
Project Number: EAR-1234

DISPLAY AND ANALYSIS TOOLS FOR UPDATING XML VIEWS

A Major Qualifying Project Report:

submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

In partial fulfillment of the requirements for the

Degree of Bachelor of Science

by

 David Krolick

 Alex Perry
Date: April 30, 2005
Approved:

[image: image19.png]& ASG Display Interface
File

iew Query

Relational Base ASG |

type = delete;
ref= PublisherViewfpublisherbook

Professor Elke A. Rundensteiner

Abstract

As XML becomes ubiquitous in the business world as a data storage standard, operations over XML views wrapping heterogeneous data sources are critical. Toward this, our system, as part of a larger ongoing WPI project, facilitates XQuery updates of such XML views by offering validation services, using Annotated Schema Graphs, along with an easy-to-use graphical display interface.

Table of Contents
31. Introduction

31.1 U-Filter

41.2 The ASG Generator

41.2
Our Project Goals

51.3 Paper Content

62. Background

62.1 Oracle

82.2 JDBC

102.3 XML and the XSD

132.4 The DOM Parser

152.5 Swing

172.6 The Grappa Package

193. System Framework

193.0 System Overview

203.1 Rainbow & XAT

223.2 The Annotated Schema Graph

233.2.1 The View ASG

243.3.2 The Base ASG

273.3 The Annotator

273.4 The Update Analyzer

284. Design and Implementation

284.0 Overview of ASG Generator

294.1 Implementation of the ASG

324.2 XAT to view ASG Translation

344.3 Extending the view ASG with underlying database schema

364.4 Creating base ASG

394.5 Using printASG

414.6 Classes for Intermediate Storage of RDBS Information

435. U-Filter Display

435.1 Overview

455.2 HCI Considerations

465.3 ASG Parser

475.4 U-Filter Display Architecture

475.4.1 View and Base ASG Display

515.4.2 U-Filter Update Display

556. System Evaluation

556.1 ASG Generator Evaluation

576.2 U-Filter Display Evaluation

597. Conclusions

618. References

629. Appendix A - Test Cases and XML Default Views

7010. Appendix B – Javadoc

1. Introduction

XML technology has recently become a widely-used standard for data representation and exchange between e-applications in the ever-evolving world of information technology. Due to its power and flexibility, XML has become a household term in a very short period of time, with version 1.0 defined in a February 1998 W3C Recommendation (Birbeck, Chapter 1 – Origins and Goals of XML). However, because of its rapid rise to fame, proven query processing tools and storage mechanisms are not yet available for XML. This limits its professional appeal. On the other hand, relational database systems have been a standard for data storage in the business world for decades and thus have the time-proven query processing and efficient data storage that XML lacks. By incorporating elements of both the XML and relational database technologies, we can create new hybrid systems with the power and flexibility of XML and the proven querying and storage capabilities of relational databases.

1.1 U-Filter

Systems that wrap relational databases with an XML view pose a problem for updatability. When an update is made in the XML View it is unclear whether or not these changes can be correctly translated to an equivalent update in the relational database that would achieve the desired change without any undesired side effects. It is too expensive to attempt to make an update and then wait for an error message from the database level. Even if an update is made successfully it may have unseen consequences that could result in a loss of data. U-Filter is a lightweight update checking framework that attempts to handle these issues. It performs three layers of checks to determine whether updates are translatable. The first two are performed on the XML schema level and are therefore inexpensive. Only when the first two checks fail is the third check used since it performs a query on the database content level. Research around the U-Filter project attempts to examine and address this largely unexplored area. (Wang, 1)

1.2 The ASG Generator
1.2
Our Project Goals
U-Filter uses a data structure named the Annotated Schema Graph to model the constraints of an underlying data source. This graph structure was designed to be easily traversed and analyzed. There are two forms of this structure, the view ASG and the base ASG. The view ASG models the global constraints specified in the XML View as well as the base ASG such as foreign key and data type information. The base ASG models the constraints of the underlying data source such as primary keys, fields that can’t be null, etc. Together these structures are used to test the translatability of updates by U-Filter. Our group was responsible for the implementation and generation of these data structures. The generator we created analyzes a view query over a relational database and creates ASGs that can be used for the tests.

In addition we created a GUI called the U-Filter Display that visually represents the graphs and the queries that generated them. This allows a user to better understand the system by letting them see the hierarchy of the XML View as well as the relationships between them. This is useful in evaluating whether an update to an XML View is translatable. A second window in the U-Filter display shows the result of an update on an XML View, by highlighting the updated node and showing the translatability of its related nodes. This interface provides a complete visual representation of the backend of the U-Filter System. The combined project provides a useful piece in the testing and utilization of this system.
1.3 Paper Content

The remainder of the report contains the following sections. Section 2 describes existing technologies we used in this project. Section 3 provides background on structures we designed specifically for this project. Section 4 explains the backend design and implementation of our system, while Section 5 discusses the front-end design and implementation. Section 6 showcases our experimental testing of the system and Section 7 explores related work related to our project. Section 8 concludes this report with our summary and description of future work on our project and related systems.
2. Background

2.1 Oracle

 Oracle is a very popular relational database management system (RDBMS), developed by the Oracle Corporation. An Oracle database has security, user and administrative accounts, as well as schemas. Each user is a created account used to log in to Oracle. Security in Oracle is handled by a system of privileges to control what actions the user may take, as well as two administrative accounts that have unrestricted access to everything in the Oracle database; SYS and SYSTEM (Dillon, Chapter 1 – Oracle Fundamental Terms).

“In Oracle, a schema is defined as a logical collection of objects, although it is used mostly as a synonym for a user (specifically, an application owner). Thus, the accounting schema within a company database would have all the tables and code pertaining to the accounting department. In addition to containing tables, a schema contains other database objects such as PL/SQL procedures, functions, packages, views, sequences, synonyms, and clusters. This separation of the objects within the database on a logical basis provides a user considerable flexibility in managing and securing Oracle databases” (Alapati, Chapter 7 – Oracle Schema Management). A schema of a table would contain the name and type of each tuple, as well as any constraints and/or primary and foreign key information.

A client tool called SQL*Plus can be used by developers and administrators to access an Oracle database. SQL*Plus uses a command-line console and facilitates the issuing of SQL statements, as well as the compiling and executing of PL/SQL code. (Dillon, Chapter 1 – Using Oracle) In order to create database objects, the Data Definition Language (DDL), which is SQL, has to be used. Figure 1 illustrates how to create a table using SQL*Plus using the Create command.

