
On the Updatability of XML Views Published

over Relational Data

Ling Wang and Elke A. Rundensteiner

Department of Computer Science
Worcester Polytechnic Institute Worcester, MA 01609

{lingw, rundenst}@cs.wpi.edu

Abstract. Updates over virtual XML views that wrap the relational
data have not been well supported by current XML data management
systems. This paper studies the problem of the existence of a correct
relational update translation for a given view update. First, we propose
a clean extended-source theory to decide whether a translation mapping
is correct. Then to answer the question of the existence of a correct map-
ping, we classify a view update as either un-translatable, conditionally or
unconditionally translatable under a given update translation policy. We
design a graph-based algorithm to classify a given update into one of
the three update categories based on schema knowledge extracted from
the XML view and the relational base. This now represents a practi-
cal approach that could be applied by any existing view update system
in industry and in academic for analyzing the translatability of a given
update statement before translation of it is attempted.

1 Introduction

Typical XML management systems [5, 9, 14] support the creation of XML wrap-
ping views and the querying against these virtual views to bridge the gap be-
tween relational databases and XML applications. Update operations against
such wrapper views, however, are not well supported yet.
The problem of updating XML views published over relational data comes

with new challenges beyond those of updating relational [1, 7] or even object-
oriented [3] views. The first is the updatability. That is, the mismatch between
the hierarchical XML view model and the flat relational base model raises the
question whether the given view update is even mappable into SQL updates. The
second is the translation strategy. That is, assuming the view update is indeed
translatable, how to translate the XQuery updates statements on the XML view
into the equivalent tuple-based SQL updates expressed on the relational base.
Translation strategies have been explored to some degree in recent work. [11]

presents an XQuery update grammar and studies the execution performance of
translated updates. However, the assumption made in this work is that the given
update is indeed translatable and that in fact it has already been translated into
SQL updates over a relational database, which is assumed to be created by a

2 Ling Wang and Elke A. Rundensteiner

fixed inline loading strategy [8]. Commercial database systems such as SQL-
Server2000 [10], Oracle [2] and DB2 [6] also provide system-specific solutions
for restricted update types, again under the assumption of given updates always
being translatable.
Our earlier work [12] studies the XML view updatability for the “round-

trip” case, which is characterized by a pair of invertable lossless mappings for
(1) loading the XML documents into the relational bases, and (2) extracting an
XML view identical to the original XML document back out of it. We prove
that such XML views are always updatable by any update operation valid on
the XML view. However, to the best of our knowledge, no result in the literature
focuses on a general method to assess the updatability of an arbitrary XML view
published over an existing relational database.
This view updatability issue has been a long standing difficult problem even

in the relational context. Using the concept of “clean source”, Dayal and Bern-
stein [7] characterize the schema conditions under which a relational view over
a single table is updatable. Beyond this result, our current work now analyzes
the key factors affecting the view updatability in the XML context. That is,
given an update translation policy, we classify updates over an XML view as
un-translatable, conditionally or unconditionally translatable. As we will show,
this classification depends on several features of the XML view and the update
statements, including: (a) granularity of the update at the view side, (b) prop-
erties of the view construction, and (c) types of duplication appearing in the
view. By extending the concept of a “clean source” for relational databases [7]
into “clean extended-source” for XML, we now propose a theory for determining
the existence of a correct relational update translation for a given XML view
update.
We also provide a graph-based algorithm to identify the conditions under

which an XML view over a relational database is updatable. The algorithm de-
pends only on the view and database schema knowledge instead of on the actual
database content. It rejects un-translatable updates, requests additional condi-
tions for conditionally translatable updates, and passes unconditionally trans-
latable updates to the later update translation step. The proof of correctness
of our algorithm can be found in our technical report [13]. It utilizes our clean
extended-source theory.
Section 2 analyzes the factors deciding the XML view updatability, which is

then formalized in Section 3. In Section 4 we propose the “clean extended-source”
theory as theoretical foundation of our proposed solution. Section 5 describes our
graph-based algorithm for detecting update translatability. Section 6 provides
conclusions.

2 Factors for XML View Updatability

Using examples, we now illustrate what factors affect the view updatability in
general, and which features of XML specifically cause new view update transla-
tion issues. Recent XML systems [5, 9, 14] use a default XML view to define the

On the Updatability of XML Views Published over Relational Data 3

98003

98003

98001

bookid

www.bookpool.com45.60

www.amazon.com56.00

63.70

amount

www.amazon.com

website

Programming in Unix98002

Data on the Web98003

TCP/IP Illustrated98001

titlebookid

price

book

Primary
Key

Non Key

Legend:

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100),
CONSTRAINTS BookPK

PRIMARYKEY (bookid))

CREATE TABLE price(
bookid VARCHAR2(20),
amount DOUBLE,
website VARCHAR2(100),
CONSTRAINTS PricePK

PRIMARYKEY (bookid, website),
FOREIGNKEY (bookid)

