
U-Filter: A Lightweight XML View Update Checker

Ling Wang, Elke A. Rundensteiner and Murali Mani
Worcester Polytechnic Institute, Worcester, MA 01609, USA

{lingw|rundenst|mmani}@cs.wpi.edu

1 Introduction

Both XML-relational systems and native XML sys-
tems support creating XML wrapper views and querying
against them. However, update operations against such
virtual XML views in most cases are not supported yet.

Two problems concerning updating XML views need to
be tackled. First,update translatabilityconcerns whether
the given update to the view can be achieved by updates
on the base data without any view-side-effect [1, 6, 8].
This base data storage typically may be a relational
database or a native XML document. Second, we need
to devise an appropriatetranslation strategy, namely, as-
suming the view update is indeed translatable, how to map
the updates on the XML view into the equivalent SQL up-
dates or XML document updates on the base data.

The second issue, the translation strategy, has been
studied in recent works [3, 4, 10]. Under the assump-
tion that the given update is translatable, [3, 4] propose
an approach to convert the XML into the relational view
update problem. [10] studies the performance of execut-
ing translated updates. Our work here isorthogonalto
these works by addressing new challenges related to the
decision of translation existence when no particular re-
strictions have been placed on the defined view for the
update translatability study. That is, in general, conflicts
in schema and data are possible and a view cannot always
be guaranteed to be revert-able [11], nor well-nested [3, 4]
— as assumed by these prior works.

This update translatability issue is important in terms of
both correctness and performance. Without translatability
checking, blindly translating an XML view update into re-
lational updates can be dangerous. Such blind translation
may result inview side effects. To identify this, the view
before and after the update would have to be compared as

done in [9]. To adjust for such an error, the view update
would have to be rejected and the database would have
to be recovered for example by rolling back. This would
be rather time consuming, depending on the size of the
database. By performing an update translatability analy-
sis, such ill-behaved updates could instead be identified
early on and rejected. Thus it would clearly be less costly.

Based on the notion of data provenance (lineage) – the
description of the origins of each piece of data in a view,
recent works [5, 7] indicate a loose connection between
the concept of provenance and the view update problem.
However, these works do not answer the questions impor-
tant to update translatability such as (i) whether the prove-
nance is the correct translation and (ii) if it is not, whether
thereexistsat least one (other) correct translation?

In this paper, we propose a general framework called
U-Filter to assess the translatability of an update over an
arbitrary XML view of a relational database,i.e., a view
for which various schema level and data level conflicts
potentially exist. U-Filter represents a practical approach
that could be applied by any existing view update system
for analyzing the translatability of a given view update
before translation of it is attempted.

2 Examples of Translatability Cases

Fig. 1 shows a running example of a relational schema
and sample data of a book database. User-specific XML
wrapper views (Fig. 2) can be defined on top of it. Fig. 3
shows several examples of view updates using an XQuery
“like” update syntax [10].

Example 1 In Fig. 3,u1 inserts a new book element into
BookView. We notice that the title of the new book is
empty and the price is “0.00”. However, the underlying

1

48.00

45.00

37.00

price

A01

A02

A01

pubid

98003

98002

98001

bookid

2004Data on the Web

1985Programming in Unix

TCP/IP Illustrated

title

1997

year

Simon & Schuster Inc.A02

Prentice-Hall Inc.B01

McGraw-Hill Inc.A01

pubnamepubid

book

publisher

Primary
Key

Non Key

Legend:

CREATE TABLE publisher(
pubid VARCHAR2(10),
pubname VARCHAR2(100) UNIQUE NOT NULL,
CONSTRAINTS PubPK

PRIMARYKEY (pubid))

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100) NOT NULL,
pubid VARCHAR2(10),
price DOUBLE CHECK (price > 0.00),
year DATE,
CONSTRAINTS BookPK

PRIMARYKEY (bookid),
FOREIGNKEY (pubid)

REFERENCES publisher (pubid))

CREATE TABLE review(
bookid VARCHAR2(20),
reviewid VARCHAR2(3),
comment VARCHAR2(100),
reviewer VARCHAR2(10),
CONSTRAINTS BookPK

PRIMARYKEY (bookid,reviewid),
FOREIGNKEY (bookid)

REFERENCES book (bookid))

t1
t2
t3

t1
t2
t3

Useful for advanced user.