SQL> create table email

2 (source

varchar2(100) not null,

3
destination
varchar2(100) not null,

4
subject
varchar2(200),

5
sent_date
date default sysdate,

6
body

varchar2(4000),

7
constraints email_pk

8

primarykey (source, destination)

9
foreignkey (source)

10

references email_account (address)

11);

Figure 2.1 Creating a Table
The first line of Figure 1 specifies that a table named email is to be created. Lines 2-11 specify the structure and semantics of the email table. Lines 2-6 contain the table’s columns. Each of these is declared by first providing a name and then a data type, followed by optional properties for the column. For example, on Line 2, the column name is source and the data type is varchar2(100), which is a variable-size string that can be up to 100 characters long. The not null after the varchar2(100) specifies that the column must be filled. The date type on Line 5 is a string that denotes the date with YYYY/MM/DD and is set to the database system’s date by default. The last part of the table contains its constraints, which are on lines 7-10. The constraints are given a name, email_pk, and two primary keys and a foreign key are declared. The two primary keys are source and destination on line 8, and the foreign key source is declared to reference the address column in another table called email_account on lines 9-10.
Once the table is created, the Describe command can be used to see a description of it. The command and resulting output (everything after the first line) are shown in Figure 2.

SQL> describe table message;

Name

 Null? Type

-- -------- --------------

SOURCE

 NOT NULL VARCHAR2(100)

DESTINATION

 NOT NULL VARCHAR2(100)

SUBJECT

 VARCHAR2(100)

SENT_DATE

 NOT NULL DATE

BODY

 VARCHAR2(4000)
Figure 2.2 Getting the Description of a Table

2.2 JDBC
There are many alternatives to using SQL*Plus, such as JDBC, which is an API that provides a specification for Java database connectivity. JDBC is a framework that contains a set of Java classes and interfaces for communicating with relational databases.
JDBC is a Java programmer’s primary tool for communicating with Oracle using SQL statements (Hólm, Chapter 4 – Overview).

The core of JDBC API is part of the java.sql package, which is included in the Java SDK. The key interfaces and classes of the java.sql package used by JDBC are java.sql.DriverManager, java.sql.Connection, java.sql.PreparedStatement, java.sql.ResultSet, java.sql.DatabaseMetaData and java.sql.SQLException. The java.sql.DriverManager class is used to registers drivers and creates JDBC connections. The java.sql.Connection interface represents a database connection, facilitating SQL statement creation. SQL statements are also executed within the context of a java.sql.Connection. The java.sql.PreparedStatement interface provides for execution of parsed statements, which improves performance, as an SQL statement is compiled only once but can be executed multiple times. In order to access rows of an SQL query returned by the execution of a PreparedStatement, the java.sql.ResultSet interface is used. The java.sql.DatabaseMetaData interface provides access to comprehensive information about the database as a whole. Finally, the java.sql.SQLException provides access to all database error-related information (Hólm, Chapter 4 – JDBC Fundamentals).

The java.sql.DatabaseMetaData class makes it easy to access structural information of relational tables, such as the data types and null constraints of tuples, from a returned java.sql.ResultSet. For more complex tasks, such as the extraction of foreign keys and numerical constraints, SQL queries are passed to a java.sql.PreparedStatement which is then executed on the java.sql.Connection with the relational database.

In order to connect to an Oracle database using JDBC, the JDBC subprotocol, the hostname, port number, and service name of the database, as well as a valid username and password must be specified. Before a connection can be established, however, the appropriate driver class has to be loaded with the Class.forName method. Since the Class.forName method throws an exception, it should be done inside a try/catch block (Hólm, Chapter 4 – Oracle JDBC Connections). Figure 3 illustrates the code for connecting to an Oracle database.

1 try {

2
Class.forName("oracle.jdbc.driver.OracleDriver");

3 }

4 catch (ClassNotFoundException e) {

5
e.printStackTrace();

6 }

7 Connection con =

8 DriverManager.getConnection(
9
"jdbc:oracle:thin:@oracle.wpi.edu:1521:CS",
10
"username", "password");

Figure 2.3 Connecting to an Oracle database

After the connection has been established, the Java programmer can do several things, such as getting the Oracle database’s metadata, or creating, compiling and executing an SQL statement, and then processing the returned values. The code sample in Figure 2.4 does everything described above, using objects from Figure 2.3.
1 DatabaseMetaData dbmd = con.getMetaData();

2 String sqlStatement = “select COLUMN_NAME from

 USER_CONS_COLUMNS”;

3 PreparedStatement ps = con.prepareStatement(sqlStatement);

4 ResultSet rs = ps.executeQuery();

5 while (rs.next()) {

6
System.out.println(rs.getString(“COLUMN_NAME”);

7 }

Figure 2.4 Using a JDBC Connection to an Oracle Database

2.3 XML and the XSD
XML, which stands for Extensible Markup Language, is a relatively new and very popular way of structuring data; it defines rules for placing data into hierarchical structures, allowing for management and manipulation of the results (Navarro, Chapter 1 - Overview). XML is the latest in a long line of data definition and processing frameworks, the earliest of which were just simple text processing tools. Early text formatting was done by human typesetters who used written markup instructions; writing these formatting instructions on a printed copy of text was called “marking it up,” which is where the term “markup” came from (Navarro, Chapter 1 – Early Text Processing Systems).
Eventually, markup techniques were consolidated into macros, which are sequences of commands or keystrokes that are denoted by a unique identifier. As macros gained popularity, a need formed for generalization as there were literally thousands of different markup micros in use. GML (General Markup Language) aimed to fill that need by providing a highly reliable and scalable document format. GML had three levels of formatting: common, which all documents had to conform to; domain-specific, which was designed specifically for legal documents; and rule-based, which specified individual guidelines the document had to follow. In 1986, Standard GML, or SGML, was approved by the International Organization for Standardization (ISO). (Navarro, Chapter 1 – Early Text Processing Systems) XML is a simple, very flexible hierarchical text format that was derived from SGML (http://www.w3.org/XML/).

XML is similar to HTML but differs in that XML markup describes a document’s structure and meaning. XML does not handle formatting, which can be done in a style sheet. HTML encompasses formatting, as well as structural and semantic markup. XML has two advantages over HTML. One advantage is that, unlike HTML, XML markup facilitates automated searches and even modifications of the data. The second advantage is that XML allows dynamic creation of new structural or semantic instructions and is thus considered a meta-markup language. These instructions, or tags, as they are often called, can be represented as types in any of several languages, such as document type definitions (DTDs) or the World Wide Web Consortium (W3C) XML Schema language (Harold, Chapter 1 – What is XML?).

1 <?xml version="1.0"?>

2 <message>

3
<to> Steve </to>

4
<from> Norman </from>

5
<subject> Greetings! </subject>

6
<date> 2005-01-21 </date>

7
<body> Nice to see you back at work! </body>

8 </message>

Figure 2.5 Sample XML document

The preceding figure illustrates a sample XML document, with line numbers inserted for explanation. Line 1 specifies the version of XML that is used. Line 2 contains a tag whose name is “message”. This is an opening tag, meaning that everything between it and the closing tag with the same name, which is on line 8, is contained inside the message structure. Lines 3-7 declare five more structures. Unlike the message structure, these contain strings instead of other structures.

Schemas are documents that define the structure of individual classes in XML documents. The W3C XML Schema language is used to specify data types for text content and attribute values in schemas. XML schemas, or XSDs, are now replacing DTDs for several reasons. First of all, they provide data typing, which DTDs do not. Also, XSDs are written in XML and comply to XML standards, unlike DTDs which have their own format. Finally, DTDs are not very scalable or namespace compatible, while XSDs are (Harold, Chapter 20 – Schemas).