REFERENCES book (bookid))

Fig. 1. Relational database

<DB>
<book>

<row>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</row> ...
</book>
<price>

<row>
<bookid>98001</bookid>
<amount>63.70</amount>
<website>www.amazon.com</website>

</row> ...
</price>

<DB>

Fig. 2. Default XML view of
database shown in Figure 1

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid,
$book/title,
FOR $price

IN document("default.xml")/price/row
WHERE

$book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount,
$price/website

</price_info>}
</book_info>

</bib> }

Q1

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com</website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>

www.bookpool.com
</website>

</price_info>
</book_info>

</bib>

V1

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$price/amount,
$price/website,
<book_info>

$book/bookid,
$book/title

</book_info>
</price_info>

</bib> }

Q2

<bib>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>

</book_info>
</price_info>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>

</bib>

V2

(a) View V1 defined by Q1 (b) View V2 defined by Q2

<bib>
FOR $book IN document("default.xml")/book/row,

$price IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<book_info>
$book/bookid,
$book/title,
<price_info>

$price/amount,
$price/website

</price_info>
</book_info>

</bib>}

Q3

V3

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<amount>63.70</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

(c) View V3 defined by Q3

Q4 V4

(d) View V4 defined by Q4

<bib>
FOR $book IN document("default.xml")/book/row
RETURN {

<book_info>
$book/bookid,
$book/title,
FOR $price

IN document("default.xml")/price/row
WHERE $book/bookid = $price/bookid
RETURN {

<price_info>
$book/bookid,
$price/amount,
$price/website

</price_info>}
</book_info>

</bib> }

<bib>
<book_info>

<bookid>98001</bookid>
<title> TCP/IP Illustrated </title>
<price_info>

<bookid>98001</bookid>
<amount>63.70</amount>
<website> www.amazon.com </website>

</price_info>
</book_info>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

<price_info>
<bookid>98003</bookid>
<amount>56.00</amount>
<website> www.amazon.com </website>

</price_info>
<price_info>

<bookid>98003</bookid>
<amount>45.60</amount>
<website> www.bookpool.com </website>

</price_info>
</book_info>

</bib>

Fig. 3. View V1 to V4 defined by XQuery Q1 to Q4 respectively

4 Ling Wang and Elke A. Rundensteiner

one-to-one XML-to-relational mapping (Fig. 2). A view query (Fig. 3) is defined
over it to express user-specific XML wrapper views. User updates over the vir-
tual XML views are expressed in XQuery update syntax [11] (Fig. 4). Also, we
only consider insertion/deletion in our discussion. A replacement is treated as a
deletion followed by an insertion without specifically discussion.

2.1 Update Translation Policy

Clearly, the update translation policy chosen for the system is essential for the
decision of view updatability. An update may be translatable under one policy,
while not under another one. We now enumerate common policies observed in
the literature [3, 11] and in practice [14].

Policies for update type selection. (1) Same type. The translated update al-
ways must have the same update type as the given view update. (2) Mixed type.
Translated updates with a different type are allowed.

Policies for maintaining referential integrity of the relational database un-
der deletion. (1) Cascade. The directly translated relational updates cascade to
update the referenced relations as well. (2) Restrict. The relational update is
restricted to the case when there are no referenced relations. Otherwise, reject
the view update. (3) Set Null. The relational update is performed as required,
while the foreign key is set to be NULL in each dangling tuple.
The translatability of a valid view update under a given policy can be classified

as unconditionally translatable, conditionally translatable and un-translatable. A
view update is called un-translatable if it cannot be mapped into relational up-
dates without violating some consistency. A view update is unconditionally trans-
latable if such a translation always exists under the given policy. Otherwise, we
call it conditionally translatable. That is, under the current update policy, the
given update is not translatable unless additional conditions, such as assump-
tions or user communication, are introduced to make it translatable.
When not stated otherwise, throughout the paper we pick the most commonly

used policy, that is, same update type and delete cascade. If a different translation
policy is used, then the discussion can be easily adjusted accordingly. Also, we do
not indicate the order of the translated relational updates. For a given execution
strategy, the correct order can be easily decided [1, 11, 12].

2.2 New Challenges Arising from XML Data Model

Example 1. : View construction consistency.

Assume two view updates uV
1 and uV

2 (Fig. 4) delete a “book info” element from
V 1 and V 2 in Fig. 3 respectively.
(i) Fig. 5 shows uV

1 is unconditionally translatable. The translated relational
update sequence UR in Fig. 5(b) will delete the first book from the “book”
relation by uR

1 , and its prices from the “price” relation through uR
2 . By re-

applying the view query Q1 on the updated databaseD′ in Fig. 5(c), the updated
XML view in Fig. 5(d) equals the user expected updated view V 1′ in Fig. 5(a).

