-commerce, 31(1):5–10, March 2002.

[22] W3C. XMLTM . http://www.w3.org/XML, 1998.

[23] W3C. XQuery 1.0 Formal Semantics. http://www.w3.org/TR/query-semantics/, June
2001.

[24] W3C. XML Path Language (XPath) Version 1.0. http://www.w3.org/TR/xpath,
November 2003.

[25] W3C. XML Query Data Model. W3C Working Draft. http://www.w3.org/TR/xpath-
datamodel/, May 2003.

[26] W3C. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/, May
2003.

[27] X. Zhang, K. Dimitrova, L. Wang, M. El-Sayed, B. Murphy,B. Pielech,
M. Mulchandani, L. Ding, and E. A. Rundensteiner. Rainbow: Multi-XQuery
optimization using materialized XML views. InProceedings of the International
Conference on Management of Data (SIGMOD’03), San Diego, California, USA, page
671, 2003.

[28] X. Zhang, B. Pielech, and E. A. Rundensteiner. Honey, I shrunk the XQuery! —
An XML algebra optimization approach. InProceedings of the Workshop on Web
Information and Data Management (WIDM’02), McLean, Virginia, USA, pages 15–
22, Nov. 2002.

[29] Y. Zhuge and H. G. Molina. Graph structured views and their incremental
maintenance. InProceedings of the International Conference on Data Engineering
(ICDE’98), Orlando, Florida, USA, pages 116–125, February 1998.

42