1 <?xml version="1.0"?>

2 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

3

 4
<xsd:element name="message" type="MessageType"/>

5

6
<xsd:ComplexType name="MessageType"/>
 7

<xsd:sequence>

8

<xsd:element name="to" type="xsd:string"/>

9

<xsd:element name="from" type="xsd:string"/>

10

<xsd:element name="subject" type="xsd:string"/>

11

<xsd:element name="date" type="xsd:date"

12

 maxOccurs="1"/>

13

<xsd:element name="body" type="xsd:string"/>

14

</xsd:sequence>

15
</xsd:ComplexType>

16

17 </xsd:schema>

Figure 2.6 Sample XSD for the XML in Figure 2.5
The above XML schema document contains the structural and semantic information for the XML document in Figure 5. Just as in Figure 5, line 1 specifies the version of XML used. Line 2 contains the root element of the schema, which is xsd:schema. The second part of line 2 maps the prefix xsd to the namespace URI http://www.w3.org/2001/XMLSchema, meaning that it uses data types defined in that namespace. Line 4 contains the only top-level element in the schema, the message element. A top-level element is any element that is an immediate child of the root element. The message element is declared to have type MessageType, which is a user-defined type. On line 6, the xsd:ComplexType element defines a new type, whose name is MessageType. This is okay, as forward and circular references are allowed in schemas. The maxOccurs="1" on line12 means that a maximum of one date can be in a MessageType. The contents of the xsd:ComplexType element determine the structure of MessageType elements. The xsd:sequence tag on line 7 specifies that everything below it up to the closing tag must be in the specified order. Lines 8-12 are the required child elements of a MessageType element. Lines 13, 14 and 16 are required closing tags (Harold, Chapter 20 – ComplexTypes).
2.4 The DOM Parser
The Document Object Model (DOM) is an API for working with structures and their contents in XML and HTML documents. DOM has been endorsed by the W3C and is widely used in industry today. When parsing an XML file, a DOM parser maps each XML construct, such as an element, text, or comment, to an object. Each of these objects are nodes that form a tree (which is stored in memory), since XML documents are hierarchical. For example, the root (first) node would contain any sub-elements, which are called children, as well as any comments or other text. Each sub-element can also have children and other data, and so on (Akif, Chapter 3 – DOM Core).
Out of all of the interfaces contained by the DOM Core API (org.w3c.dom), the org.w3c.dom.Document and org.w3c.dom.Node interfaces are used the most. The
org.w3c.dom.Document interface provides methods for creating new nodes as well as for getting the root element of a document. The org.w3c.dom.Node interface is extended by most of the interfaces in the DOM Core API, as it contains methods for traversing the node tree by getting the parent or children or a node, as well as methods for accessing and modifying child nodes and node properties, such as type, name or value. There are also specialized interfaces for various XML constructs. An example is the org.w3c.dom.Element interface, which extends the org.w3c.dom.Node interface and defines element-specific operations such as the accessing and modifying of attributes. (Akif, Chapter 3 – DOM Core) Because XSDs are written in XML, they can be parsed by the DOM Core API just like any other XML document. As an example, the types of all the elements from an XSD in Figure 6 can be gotten with the code shown in Figure 7.

1. DocumentBuilderFactory factory =

2.
DocumentBuilderFactory.newInstance();
3. try {

4. DocumentBuilder builder =
5. factory.newDocumentBuilder();

6. Document document = builder.parse(new File(“message.xsd”));

7. }
8. catch (Exception e) {
9. e.printStackTrace();

10. }

11. NodeList elements =

12. document.getElementsByTagName("xsd:element");
13. for(int i = 0; i < elements.getLength(); i++) {

14. Node node = elements.item(i);

15. NamedNodeMap attributes = node.getAttributes();

16. for(int j = 0; j < attributes.getLength(); j++) {

17. attribute = attributes.item(j);

18. if("type".compareTo(attribute.getNodeName()) == 0){
19. System.out.println(“Type: ” +

20. attribute.getNodeValue());

21. }

22. }

23. }
Figure 2.7 Parsing an XSD and Printing-Out Element Types
The first two lines of the code above create a new instance of a

DocumentBuilderFactory, which is used to create a parser the produces DOM object trees from XML documents. Then a DocumentBuilder parser is created on lines 4-5. It is used to parse the XSD file, which we will call (“message.xsd”). Then the parser returns a Document, which holds the DOM object tree generated from (“message.xsd”). Once the DOM object tree is available, all Nodes that represent elements are extracted into a NodeList (which is a collection of Nodes) on lines 11-12. Lines 13-14 make sure that every element Node is examined. On line 15, the current Node’s attributes are extracted into a NamedNodeMap, which is used to represent collections of Nodes that can be accessed by name. The NamedNodeMap is then traversed and every attribute Node is examined to see if its name is “type”. If it is, then it is printed out. This is all done on lines 16-20.
2.5 Swing
Swing is a set of object oriented classes that allow a programmer to create a very customizable, graphical user interface. These classes create java beans that can be used interchangeably allowing for a large amount of control. A java bean is simply a reusable block of code that follows a naming convention and contains universally defined methods and properties. By understanding the common methods and properties a programmer will be able to use a wide variety of beans. This makes programming very simple, although creating a new object for every item of a complicated interface can be tedious.

To create an application window in swing, the different containing elements must be laid out in a hierarchical fashion. The outermost container is a frame, which contains a title bar, window manipulation buttons and a root pane. The root pane contains a content pane that can hold a menu bar or any of the other java bean components such as buttons or text fields. The bean’s add() method is used to create this hierarchy. For example, objects for a content pane, a menu bar and a menu are created. Then the programmer adds the menu to the menu bar, and the menu bar to the content pane.
JFrame frame = new JFrame(“Frame Title”);

JMenuBar menuBar = new JMenuBar();

JMenu menu = new JMenu();

menuBar.add(menu);

frame.setJMenuBar(menu);

Figure 2.8 Adding Elements in Swing
To make the interface interactive an item called an action listener can be added to many of the objects. The listener is created and then linked to an object using the addActionListener() method. Then a function is added to the object that specifies code to be run when the linked object is manipulated. For example code to exit the program can be placed in an action listener and added to an exit menu item. When this menu item is selected, the program will exit.
JMenuItem exit = new JMenuItem();

exit.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent arg0){

System.exit(0);

}

});

Figure 2.9 Action Listener Example

2.6 The Grappa Package
Grappa is a drawing package developed by AT&T that facilitates the drawing of graphs in java applications and applets. The basic elements that are part of every graph are Nodes, Edges, Graphs and Subgraphs. The Graph element represents the root of the graph. It provides functions for the entire graph such as printing. A subgraph can contain nodes, edges or another subgraph. The node is the primary element of a graph. It is represented as a polygon containing data from its label field. An edge describes a relationship between two nodes which is visually represented by an arrow connecting the two. It too has a label field to describe the relationship. All of these objects are inherited from the Element class which provides attributes such as color and line width. (http://www.research.att.com/~john/Grappa/)