On the Updatability of XML Views Published over Relational Data 5

FOR $root IN document("V1.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
1

FOR $root IN document("V2.xml"),
$book IN $root/price_info/book_info

WHERE $book/title/text() = " TCP/IP Illustrated"
UPDATE $root {

DELETE $book }

uV
2

FOR $root IN document("V3.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book }

uV
3

FOR $root IN document("V4.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
AND $book/price_info/website = " www.amazon.com "
UPDATE $root {

DELETE $book/price_info}

uV
4

FOR $root IN document("V2.xml"),
$price IN $root/price_info

WHERE $price/book_info/title/text() = "TCP/IP Illustrated"
UPDATE $root {

DELETE $price }

uV
5

FOR $root IN document("V3.xml"),
$book IN $root/book_info

WHERE $book/title/text() = " Data on the Web“
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book/price_info }

uV
6

FOR $root IN document("V4.xml"),
$book IN $root/book_info

WHERE $book/title/text() = "Data on the Web"
AND $book/price_info/website = " www.amazon.com"
UPDATE $root {

DELETE $book }

uV
7

FOR $root IN document("V3.xml")
UPDATE $root {

INSERT
<book_info>

<bookid>"98003"<bookid>
<title>" Data on the Web "</title>
<price_info>

<amount>56.00</amount>
<website>www.ebay.com</website>

</price_info>
</book_info> }

uV
8

Fig. 4. Update operations on XML views defined in Fig.3

<bib>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>

</price_info>
<price_info>

<amount>45.60</amount>
<website>www.bookpool.com</website>

</price_info>
</book_info>

</bib>

(a) V 1′

(d) Q1(D′). Same with (a).

u1
R: DELETE FROM book

WHERE book.ROWID IN (
SELECT DISTINCT book.ROWID FROM book
WHERE (book.title = 'TCP/IP Illustrated'))

u2
R: DELETE FROM price

WHERE price.ROWID IN (
SELECT DISTINCT price.ROWID FROM book,price
WHERE (book.title = 'TCP/IP Illustrated') AND

(book.bookid = price.bookid))

(b) UR

98003

98003

bookid

www.bookpool.com45.60

www.amazon.com56.00

amount website

Programming in Unix98002

Data on the Web98003

titlebookid

pricebook

(c) D′

Fig. 5. Translate uV

1 (a) V 1′: The user expected updated view, (b) UR: The translated
update, (c) D′: The updated relational database, (d) Q1(D′): The regenerated view.

(ii) Fig. 6 shows uV
2 is un-translatable. First, the relational update u

R
1 in Fig.

6(b) is generated to delete the book (bookid=98001) from the “book” relation.
Note the foreign key from the “price” relation to the “book” relation (Fig. 1).
The second update operation uR

2 will be generated by the update translator
to keep the relational database consistent. The regenerated view in Fig. 6(d)
is different than the user expected updated view V 2′ in Fig. 6(a). No other
translation is available which could preserve consistency either.
The existence of a correct translation is affected by the view construction

consistency property, namely, whether the XML view hierarchy agrees with the
hierarchical structure implied by the base relational schema.

Example 2. : Content duplication.
Next we compare the two virtual XQuery views V 1 and V 3 in Fig. 3. The
book (bookid=98003) with two prices is exposed twice in V 3, while only once in
V 1. The update uV

3 in Fig. 4 will delete the “book info” element from amazon,
while keeping the one from bookpool. Now should we delete the book tuple
underneath? It is unclear. An additional condition, such as an extra translation
rule like “No underlying tuple is deleted if it is still referenced by any other part

6 Ling Wang and Elke A. Rundensteiner

<bib>
<price_info>

<amount>63.70</amount>
<website>www.amazon.com</website>

</price_info>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
...

</bib>

(a) V 2′

(b) UR. Same with Fig.5(b).

(c) D′. Same with Fig.5(c).

<bib>
<price_info>

<amount>56.00</amount>
<website>www.amazon.com</website>
<book_info>

<bookid>98003</bookid>
<title>Data on the Web</title>

</book_info>
</price_info>
...

</bib>

(d) Q2(D′)

Fig. 6. Translate uV

2 (a) V 2′: The user expected updated view, (b) UR: The translated
update, (c) D′: The updated relational database, (d) Q2(D′): The regenerated view.

of the view” could make the update uV
3 translatable by keeping the book tuple

untouched. This update is thus called conditionally translatable.
This ambiguous content duplication is introduced by the XQuery “FOR”

expression. This property could also arise in relational Join views.

Example 3. : Structural duplication.
Given Q4 in Fig. 3 with each “bookid” exposed twice in the single “book info”
element. The update uV

4 in Fig. 4, which deletes the first price of the specified
book, is classified as conditionally translatable. Since the primary key “bookid” is
touched by uV

4 , we cannot decide whether to delete the book-tuple underneath.
With an additional condition, such as knowledge of the user intention about the
update, uV

4 becomes translatable.
Structural duplication, as illustrated above, is special to XML view updating.