A good book on network.

comment

002

001

reviewid

98001

98001

bookid

John

William

reviewer

review

t1
t2

Figure 1: Relational Database of Running Example

<BookView>
FOR $book IN document("default.xml")/book/row,

$publisher IN document("default.xml")/publisher/row
WHERE ($book/pubid = $publisher/pubid)
AND ($book/price<50.00) AND ($book/year > 1990)
RETURN {

<book>
$book/bookid, $book/title, $book/price,
<publisher>

$publisher/pubid, $publisher/pubname
</publisher>,
FOR $review IN document("default.xml")/review/row
WHERE ($book/bookid = $review/bookid)
RETURN{
<review>

$review/reviewid, $review/comment
</review>}

</book>},
FOR $publisher IN document("default.xml")/publisher/row
RETURN{

<publisher>
$publisher/pubid, $publisher/pubname

</publisher>}
</BookView>

Figure 2: View Definition over the Rela-
tional Database in Fig. 1

FOR $root IN document(“BookView.xml")
UPDATE $root {

INSERT
<book>

<bookid>"98004"<bookid>
<title> </title>
<price> 0.00 </price>
<publisher> … </publisher>

</book> }

u1

FOR $root IN document(“BookView.xml"),
$book IN $root/book

WHERE $book/bookid/text() = " 98001"
UPDATE $root {

DELETE $book/publisher}

u2

FOR $book IN
document(“BookView.xml")/book
WHERE
$book/title/text() = “DB2 Universal Database"
UPDATE $book {

INSERT
<review>

<reviewid>001</reviewid>
<comment>

Easy read and useful.
</comment>

</review>}

u3
FOR $root IN document(“BookView.xml")
UPDATE $root {

INSERT
<book>

<bookid>"98001"<bookid>
<title>" Operating Systems "</title>
<price> 20.00 </price>
<publisher>

<pubid>A01</pubid>
<pubname>

McGraw-Hill Inc.
</pubname>

</publisher>
</book> }

u4

Figure 3: Updates over View in Fig. 2

relational schema has the constraints that the title of book
tuples is NOT NULL, while the price of the book tuple
should be a positive number. Thus,u1 is not translatable
since it directly conflicts with the check constraints from
the relational schema.

Example 2 u2 in Fig. 3 deletes the publisher of the first
book. In the underlying relational database, there is a
foreign key from book relation to publisher relation. So,

when the publisher is deleted, the corresponding book tu-
ple has to be either also deleted, or the pubid of the book
needs to be replaced with NULL, depending on the dele-
tion policy defined by the foreign key constraints. How-
ever, neither of these two are correct because they both
would cause the side-effect of the corresponding book to
no longer appear in the view. We thus say thatu2 is not
translatable since it causes a view side effect.

Example 3 The updateu3 in Fig. 3 inserts a review for
the book “DB2 Universal Database”, while this book is
not in the view. Andu4 inserts a new book which con-
flicts with an existing book (book.t1), since they both have
“bookid=98001”. Bothu3 andu4 are not translatable.

3 U-Filter: Our Approach for View
Update Checking

The above examples illustrate that potential conflicts at
both the schema or the data level can affect the translata-
bility of a given view update. To address these factors we
propose a lightweight view update checking framework
calledU-Filter. It generates an Annotated Schema Graph
(ASG) to model the constraints from both the view query
and the relational schema. ASG is then extensively used
by two steps of schema-level (and thus very inexpensive)

2

checking. Only when necessary, more expensive check-
ing requiring the base data to be accessed is employed.

The firstupdate validationstep identifies whether the
given view update is valid according to theview schema,
which can be pre-defined [2] or be inferred from the view
definition query and the base relational schema knowl-
edge. The problem in Example 1 is identified by this step.

In the second step, calledschema-driven translatability
reasoning, any valid update from Step 1 is further exam-
ined. Here the potential view side effects are checked,
which can be caused by different reasons such as (i) for-
eign key constraints conflicting with the view structure
or (ii) base data duplication in the view. This compile-
time check only utilizes the view query and the relational
schema. Example 2 is identified to be not translatable
here. Our earlier works [11, 12, 14] describe the theo-
retical foundation and practical algorithms for this step.