Graphs can be created using classes provided by the package or by writing higher level source code. This code is written in the dot text format which can then be converted to the appropriate classes by another class called the GrappaCreator. This method provides shorthand for the manipulating all of Grappa’s classes which is far too tedious for creating simple graphs. Here is an example of the graph code:

digraph ASG {

graph [ratio = "compress", size = "8, 8", ranksep = "0.5"];

node [shape = "record", fontsize = "12"];

edge [dir = "back", style = "bold"];

"N1" [label = "BookView", style=filled, color=cadetblue1];
"N1.1" [label =

"{{{Name:}|{book.title.book}}|{{Property:}|{Not Null}}|{{Type:}|{string}}}", style=filled, color=gold];

"N1" -> "N1.1" [label=""];
}
Figure 2.10 Example Grappa Code

A new graph (ASG) is denoted by the digraph command and properties for its elements are enclosed in curly braces. The first three sets of properties {graph, node, edge} describe base properties for all graphs, nodes and edges. Properties are enclosed in brackets and separated by commas. To specify a node, a name is given in quotes, followed by its properties in brackets. An edge is specified by the names of two nodes separated by an arrow (->). In figure 2.11 “N1” is specified as the parent of “N1.1”. For node “N1.1” advanced label parameters can be used to divide the label into cells. The curly braces specify a containing cell and the “|” specify a row. Figure 2.11 shows a nesting of these parameters that would divide the label for node N1.1 (Figure 2.10) into a table that would look like this:
	Name:
	book.title

	Property:
	Not Null

	Type:
	string

Figure 2.11 Output of Cell Nesting

To construct a graph, this code is passed to a GrappaCreator class which constructs the basic elements described by the code and then positions them based on their relationship. Upon completion it returns a GrappaPanel containing the graph, which can then be displayed in a Swing container class.

Once a graph is created and displayed it can be manipulated interactively. The package contains a GrappaListener class to handle mouse-related activity. This interface allows a user to create, delete or change the properties for any number of the graph’s elements.
3. System Framework
3.0 System Overview

Figure 3.0 illustrates the data flow and modules the U-Filter system, with the modules we designed in green and the data flow that we directly interact with in red. Our Annotated Schema Graph Generator receives two pieces of information. One is a View Query, which is translated into an XAT by RAINBOW, an existing package. The second is the schema of an underlying database, which the ASG Generator actually extracts using either JDBC or a DOM parser, depending on the database. Both pieces of information are specified in the GUI, which was also created by us. This information is used to generate two ASGs, which are then passed to back to the GUI, and to a validation engine, which also passes its findings to the GUI.
[image: image1.png]U-Filter Overview

4 ‘ ‘ A
View Query / Pre-defined View Schema User Update Query
| |
ASG l ¥
Update Validation
ASG
. . . [SLUELRETEL
Schema-driven translatability Reasoning
U-Filter Uncanditionally Translatable Conditionally Translatable
- . Unsatisfied
XML/RDE Condition Analysis
Schema Satisfied
. - . Data Conflicts
Data-driven Translatability Checking
Translatable Update Query Error Message
Update Translation Engine
Data Storage

SQL Update Query y Error Message

Figure 3.0 The data flow and modules of the U-Filter System
3.1 Rainbow & XAT
An XAT is an XML algebra tree that has “a set of well-defined algebra operators

called XAT operators. The input and output of each XAT operator are XAT tables” (EL-Sayed, page 2).

An XAT table is an order-sensitive table with columns whose names can either be a “variable binding from the user-specified XQuery, e.g., $b, or an internally generated variable, e.g., col1. The XAT table contains a sequence of tuples. Each tuple is a vector of cells of type: (1) atomic value; (2) node including XML Element, XML Document, or XML Attribute; or (3) ordered collection of any mixture of (1) and (2) (EL-Sayed, page 2). Figures 8 and 9 are taken from (EL-Sayed, page 2). Figure 3.1 is a sample view query expressed by XQuery. Figure 3.2 is an XAT for the query in Figure 3.1.

[image: image2.jpg]<Result>
FOR $a TN document ("bib. xmL") /book,
$b TN document ("reviews.xmi®) /entry
WHERE $a/title = $b/title and
$a/publisher = "Morgan Kaufmann Publishers"
RETURN
<Book_Reviews
$a/title, Sb/revieu
</Book_Review>
</Result>

Figure 3.1 View query expressed by XQuery.
[image: image3.jpg]T<Kesul|>6m| 13</ Result > Sty

Agg S

%

T Scolt3,
<Book_Review>$col1 1§col12</Book_Review>

T

Operators

S : Source
¢ :Navigate
J : Join

T : Tagger

' (Seot = cot5) AND (cot7 = “Morgan Kautmann Punshers®) >4 %>
[l e
[O e
T T
Do, aae *! Do, review **'?
Ossz,corry ™
S “reviews.xml” e

Figure 3.2. Sample XAT of view query in Figure 3.1.
The Source operators contain the path to an XML data file, such as bib.xml and reviews.xml in Figure 3.2. Navigate operators contain the human-readable names of columns and variables. For example, $col7 = publisher. Join operators contain constraints, while Tagger operators contain information about the XML hierarchy to be constructed.
3.2 The Annotated Schema Graph
The Annotated Schema Graph is a data structure used to reorganize and model the constraints of a relational schema or of a view ASG specified by a view query. These constraints exist in two forms of the ASG, the base ASG and the view ASG respectively. The base ASG captures just the global constraints of the underlying data structure and the view ASG captures both local and global constraints of a view query. A local constraint is anything that affects only one tuple (domain, NOT NULL, Key, Unique and Check constraints). A global constraint affects an entire base relation (foreign key constraints). Both graphs are identical in structure but differ in content. (Wang, 3)

Conceptually the ASG is a tree structure representing the hierarchical structure of an XML view. The tree hierarchy represents the nesting of elements and attributes in the XML view. Each element or attribute is represented by a node which contains an ID and a name. The ID is a unique identifier within the tree and the name contains the name of the element or attribute. These nodes in the tree are connected by edges, which describe the relationship between an element or attribute and their containing element. (Wang, 3)

Edges are labeled by the node ID of a parent-child pair. They contain the cardinality type between the two nodes and a list of conditions. The cardinality types are given the abbreviations {1, ?, +, *} which represent {1:1, at most 1, at least 1, any} respectively. (Wang, 4)
3.2.1 The View ASG
The view ASG is a graph representing the hierarchical structure of the XML view. It captures all constraints specific to the View query such as the hierarchy of the graph. Each internal node represents a view element or attribute. The name property of the view ASG refers to the tag name of an element. The leaf nodes of the tree represent an atomic type. They have additional properties: type captures domain constraints, and property captures {key, Unique, Not Null} constraints. (Wang, 4)
For a more complex view query, such as the one in Figure 3.3, the view ASG generated is shown in Figure 3.4.
<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,
FOR $book IN document("TestCases/BookPubExp/default.xml")/book/row