While it also exists in the relational context, it would not cause any ambiguity.
The flat relational data model only allows tuple-based view insertion/deletion.
The update touches all not just some of the duplicates within a view tuple. In-
stead of always enforcing an update on the biggest view element “book info”, the
flexible hierarchical structure of XML allows a “partial” update on subelements
inside it. Inconsistency between the duplicated parts thus occurs.

Example 4. : Update granularity.
Compared with the failure of translating uV

2 in Example 1, the update uV
5 in

Fig. 4 on the same view V 2 is conditionally translatable. uV
5 deletes the whole

“price info” element instead of just the sub-element “book info”. The translated
relational update sequence UR is the same as in Fig. 6(b). The regenerated view
is the same as what the user expects. Due to content duplication, uV

5 is said to
be conditionally translatable.
XML hierarchical structure offers an opportunity for different update granu-

larity, an issue that does not arise for relational views.

3 Formalizing the Problem of XML View Updatability

The structure of a relation is described by a relation schema R(N ,A,F),
where N is the name of the relation, A = {a1, a2, ..., am} is its attribute set,

On the Updatability of XML Views Published over Relational Data 7

and F is a set of constraints. A relation R is a finite subset of dom(A), a prod-
uct of all the attribute domains. A relational database, denoted as D, is a
set of n relations R1, ..., Rn. A relational update operation uR ∈ 0

R is a
deletion, insertion or replacement on a relation R. A sequence of relational up-
date operations, denoted by UR = {uR

1 , uR
2 , ..., uR

p } is also modeled as a function

UR(D) = uR
p (u

R
p−1(..., u

R
2 (u

R
1 (D)))).

Table 1. Notations for XML view update problem

D relational database R(N ,A,F) schema of relation

R relation 0
R domain of relational update operations

uR relational update operation UR sequence of relational update operations

V XML view DEF V XML view definition

uV view update 0
V domain of view update operations

An XML view V over a relational database D is defined by a view defi-

nition DEF V (an XQuery expression in our case). The domain of the view is
denoted by dom(V). Let rel be a function to extract the relations in D refer-
enced by DEF V , then rel(DEFV) = {Ri1 , Ri2 , ..., Rip

} ⊆ D. An XML view

schema is extracted from both DEF V and rel(DEF V). See [13] for details.
Let uV ∈ 0

V be an update on the view V . A valid view update (e.g., Fig.
4) is an insertion or deletion that satisfies all constraints in the view schema.

Definition 1. Given an update translation policy. Let D be a relational database
and V be a virtual view defined by DEF V . A relational update sequence UR is
a correct translation of uV iff (a) uV (DEFV (D)) = DEF V (UR(D)) and (b)
if uV (DEFV (D)) = DEF V (D)⇒ UR(D) = D.

V

D

uV(V)

DEFv DEFv

(2) uV

(3) UR
UR(S)

(1) (4)

Fig. 7. Correct translation of
view update to relational update

Un-translatable

Conditional Translatable

Non-Conditional
Translatable

Invalid
Update

Invalid Update

Legend:

Valid Update

Un-translatable

Conditionally
Translatable

Non-Conditionally
Translatable

Fig. 8. The partition of view update domain 0
V

First, a correct translation means the “rectangle” rule holds (Fig. 7). Intu-
itively, it implies the translated relational updates do not cause any view side
effects. Second, if an update operation does not affect the view, then it should
not affect the relational base either. This guarantees any modification of the
relational base is indeed done for the sake of the view.
Fig. 8 shows a typical partition of the view update domain 0

V . The XML

view updatability classifies a valid view update as either unconditionally trans-
latable, conditionally translatable or un-translatable.

8 Ling Wang and Elke A. Rundensteiner

4 Theoretical Foundation for XML View Updatability

Dayal and Bernstein [7] show that a correct translation exists in the case of a
“clean source”, when only considering functional dependencies inside a single
relation. In the context of XML views, we now adopt and extend this work to
also consider functional dependencies between relations.

Definition 2. Given a relational database D and an XML view V defined over
several relations rel(DEF V) ⊆ D. Let v be a view element of V . Let g =
(t1, ..., tp) be a generator of v, where ti ∈ Rx for Rx ∈ rel(DEF V). Then ti
is called a source tuple in D of v.

Further, tj ∈ Ry is an extended source tuple in D of v iff ∃ti ∈ g that
ti.ak is a foreign key of tj .az, where ak ∈ Rx(A), az ∈ Ry(A) and Rx, Ry ∈
rel(DEF V). ge = g ∪ {tj | tj is an extended source tuple of v} is called an
extended generator of v.

A source tuple is a relational row used to compute the view element. For
instance, in V 1 of Fig. 3, the first view element v1 is book info element with
bookid=98001. Let R1 and R2 denote the book and price relations respectively,
then the generator g of v1 is g = (t1, t2), where t1 ∈ R1 is the book tu-
ple (98001,TCP/IP Illustrated) and t2 ∈ R2 is the price tuple (98001, 63.70,
www.amazon.com). Let the view-element v2 be the title of v1. Then the source
tuple of v2 is t1. Since t1.bookid is a foreign key of t2.bookid, we say t2 is an
extended source tuple of v2, and ge = (t1, t2) is an extended generator of v2.