Updates that passed the previous two steps could poten-
tially still conflict with the base data (Example 3). In our
third step, the run-timedata-driven translatability check-
ing, such conflicts will be identified. This check can only
be resolved by examining actual base data. This is typi-
cally rather expensive. Hence it is practical to employ this
only after the prior check steps have already been consid-
ered and the update has successfully passed these filters.

Fig. 4 shows the overall framework of U-Filter. We
present algorithms and optimizations for each step of U-
Filter in [13]. It guarantee to filter out all XML updates
that cannot be translated. The remaining updates are fed
to the update translation engine, which then can generate
the corresponding SQL update statements.

4 Conclusions

In this paper, we have proposed a lightweight framework,
calledU-Filter, that solves the full spectrum of the XML
view update translatability problem. A three-step trans-
latability checking process is used to guarantee that only
translatable updates are fed into the actual translation sys-
tem to obtain the corresponding SQL statements. Our so-
lution is practicalsince it does not require any additional
update capability from the relational database. Our solu-
tion is efficientsince we perform schema-level (thus very
inexpensive) checks first, while utilizing data-level check-
ing only as the last step.

View Query/Pre-defined View Schema

Update Validation

Schema-driven Translatability Reasoning

Data-driven Translatability Checking

Update Translation Engine

U-Filter

Data Storage
Oracle

User Update Query

Valid

Translatable Update Query

SQL Update Query

Annotated
Schema Graph

Generator

XML/RDB
Schema

ASG

Invalid

Untranslatable

Conditionally translatableUnconditionally
Translatable

Data Conflicts

Error message

DB2 SQL-Server Sybase

Condition Analysis
Unsatisfied

Satisfied

Error message

Error message

Figure 4: Framework of U-Filter

References
[1] F. Bancilhon and N. Spyratos. Update Semantics of Relational Views. In

ACM Transactions on Database Systems, pages 557–575, Dec 1981.
[2] M. Benedikt, C. Y. Chan, W. Fan, and R. Rastogi. DTD-Directed Publishing

with Attribute Translation Grammars. InVLDB, pages 838–849, 2002.
[3] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On the Updatability of

XML Views over Relational Databases. InWEBDB, pages 31–36, 2003.
[4] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML View Up-

dates to Relational View Updates: Old Solution to a New Problem. InVLDB,
pages 276–287, 2004.

[5] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where: A Characterization
of Data Provenance. InICDT, pages 316–331, 2001.

[6] S. S. Cosmadakis and C. H. Papadimitriou. Updates of Relational Views.
Journal of the Association for Computing Machinery, pages 742–760, Oct
1984.

[7] Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage of view data in
a warehousing environment. InACM Transactions on Database Systems,
volume 25(2), pages 179–227, June 2000.

[8] U. Dayal and P. A. Bernstein. On the Correct Translation of Update Op-
erations on Relational Views. InACM Transactions on Database Systems,
volume 7(3), pages 381–416, Sept 1982.

[9] M. Rys. Bringing the Internet to Your Database: Using SQLServer 2000 and
XML to Build Loosely-Coupled Systems. InVLDB, pages 465–472, 2001.

[10] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In
SIGMOD, pages 413–424, May 2001.

[11] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating XQuery
Views Published over Relational Data: A Round-trip Case Study. In XML
Database Symposium, pages 223–237, 2003.

[12] L. Wang and E. A. Rundensteiner. On the Updatability of XQuery Views
Published over Relational Data. InER, pages 795–809, 2004.

[13] L. Wang, E. A. Rundensteiner, and M. Mani. U-Filter: A Full-fledged XML-
to-Relational Update Translatability Checking Framework. Technical Report
WPI-CS-TR-05-11, Computer Science Department, WPI, 2005.

[14] L. Wang, E. A. Rundensteiner, and M. Mani. Updating XML Views Pub-
lished Over Relational Databases: Towards the Existence ofa Correct Up-
date Mapping. InDKE Journal, in press, 2005.

3