WHERE $book/pubid = $publisher/pubid

RETURN

<book>
$book/bookid, $book/title, $book/price

</book>

</publisher>
</PublisherView>
Figure 3.3 Nontrivial View Query

[image: image4.png]*, book pubid = publisher pubid

Figure 3.4 Corresponding View ASG
3.3.2 The Base ASG
The base ASG is used to store the database properties of all tuples that are referenced by the leaf nodes of the view ASG. The base ASG can contain the schema of a relational database or an XML one using table and column or element names, respectively, to check if a corresponding node exists in the view ASG. If it does, then the column’s or element’s properties are stored in the base ASG. Along with the view ASG, this information helps determine the validity of update queries, which are passed in to the system after the view and base ASGs are created. For example, if an element that is a data type has a condition in the database stating that its value must be more than 0, if the same element in the desired update view query has a value less then or equal to zero, then either the desired update query is invalid and one needs to be changed. The comparison is very easy to make, since both elements would have the same name in view ASG and base ASG.
If we are working on a View query that was generated from an Oracle database, then the schema of the database is extracted using a JDBC connection and SQL queries. On the other hand, if the underlying database is an XML document, then a DOM parser and methods run against the DOM tree it generates are used to extract the necessary information. However, while the approaches differ, the information extracted and the final base ASG for an XML database is almost the same as for an Oracle database. Figure 3.5 illustrates the schema of an XML document (in the form of an XSD) and the resulting base ASG. Figure 3.6 shows the schema of an Oracle database and the resulting base ASG, assuming the view from Figure 3.3 is used.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="publisher" type="PublisherType"/>

<xsd:complexType name="PublisherType">

<xsd:sequence>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

<xsd:element name="pubname" type="xsd:string"/>

<xsd:element name="book" type="BookType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BookType">

<xsd:sequence>

<xsd:element name="bookid" type="xsd:string" nillable="false"/>

<xsd:element name="title" type="xsd:string" nillable="false"/>

<xsd:element name="price" type="xsd:double" maxOccurs="4"/>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>
 [image: image5.png]

Figure 3.5 Schema of an XML document and the corresponding base ASG

publisher
	Name
	Type
	Constraints

	pubid
	VARCHAR2(10)
	[image: image20.png]& ASG Display Interface
File

View Query | View ASG

Relational Base ASG

1

Fie
R4 deleteprm | Marked ASG |

*, book pubid -

*, book pubid — publisher pubid.

PRIMARY KEY

	pubname
	VARCHAR2(100)
	NOT NULL

book

	Name
	Type
	Constraints

	bookid
	VARCHAR2(20)
	PRIMARY KEY

	title
	VARCHAR2(100)
	NOT NULL

	pubid
	VARCHAR2(10)
	FOREIGN KEY

	price
	DOUBLE
	price > 0.00

[image: image6]
Figure 3.6. Structure of an Oracle database and the corresponding base ASG
3.3 The Annotator
The annotator is another piece of code that is part of the U-Filter System. It analyzes the constraints of a view and base ASG and then “marks” each node in the ASG with information about its updatability. These marks have two properties. The first is the Update Context which describes the updatability of a node with respect to all other nodes in the graph. Options for this mark are either “Safe” or “Unsafe”. The second is the Update Point which describes the updatability of a node with respect to its descendent nodes. Options for this mark are either “Clean” or “Dirty”. These marks are stored in a Hashmap of the Mark data type indexed by the node ID they represent. The Mark data type stores the above mentioned information as strings. (Wang, 5)

3.4 The Update Analyzer

The update analyzer is a further part of the U-Filter System that was designed during a CS525 project by Ming and Francisco. It analyzes a marked ASG to determine the translatability of a specific update. To do this it takes in an update query which specifies the type of update to take place (insert, delete, etc.) and the point at which the update should take place. After analyzing these conditions there are three possible outcomes: unconditionally translatable, conditionally translatable, and untranslatable. (Wang, 5)
4. Design and Implementation

4.0 Overview of ASG Generator

The ASG Generator was designed using the Strategy pattern, utilizing almost identical architecture for handling both XML and relational underlying databases. Going over both would be redundant, so for the remainder of this chapter, we will demonstrate how the ASG generator works with an Oracle database underneath, while pointing out any differences with the architecture for handling an XML database underneath.

As stated in Section 3.0, the ASG Generator receives two pieces of information; a view query, in the form of an XAT and the schema of an underlying database, which the ASG Generator must extract for itself. As shown in Figure 4.0, the XAT is used to generate the view ASG along with a list of table names. The table names are then used to extract relevant schema from the underlying database, storing the information for later use. This information, along with the view ASG is used to extend the view ASG by adding key and constraint data to its leaf nodes. The same information is also used to generate the base ASG. Both the view and base ASGs are then used to generate a marked ASG that hold updatability constraints. All three ASG are finally passed back to the GUI.
[image: image7.png]XAT)

View ASG |tableNames Database
Generator| Sl

Extractor
relTables relTables

View ASG| /eafVodes |Base ASG
Extender Generator|

viewASG|

S

viewASG baseASG

viewASG | ASG || |pasedsc
Marker

markedASG

v v 2

GUI

Figure 4.0 The data flow and modules of the ASG Generator
4.1 Implementation of the ASG

The ASG class is implemented by two hash tables, and an array list. The nodes and edges of the tree are represented by their own classes.

The node is implemented by two classes: ASGNodeImp and ASGNodeAnnot. Nodes are given an ID field in addition to their name field. This ID is unique and represents the node’s position in the tree. For example the root node has the ID N1. The children of N1 have the ID’s N1.1, N1.2, N1.3 etc. These IDs facilitate searching by making it possible to jump to a specific part of the tree without traversing it completely.

In addition to the node ID and name fields, the ASGNodeAnnot class contains the data related to each node. This includes the following fields:

Type - The data type of the node, if it is a leaf node of the ASG, which depends on the data type of corresponding relational attribute type.

Property - The property of the node, if it is a leaf node of the ASG, from the set: {NotNull, PartKey, Unique, Key}

UCBinding – The Update Context Binding which includes all the relations referred up to this node.

UPBinding – The Update Point Binding which includes all the relations referred below this node

Check - The domain check condition for the given node.

These fields are accessed by the corresponding getter and setter methods.

The ASGNodeImp class contains information used to link nodes to each other. It contains the following fields, in addition to its node ID:

Parent – A list containing the nodes that the current node is a child of.

Children – A list containing the nodes that the current node is a parent of.

These fields are implemented using array lists that contain the actual nodes the current node has a relation to. For example the array list of children from node N1 contains the nodes that are children of N1 (nodes N1.1 and N1.2). Likewise, the parent array lists of those children contain the node N1. These cross-linked nodes are not duplicates since all nodes must have a unique ID. To make this linkage possible, the nodes in the hash tables are actually references to the unique instance which exists in a hash table. Whenever a node is added to a parent or child array list a new node is created. If a node by that ID already exists, the existing node is passed by reference. All nodes are linked in this way allowing the nodes to be traversed like a tree in either direction.

[image: image8]
Figure 4.1 ASG Architecture

Both types of nodes explained above are stored in hash tables to make searching easier. The ASGNodeAnnots are stored in the nodeAnnot hash table and the ASGNodes are stored in the linkedNodeTable hash table.