Definition 3. Let V 0 be a part of a given XML view V . Let G(V 0) be the set
of generators of V 0 defined by G(V 0) = {g | g is a generator of a view-element
in V 0}. For each g = (t1, ..., tp) ∈ G(V 0), let H(g) be some nonempty subset of
{ti | ti ∈ g}. Then any superset of ∪g∈G(V 0)H(g) is a source in D of V 0. (If
G(V 0) = ∅, then V 0 has no source in D.)

Similarly, let Ge(V
0) be the set of extended generators for view elements in

V 0. Then any superset of ∪g∈Ge(V 0)H(g) is an extended source in D of V 0,
denoted by Se.

A source includes the underlying relational part of a view “portion” V 0 which
consists of multiple view-elements. For example, let V 0 = V 1 (Fig. 3), G(V 0) =
{g1, g2}, where g1 = {(98001,TCP/IP Illustrated),(98001, 63.70,www.amazon.com)},
g2 = {(98003,Data on the Web),(98003,56.00,www.amazon.com),(98003,45.60,
www.bookpool.com)}. That is, G(V 0) includes all the generators for view ele-
ments in V 0. Let H(g1) = {(98001, TCP/IP Illustrated)} and H(g2) = {(98003,
56.00, www.amazon.com)}. Then {(98001, TCP/IP Illustrated),(98003, 56.00,
www.amazon.com)} is a source of V 0, also an extended source of V 0.

Definition 4. Let D = {R1, ..., Rn} be a relational database. Let V 0 be part of
a given XML view V and Se be an extended source in D of V 0. Se is a clean
extended source in D of V 0 iff (∀v ∈ V − V 0), (∃S′e) such that S′e is an
extended source in (R1 − Se1, ..., Rn − Sen) of v. Or, equivalently, Se is a clean
extended source in D of V 0 iff (∀v ∈ V − V 0)(Se is not an extended source in
D of v).

On the Updatability of XML Views Published over Relational Data 9

A clean extended source defines a source that is only referenced by the given
view element itself. For instance, given the view-element v in V 2 (Fig. 3) rep-
resenting the book info element (bookid = 98001), its extended source {(98001,
TCP/IP Illustrated),(98001, 63.70,www.amazon.com)} is not a clean extended
source since it is also an extended source of the price element.
The clean extended source theory below captures the connection between

clean extended source and update translatability (Proofs in [13]). It serves as a
conservative solution for identifying the (unconditionally) translatable updates.

Theorem 1. Let uV be the deletion of a set of view elements V d ⊆ V . Let τ be
a translation procedure, τ(uV , D) = UR. Then τ correctly translates uV to
D iff UR deletes a clean extended source of V d.

By Definition 1, a correct delete translation is one without any view side
effect. This is exactly what deleting a clean extended-source guarantees by Def-
inition 4. Thus Theorem 1 follows.

Theorem 2. Let uV be the insertion of a set of view elements V i into V . Let
V − = V − V i, V u = V i − V . Let τ be a translation procedure, τ(uV , D) = UR.
Then τ correctly translates uV to D iff (i) (∀v ∈ V u)(UR inserts a source
tuple of v) and (ii) (∀v ∈ dom(V) − (V u ∪ V −))(UR does not insert a source
tuple of v).

Since dom(V) − (V u ∪ V −) = (dom(V) − (V i ∪ V)) ∪ (V i ∩ V), Theorem 2
indicates a correct insert translation is the one without any duplicate insertion
(insert a source of V i ∩V) and any extra insertion (insert a source of dom(V)−
(V i ∪ V)). That is, it inserts a clean extended source for the new view-element.
Duplicate insertion is not allowed by BCNF, while extra insertion will cause a
view side effect. For example, for uV

8 in Fig. 4, let uR
1 = {Insert (98003,Data

on the Web) into book}, uR
2 = {Insert (98003,56.00,www.ebay.com) into price}.

Then UR = {uR
1 , uR

2 } is not a correct translation since it inserts a duplicate
source tuple into book. While UR′

= {uR
2 } is a correct translation.

5 Graph-based Algorithm for Deciding View Updatability

We now propose a graph-based algorithm to identify the factors and their ef-
fects on the update translatability based on our clean extended source theory.
We assume the relational database is in the BCNF form. No cyclic depen-
dency caused by integrity constraints among relations exists. Also, the pred-
icate used in the view query expression is a conjunction of non-correlation
(e.g., $price/website = “www.amazon.com”) or equi-correlation predicates (e.g.,
$book/bookid = $price/bookid).

5.1 Graphic Representation of XML Views

Two graphs capture the update related features in the view V and relational
base D. The view relationship graph GR(NGR

, EGR
) is a forest representing

10 Ling Wang and Elke A. Rundensteiner

the hierarchical and cardinality constraints in the XML view schema. An internal
node, represented by a triangle 4, identifies a view element or attribute labeled
by its name. A leaf node (represented by a small circle ◦) is an atomic type,
labeled by both the XPath binding and the name of its corresponding relational
column Rx.ak. An edge e(n1, n2) ∈ EGR

represents that n1 is a parent of n2

in the view hierarchy. Each edge is labeled by the cardinality relationship and
condition (if any) between its end nodes. A label “?” means each parent node can
only have one child, while “∗” shows multiple children are possible. Figures 9(a)
to 9(d) depict the view relationship graphs for V 1 to V 4 in Fig. 3 respectively.

book_info

book/row/bookid
book.bookid

book/row/title
book.title

price_info

bib1

2

3 4

7
price/row/website

price.website

5

price/row/amount
price.amount

6

*

? ? *

? ?

con

(a)

book_info

book/row/bookid
book.bookid

book/row/title
book.title

price_info

bib1

2

3 4

7
price/row/website

price.website

5

price/row/amount
price.amount

6

*

? ?
?

? ?

con

(c)

price_info

book/row/title
book.title

book_info
price/row/amount

price.amount

book/row/bookid
book.bookid

bib1

2

3 4

6 7

price/row/website
price.website

5

*

??
?

? ?

con

(b)

book_info

book/row/bookid
book.bookid

book/row/title
book.title

price_info

bib1

2

3 4

8
price/row/website

price.website

5

price/row/amount
price.amount

*

?
? *

?

7

?

con

book/row/bookid
book.bookid

6

?

(d)

*Note: con = (book/row/bookid=price/row/bookid)

Fig. 9. GR of V1 to V4 as shown by (a) to (d)
book

book/row/bookid
book.bookid

book/row/title
book.title

price

price/row/amount
price.amount

1

2 3

price/row/website
price.website

5

4

con
? ? *

??

6

*Note: con = (book.bookid=price.bookid)

Fig. 10. GT of V1 – V4

Definition 5. The hierarchy implied in relational model is defined as:
(1) Given a relation schema R(N ,A,F), with A = {ai|1 ≤ i ≤ m}, then N is
called the parent of the attribute ai (1 ≤ i ≤ m).
(2) Given two relation schemas Ri(Ni,Ai,Fi) and Rj(Nj,Aj,Fj), with foreign
key constraints defined as PK(Ri)← FK(Rj), then Ni is the parent of Nj.

The view trace graph GT (NGT
, EGT

) represents the hierarchical and cardi-
nality constraints in the relational schema underlying the XML view. The set of

On the Updatability of XML Views Published over Relational Data 11

leaf nodes of GT correspond to the union of all leaves of GR. Specially, a leaf node
labeled by the primary key attribute of a relation is called a key node (depicted
by a black circle •). An internal node, depicted by a triangle 4, is labeled by
the relation name. Each edge e(n1, n2) ∈ EGT

means n1 is the parent of n2 by
Definition 5. An edge is labeled by its foreign key condition (if it is generated by
rule (2) in Definition 5), and the cardinality relationship between its end nodes.
The view trace graphs of V 1 to V 4 are identical (Fig. 10), since they all defined
over the same attributes of base relations.
The concept of closure in GR and GT is used to represent the “effect” of an

update on the view and on the relational database respectively. Intuitively, their
relationship indicates the updatability of the given view.
The closure of a node n ∈ NGR

, denoted by n+
GR
, is defined as follows: (1) If n

is a leaf node, n+
GR
= {n}. (2) Otherwise, n+

GR
is the union of its children’s closures

grouped by their hierarchical relationship and marked by their cardinality (for
simplicity, not shown when cardinality mark is ?). For example, in Figure 9(a),
(n3)

+
GR
= {n3}, while (n5)

+
GR
= {n6, n7}, (n2)

+
GR
= {n3, n4, (n6, n7)

∗}.
The closure of a node n ∈ NGT

is defined in the same manner as in GR,
except for leaf nodes. Each leaf node has the same closure as its parent node.
For instance, in Fig. 10, (n2)

+
GT
= (n3)

+
GT
= (n1)

+
GT
= {n2, n3, (n5, n6)

∗}. This
closure definition in GT is based on the pre-selected update policy in Section
2.1. If a different policy were used, then the definition needs to be adjusted
accordingly. For example, if we pick the mixed type, the closure will be “only
the key node has the same closure definition as its parent node, while any other
leaf node has itself as the closure”. Consequently in Fig. 10, (n3)

+
GT
= {n3},

while (n2)
+
GT
= {n2, n3, (n5, n6)

∗}. The delete on these non-key leaf nodes can
be translated as a replacement on the corresponding relational column.
To reduce the closure definition, the group mark “()” can be eliminated if its

cardinality mark is “?”. For example, in Figure 9(c), (n2)
+
GT
= {n3, n4, (n6, n7)} =

{n3, n4, n6, n7}. The closure of a set of nodes N , denoted by N+, is defined as
N+ =

⋃
(ni∈N) n

+
i , where

⋃
is a “Union-like” operation that combines not only

the nodes but their shared occurrence. For instance, in Fig. 10, {n2, n5}
+
GT
=

(n2)
+
GT

⋃
(n5)

+
GT
= {n2, n3, (n5, n6)

∗}
⋃
{n5, n6} = {n2, n3, (n5, n6)

∗}. Two leaf
nodes in GR or GT are equal if and only if the relational attribute labels in their
respective node labels are the same.