An edge is implemented by the EdgeAnnot data type. It contains the following fields:

BID – String containing the node id of the parent node in the edge.

EID – String containing the node id of the child node in the edge.

Type – String containing the edge’s cardinality type.

Conditions – An array list of the edge’s conditions.

These edges are stored in the edgeAnnotTable array list. A hash table was not used here because an edge doesn’t have a unique identifier since it describes the relationship between two existing nodes. Creating another set of unique IDs would be unnecessary and tedious.

4.2 XAT to view ASG Translation
The first piece of our code converts an XAT to an ASG, which we call the view ASG, since the XAT represents a View query. This is done by using the Visitor pattern to traverse the XAT, storing the information we find in the view ASG. There is a visit function for each type of XAT operator we may encounter, as well as for an XATTree and XATNode. Figure 4.2 contains the visit function for the FOR operator, which contains an internal XATTree which must be traversed first and is returned by the getXtreFunctions() method of the FOR operator.

public Object visit(FOR f) throws XATNodeDoesNotExistException

{

XATTree root = f.getXtreFunctions();

visit(root);

return null;

}

Figure 4.2 Visit function for FOR Operators
Figures 4.3 and 4.4 show a view query and the XAT that RAINBOW creates from it. A simple view query was selected as it facilitates a clearer explanation and the XAT generated by a more complex view query would take multiple pages to display.
<BookView>
FOR $book IN document("default.xml")/book/row/title
WHERE $book/pubid = "A01"
RETURN

<book>

 $book

</book>
</BookView>
Figure 4.3 Sample View Query

[image: image9]
Figure 4.4. Resulting XAT

Figure 4.5 is the view ASG we get by traversing the XAT.
[image: image10.png] bookpubid « "A1"

Figure 4.5. Resulting view ASG

4.3 Extending the view ASG with underlying database schema
Once the view ASG is created from the XAT, each of its leaf nodes is updated
with information extracted from the relevant relations in a relational database. This information includes each leaf node’s data type and certain properties, as well as primary key information. The data types are taken from the relational database’s schema. The system currently recognizes varchar2, char, decimal and timestamp data types of the Oracle relational database. The properties are also taken from the relational database’s schema, and can be either “not null” or a constraint on the value of the element. If a leaf node is a primary key, that information is also stored in its properties. This additional information is crucial for determining the validity of the desired query by comparing the view ASG to the base ASG and xml ASG. Figure 4.6 contains the sequence of function calls necessary to update the view ASG:

1 RelationalTable[] relTables =

2 getKeysAndConstraints(getTableNames(tree));
3 List leafNodes = new ArrayList();

4 List root = view ASG.getRoot();

5 getAllLeafNodes(leafNodes, root, view ASG);
6 extendView ASG(relTables, leafNodes);
Figure 4.6. How to update the view ASG
The getTableNames(tree) function call on Line 2 returns an ArrayList of table

names from tree, which is an XAT tree provided at the creation of an XAT2ASG object. The getKeysAndConstraints() method on Line 2 then uses the returned ArrayList to query the underlying Oracle database for the schema of every table whose name is included in the ArrayList, returning an array of RelationalTable[] objects (discussed in section 4.6), one for each relational table in the Oracle database. As alluded to above, getKeysAndConstraints() extracts only pre-defined elements of an RDBS schema.
Then, a new ArrayList to hold the leaf nodes is initialized. The root of

view ASG is extracted on lines 3-4. This is done in preparation for the getAllLeafNodes()method call on line 5, which then uses the root to traverse the view ASG and extract all leaf nodes it encounters, putting them into the leafNodes ArrayList. A node is determined to be a leaf node if it has no children.
 Once the ArrayList of leaf nodes is ready, it, and the array of RelationalTable objects extracted earlier, are used in the extendView ASG method call on line 6. The extendView ASG method does the actual updating, or extending, of the view ASG. It does this by traversing through the collection of leaf nodes, first comparing the leaf node name to the RelationalColumn names of each RelationalTable. If the names match, then the relevant information from the RelationalColumn object for the column, which consists of the type of the column, and whether it can be null, is put into the leaf node’s type and properties attributes, respectively. Then, each element of the RelationalTable’s primary key array is similarly compared to the name of the leaf node. If there is a match, then the leaf node is a key, and its properties are updated to reflect that fact. Once all of the leaf nodes have been checked, updated and returned to the ASGNodeAnnot Hashtable, the Hashtable is set in the view ASG, overwriting the old version.

4.4 Creating base ASG
The base ASG is created independently from the view ASG, but requires that the

relevant schema must be first extracted from the underlying database. Figure 3.2 illustrates the function calls necessary to create a base ASG. The XAT tree on line 2 is the same one used for updating the view ASG. Depending on the underlying database, the base ASG is created in one of two ways. If the underlying database is Oracle, then the code in Figure 4.7 is used.

RelationalTable[] relTables = getKeysAndConstraints(tableNames,

username, password);

//Find and store all the leaf nodes of view ASG in the leafNodes //List.

List leafNodes = new ArrayList();

List root = view ASG.getRoot();

getAllLeafNodes(leafNodes, root, view ASG);

//step3: extendView ASG()

//function to fill local constraints of leaf nodes using

//relational schema information

extendView ASG(relTables, leafNodes);

//step4: createBase ASG() function to construct base ASG for the

//given view ASG.

base ASG = createBase ASG(relTables, leafNodes, view ASG.getNodeAnnotTable(), view ASG.getEdgeAnnotTable());
Figure 4.7. How to create the base ASG for Oracle

If the methods on lines 1-2 have already been called for the purposes of updating

the view ASG, then there is no need to call them again. Then the original RelationalTable array and its contents can be reused. The function createBase ASG transforms the information contained by the RelationalTable array into an ASG. It does so in the manner described below.

First, the array of RelationalTables is traversed and for each RelationalTable, its name, as well as the names of its RelationalColumns, are extracted and utilized to create new ASGNodeAnnot objects, using the names as the ID for each ASGNodeAnnot. For each RelationalTable name just the name is used. For each RelationalColumn, the RelationalTable’s name is prefixed to its own name. Each ASGNodeAnnot created from a RelationalTable name is given all of the ASGNodeAnnots that were created from its RelationalColumn names as children. They are all notified that the ASGNodeAnnot created from the RelationalTable name is their parent.

Then, ASGEdgeAnnots are formed to denote all node-to-node connections using the ForeignKey objects and constraints contained in each RelationalTable. Once each ASGEdgeAnnot is created and filled-in with the appropriate information, it is added to the ASGEdgeAnnot ArrayList. This is later used to create the base ASG. The CheckContraint array is also traversed and any ASGNodeAnnots whose name matches the RelationalTable and RelationalColumn name of a CheckContraint has its properties updated with the constraint contained in the CheckContraint object.

Next, the root ArrayList is initialized and filled in by checking every parent, starting from the second-to-last one and going toward the first one, and putting the next parent into its children ArrayList. After this is done, the first parent is put into the root ArrayList. Then, the root ArrayList is used to traverse all the nodes and edges, starting from the first one, and giving them proper IDs. This is done by using the setNodeAnnotIDs(), setNodeImpIDs(), and setEdgeAnnotIDs() methods, designed specifically for this purpose.

However, if XML is the underlying database, then the code in Figure 4.8 is used.
String schema[] = new String[1];

schema[0] = args[4];

XML2ASG converter = new XML2ASG();

converter.convertXML2ASG(schema);

xml ASG = converter.getXML ASG();

Figure 4.8. How to create the base ASG for XML

The code on the first line simply initializes the XML2ASG object that does the

XML to ASG conversion. The method on the second line does the actual conversion. It requires a filename of a valid XML file that also has an XSD file of the same name, but with an .xsd instead of .xml extension. If these requirements are met, the XSD file is parsed and transformed into an xml ASG in the following manner:

First, a DOM parser is created and used to parse the input XSD file, returning a document that contains a tree representing the XSD file. From this document, a NodeList of simple elements and a NodeList of complex types are extracted. Next, all of the necessary data structures for construction of an ASG are initialized. Then createASG, the method that uses all of the above data, is executed. It returns an ASGImp that represents the schema contained by the input XSD file.

The createASG method first traverses the elements list, and creates a new ASGNodeImp and ASGNodeAnnot for each element, putting all of the element’s attributes into the proper attributes of either the ASGNodeImp or the ASGNodeAnnot. After this is done, both are inserted into two separate Hashtables: linkednodes and nodes, respectively, to be used for constructing the ASG.

If there are no complexType nodes, meaning that every node is a simple element on the same level, then every node is put into the root array. All that remains to be done then is to give each node a proper ID and to set the necessary fields of the newly created xml ASG. However, if there are complexType nodes, then they are made into parents, and given all of the element nodes they contain as children, while notifying the element nodes of their parent. ASGNodeImps and ASGNodeAnnots are made for both parents and children, if they don’t already exist. If they do exist, then they are updated. Once this is done, both the ASGNodeImps and the ASGNodeAnnots of the parents and children are put into two Hashtables called newLinkedNodes and newNodes, respectively. The newLinkedNodes Hashtable is then traversed to find the root(s) of the new ASG and to get rid of any extraneous nodes. After this, the setNodeAnnotIDs, setNodeImpIDs, and setEdgeAnnotIDs methods used in creating the base ASG are used again here to give all of the nodes and edges proper ID’s. Finally, the xml ASG is created and all of its necessary attributes are set. Lastly, the xml ASG is returned.

Finally, the base ASG is initialized and its root, ASGNodeAnnot and ASGEdgeAnnot collections, are set with the data gathered above.
4.5 Using printASG

The printASG method of the ASGImp class was designed for debugging

purposes. The printASG method prints out information to standard output. The first thing it prints out is a hierarchical model of the ASG, using the root ArrayList to traverse the ASG, and indentation to show the hierarchy. Next, it prints out the contents of the nodeAnnotTable Hashtable and edgeAnnotTable ArrayList. This method was designed simply to show that the ASG it was called on is valid. It may simply not display a piece of information if it is missing or is in error, or it may throw an Exception. To check for correctness, one has to read the output and compare it to the desired results. Figure 4.9 shows the printASG function being used for the view and base ASGs from this section.
Node = N1, name = BookView

Node = N1.1, name = book

Edge: type = *, condition =

Node = N1.1.1, name = title

Edge: type = 1, condition =
Node = N1.1.1.1, name = book.title, type = string, property = Not Null

Edge: type = 1, condition =

Node = N1.1.2, name = pubid

Edge: type = 1, condition =
Node = N1.1.2.1, name = book.pubid, type = string, property = book.pubid=="A01", Not Null, Key

Edge: type = 1, condition =
NodeHash:
Node = N1, name = BookView
Node = N1.1, name = book
Node = N1.1.1, name = title
Node = N1.1.1.1, name = book.title, type = string,
property = Not Null

Node = N1.1.2, name = pubid
Node = N1.1.2.1, name = book.pubid, type = string, property = book.pubid=="A01", Not Null, Key
EdgeList:
BID: N1, EID = N1.1, type = *, condition =
BID: N1.1, EID = N1.1.1, type = 1, condition =
BID: N1.1, EID = N1.1.2, type = 1, condition =
BID: N1.1.1, EID = N1.1.1.1, type = 1, condition =
BID: N1.1.2, EID = N1.1.2.1, type = 1, condition =
Node = N1, name = book

Node = N1.1, name = book.title

Edge: type = 1, condition =

Node = N1.2, name = book.pubid, property = key

Edge: type = 1, condition =
NodeHash:
Node = N1, name = book
Node = N1.1, name = book.title
Node = N1.2, name = book.pubid, property = key
EdgeList:
BID: N1, EID = N1.1, type = 1, condition =
BID: N1, EID = N1.2, type = 1, condition =

Figure 4.9 The printout from printASG of view and base ASGs

4.6 Classes for Intermediate Storage of RDBS Information

The ASG package contains several classes and an interface used to store schema

information retrieved from a relational database for later use. The RelationalTable interface is implemented by the RelationalTableImp class. It is used for storing all of the data retrieved from the database. Each RelationalTableImp object contains an array of RelationalColumn objects, which contain basic information on each individual column of the table, a String array of the names of columns that are primary keys, an array of ForeignKey objects that contain information on each foreign key encountered, and an array of CheckContraint objects that contain information on all constraints encountered.
5. U-Filter Display

5.1 Overview

The U-Filter Display was created to graphically display the ASG’s created by the generator. These graphs provide a visual representation of the hierarchy of the XML View and the constraints present on the elements and data. This view allows a user to analyze the translatability of an update that could be made on an XML View.

When the U-Filter Display is run the user is prompted by a dialog box to select a view query. From there the U-Filter Display’s methods call our backend generation methods to create view and base ASGs. The graphs are displayed in scrollable tabbed panes. The first window displays a view query, the view ASG and the base ASG we generate from it. From there a user can select an update query which will launch the second window. This window calls code implemented by another project group to mark the view ASG and check the translatability of the specified update. Figure 5.2 shows the flow of the program. The arrows don’t show how methods call each other but rather how the program flows from method to method. These steps are explained in detail in sections 5.4.1 and 5.4.2 and outlined in figure 5.1.
[image: image11.png]Grappa Creator

—— Graph Updater

L

ASG Parser

View Query Dialog

Update Query Dialog

~john/Grappa/

Updatability Testing

15

Figure 5.1 U-Filter Display Program Flow

[image: image12]
5.2 HCI Considerations
The purpose of the U-Filter Display is to display the ASGs so that they may be further analyzed. To do this effectively several design decisions were made. The overall layout was designed to be organized and clearly display the graphs. We used tabbed panes and displayed a graph on each tab. They are contained in a scrolling pane in case they are too large for the window. If the graph is extremely large and scrolling becomes too tedious the user can zoom in and out of the graph by using the options on the right-click context menu. In addition to the graphs, the view query is displayed in its own tab for comparison and interpretation.
A color scheme was chosen so that different types of nodes could be easily recognized. All intermediary nodes are light blue. The leaf nodes are colored gold so that they stand out. The properties and type for the leaf nodes are also displayed.