5.2 A Graph-based Algorithm for View Updatability Identification

Definition 6. Two closures C1 and C2 match, denoted by C1
∼= C2, iff the

node set of C1 and C2 are equal. Further, C1 and C2 are equal, denoted by
C1 ≡ C2, iff the node groups, cardinality marks of each group, and conditions
on each “*” edge are all the same.

For two closures to match means that the same view schema nodes are
included. While equality indicates that the same instances of XML view ele-
ments will be included. For example, (n2)

+
GR
in Fig. 9(c) and (n1)

+
GT
in Fig.

12 Ling Wang and Elke A. Rundensteiner

10 match. That is, both closures include the same XML view schema nodes:
book.bookid, book.title, price.amount, price.website. However, (n2)

+
GR
in Figure

9(a) and (n1)
+
GT
in Figure 10 are equal, namely {book.bookid, book.title, (price.amount,

price.website)∗}. This is because their group partition (marked by “()”), cardi-
nality mark (* or ?) and conditions for each “*” edge are all the same. Both
closures touch exactly the same XML view-element instances.

Theorem 3. Let V be a view defined by DEF V over a relational database D

with the view relationship graph GR(NGR
, EGR

) and view trace graph GT (NGT
, EGT

).
Let Y ⊆ NGR

and X ⊆ NGT
. (∀ generators g, g′ of view elements v and v′ re-

spectively, g[X] = g′[X]⇒ v[Y] = v′[Y]) iff their closures X+
GT
≡ Y +

GR
.

Theorem 3 indicates that two equal generators always produce the identical
view elements iff the respective closures of the view schema nodes in GR and
GT are equal. Theorem 3 now enables us to produce an algorithm for detecting
the clean extended sources Se of a view element based on schema knowledge
captured in GR and GT .

Theorem 4. Let V,DEF V , D,GR,GT , Y be defined as in Theorem 3. Given a
view element v ∈ V (Y), there is a clean extended source Se of v in D iff (∃X ⊆
NGT

) such that X+
GT
≡ Y +

GR
.

Theorem 4 indicates that a given view element v has a clean extended source
iff the closure of its schema node in GR has an equal closure in GT . As indicated
by Theorems 1 and 2, the existence of a clean extended source for a given XML
view element implies that the update touching this element is unconditionally
translatable. The following observation thus serves as a general methodology for
view updatability determination.

Observation 1 Let D,V,GR,GT , Y be defined as in Theorem 3. (1) Updates that
touch Y are unconditionally translatable iff (∃X ⊆ NGT

) such that X+
GT
≡

Y +
GR
. (2) Updates that touch Y are conditionally translatable iff (∃X ⊆ NGT

)

such that X+
GT

∼= Y +
GR
. (3) Otherwise, updates on Y are un-translatable.

However, searching all node closures in GT to find one equal to the closure of
a given view-element is expensive. According to the generation rules of GT , the
nodes in the closure of v also serve as leaf nodes in GT . We thus propose to start
searching from leaf nodes within the closure, thus reducing the search space.
Observation 2 utilized the following definition to determine the translatability
of a given view update.

Definition 7. Let n be a node in GR(V), with its closure in GR denoted by
CR = n+

GR
. Let CT =

⋃
(ni∈CR)(ni)

+
GT
, where (ni)

+
GT

be the closure of ni in GT .
We say n is a clean node iff CR ≡ CT , a consistent node iff CR

∼= CT and
an inconsistent node otherwise.

On the Updatability of XML Views Published over Relational Data 13

For a node to be inconsistent means that the effect of an update on the
view (node closure in GR) is different from the effect on the relational side (node
closure in GT) based on the selected policy (closure definition in GT). It is thus
un-translatable. A clean node is guaranteed to be safely updatable without any
view side-effects. A dirty consistent node, however, needs an additional condition
to be updatable. For example, n5 in Fig. 9(a) is a clean node. In Fig. 9(b), n5 is
an inconsistent node and n2 is a dirty consistent node.

Observation 2 An update on a clean node is unconditionally translatable, on
a consistent node it is conditionally translatable, while on an inconsistent node
it is un-translatable.

Algorithm 1 Optimized Update Translatability Checking Algorithm

/*Given GR and GT of a view V , determine the
translatability of a view update u*/

Procedure checkTranslatability(u, GR, GT)
Node n = identifyNodeToUpdate(u, GR)
classifyNode(n, GR, GT)
if n is a clean node then

n is unconditionally translatable
else

if n is a consistent node then
n is conditionally translatable

else
n is untranslatable

end if
end if

/*Classify the node n ∈ GR to be updated*/
Procedure classifyNode (n, GR, GT)
Initiate CR and CT empty
CR = computeClosure(n, GR)
while CR has more node do

get the next node ni ∈ CR

CT = CT ∪ computeClosure(ni, GT)
end while
if CR

∼= CT then
if CR ≡ CT then

n is a consistent node
else

n is a clean node
end if

else
n is an inconsistent node

end if

Algorithm 1 shows our optimized update translatability checking algorithm
using Observation 2. It first identifies the deleting/inserting GR node. Then,
using Definition 7 the procedure classifyNode (n, GR, GT) determines the type
of the node to be updated. Thereafter the given view update can be classified as
un-translatable, conditionally or unconditionally translatable by Observation 2.
Using this optimized update translatability checking algorithm, a concrete case
study on the translatability of deletes and inserts is also provided in [13].

6 Conclusion

In this paper, we have identified the factors determining view updatability in
general and also in the context of XQuery views in particular. The extended
clean-source theory for determining translation correctness is presented. A graph-
based algorithm has also been presented to identify the conditions under which
a correct translation of a given view update exists.
Our solution is general. It could be used by an update translation systems

such as [4] to identify the translatable update before translation of it is at-
tempted. This way we would guarantee that only a “well-behaved” view update
is passed down to the next translation step. [4] assumes the view is always well-
formed, that is, joins are through keys and foreign keys, and nesting is controlled

14 Ling Wang and Elke A. Rundensteiner

to agree with the integrity constraints and to avoid duplication. The update over
such a view is thus always translatable. Our work is orthogonal to this work by
addressing new challenges related to the decision of translation existence when
conflicts are possible, that is a view cannot always be guaranteed to be well-
formed (as assumed in this prior work).
Our view updatability checking solution is based on schema reasoning, thus

utilizes only view and database schema and constraints knowledge. Note that the
translated updates might still conflict with the actual base data. For example,
an update inserting a book (bookid = 98002) to V 1 is said to be unconditionally
translatable by our schema check procedure, while conflicts with the base data
in Fig. 1 may still arise. Depending on selected update translation policy, the
translated update can then be either rejected or executed by replacing the ex-
isting tuple with the newly inserted tuple. This run-time updatability issue can
only be resolved at execution time by examining the actual data in the database.

References

1. A. M. Keller. The Role of Semantics in Translating View Updates. IEEE Trans-
actions on Computers, 19(1):63–73, 1986.

2. S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and R. Murthy. Oracle8i - The
XML Enabled Data Management System. In ICDE, pages 561–568, 2000.

3. T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold. Updating Relational
Databases through Object-Based Views. In SIGMOD, pages 248–257, 1991.

4. V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Updatability of XML
Views over Relational Databases. In WEBDB, pages 31–36, 2003.

5. M. J. Carey, J. Kiernan, J.Shanmugasundaram, E. J. Shekita, and S. N. Subrama-
nian. XPERANTO: Middleware for Publishing Object-Relational Data as XML
Documents. In The VLDB Journal, pages 646–648, 2000.

6. J. M. Cheng and J. Xu. XML and DB2. In ICDE, pages 569–573, 2000.
7. U. Dayal and P. A. Bernstein. On the Correct Translation of Update Operations

on Relational Views. In ACM Transactions on Database Systems, volume 7(3),
pages 381–416, Sept 1982.

8. J. Shanmugasundaram et al. Relational Databases for Querying XML Documents:
Limitations and Opportunities. In VLDB, pages 302–314, September 1999.

9. M. Fernandez et al. SilkRoute: A Framework for Publishing Relational Data in
XML. ACM Transactions on Database Systems, 27(4):438–493, 2002.

10. M. Rys. Bringing the Internet to Your Database: Using SQL Server 2000 and XML
to Build Loosely-Coupled Systems. In VLDB, pages 465–472, 2001.

11. I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In
SIGMOD, pages 413–424, May 2001.

12. L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating XQuery Views
Published over Relational Data: A Round-trip Case Study. In XML Database
Symposium (VLDB Workshop), pages 223–237, 2003.

13. L. Wang and E. A. Rundensteiner. Updating XML Views Published Over Rela-
tional Databases: Towards the Existence of a Correct Update Mapping. Technical
Report WPI-CS-TR-04-19, Computer Science Department, WPI, 2004.

14. X. Zhang, K. Dimitrova, L. Wang, M. EL-Sayed, B. Murphy, L. Ding, and E. A.
Rundensteiner. RainbowII: Multi-XQuery Optimization Using Materialized XML
Views. In Demo Session Proceedings of SIGMOD, page 671, 2003.