In the second window, a different color scheme was used to show the translatability of the ASG. It was colored like a stoplight so that the color scheme would be immediately apparent: Red: Invalid, Yellow: Conditionally Translatable, and Green: Unconditionally Translatable.

For error checking purposes the graph code used to generate the graphs is printed to the console and the tool tip text for each node displays the node id. This makes it easy to troubleshoot an ASG that was generated incorrectly. The file menu at the top of the window has an option to load another query, so the user will not have to restart the program to generate other graphs.

5.3 ASG Parser

The ASG Parser is a class instantiated by the GUI that takes in an ASG and converts it to the dot code necessary to generate a visual display of a graph. It accomplishes this by using the visitor pattern. Each time the visitor pattern encounters a node it appends code for that node to a string. Once the parser is done visiting the GUI, the string variable contains a completed string of dot code. The GUI gets the string and uses the grappa converter class to convert it into a displayable panel. These panels can then be displayed in a containing scroll panel in Swing. The example code below shows the string appended to the code if the parser encounters a leaf node.
if (linkedNode.isLeafNode()){

color = "gold";

dotString += "\n\t\"" + linkedNode.getNodeID() + "\" [label = \"{{{Name:}|{" + contentNode.getName() + "}}|{{Property:}|{" + contentNode.getProperty() + "}}|{{Type:}|{" + contentNode.getType() + "}}}\", style=filled, color=" + color + "];";

}

Figure 5.3 Code Genereated by ASGParser
5.4 U-Filter Display Architecture

5.4.1 View and Base ASG Display

Demo is a static class that controls the flow of the GUI. When the main method is run it displays the view and base ASGs and the view query that was used to generate them. The main methods used to accomplish this are shown in Figure 5.4.

[image: image13]
Program execution starts with the main() method by calling selectViewQuery() which will handle the rest of the program flow. A dialog box is displayed allowing the user to display to select a view query.
[image: image14.png]® Relational DB) XML

oL Schoma [

ConnectSeing ol @orastews s 1521 G5]

Username [perlex
Password [perlex

Cae Dy | view uery

|| Browse..

Select a Query

Lookin: [XAT2ASG 7]

2ovs update3.qit
E2R0B-View

Caupdates.

SMLview

update1.it

update2.lt

Flename: |

Fies oftype: [Al Fies) <]

Figure 5.5 U-Filter Display: Selecting a View Query
In addition the user must select to use either a relational data base or an XML document. If a relational data base is selected the user must enter the username and password for the database. If an XML document is chosen then the user must select an XML schema. When the necessary information has been provided the user may click “Launch Display” which will call launchWindow() to display the GUI framework. Once the GUI has loaded displayGraphs() is called. This method generates the view and base ASGs using the XAT2ASG class. The resulting graphs are then passed to the parseASG() method which creates an ASGParser object. The parser traverses the graphs and generates dot code. This is explained in greater detail in Section 5.3.

The grappa creator class analyzes the dot code and draws the resulting graphs onto grappa panels. These panels are then added to the scroll panels on each tab. Finally this method calls the readScript() method to convert the view query into a string which is displayed in a text field on its own tab. Figures 5.6 - 5.8 show screen shots of the U-Filter Display at this point.
Figure 5.6 U-Filter Display: View Query

[image: image15]
Figure 5.7 U-Filter Display: View ASG

[image: image16]
Figure 5.8 U-Filter Display: Base ASG

From here a user can select “Select Update Query” from the “File” menu. This allows the user to analyze the result of an update on the currently generated graphs.
5.4.2 U-Filter Update Display

The UpdateWindow class began as a copy of the Demo class that was modified to provide different output. As a result it uses the same functions to achieve a different goal. Now an UpdateWindow object is created each time an update is selected. This design was chosen to allow the user to create multiple update windows for the same database and XML View. This allows users to compare the results of different updates side by side.
An update query can be generated in two ways: It can be selected in the first window and passed in when the second window is created or another update query can be selected from the file menu once the second window has been launched.
The UpdateWindow class uses a modified version of the drawGraphs() method to call the update analyzing code to mark the ASG and check the translatability of the specified update. These results are displayed in two tabs, one displaying the update query and one displaying the marked ASG. This graph shows the view ASG with the Update Point and Update Context for each node. The nodes are color-coded to display the resulting translatability of these marks. The node at which the update takes place is highlighted with a red border. This display allows a user to see the result of their update. Figure 5.10 shows a screenshot of this display.

[image: image17]
Figure 5.9 U-Filter Display: Update Query
[image: image21.png]Relational Base ASG

*, publisher pubid = book pubid

[image: image18]
Figure 5.10 U-Filter Display: Update Window
6. System Evaluation
6.1 ASG Generator Evaluation

To evaluate our completed system we used a series of test cases written by us and Ling Wang. These were view queries that tested the complexity of our ASG Generator. We used nine test cases in total, each one more complex than the last. They were used from the beginning of our coded design, as they aided in progressing our iterative development. We would first create a build of code that worked with the first test case. Once this was working we would add a layer of complexity that would allow us to handle another test case. This process ensured that we would always have a version of working code to fall back on. Additionally, it helped us follow a steady progression towards full implementation of the system.

Figure 6.1 shows an example of our first test case.
<BookView>

FOR $book IN document("default.xml")/book/row/title

RETURN

<book>

 $book

</book>

</BookView>
Figure 6.1 First Test Case
This test case has simple nesting, and no conditions. It is just displaying the titles of every book in table. Figure 6.2 shows an example of our ninth test case.
<PublisherView>

FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row,

$book IN document("TestCases/BookPubExp/default.xml")/book/row,

$price IN document("TestCases/BookPubExp/default.xml")/price/row

WHERE ($publisher/pubid = $book/pubid) AND ($book/bookid = $price/bookid)

RETURN

<publisher>

$publisher/pubid, $publisher/pubname,

<book>

$book/bookid, $book/title,

<price> $price/amount </price>

</book>

</publisher>

</PublisherView>
Figure 6.2 Ninth Test Case
This test case is clearly more complicated. It is manipulating three fields: $publisher, $book, and $price. In addition it has two conditions stating that pubid’s and bookid’s much match for both tables. The return type also involves more complicated nesting.

Figure 6.3 shows an example of a test case that we would use if an XML document was used as a data source. This test case is nearly identical to the others except that it uses the default xml view of an xml document instead of a relational database.

<PublisherView>
FOR $book IN document("TestCases/STAR/XAT2ASG/XML-View/book.xml")/book

RETURN

<book>

$book/bookid, $book/title,
FOR $publisher IN document("TestCases/BookPubExp/default.xml")
/book/publisher

WHERE $publisher/pubid = $book/pubid

RETURN

<publisher>
$publisher/pubid, $publisher/pubname

</publisher>

</book>
</PublisherView>
Figure 6.3 Test Case for XML Data Source
These test cases allowed us to ensure that our system supported all the necessary conditions that we might encounter. They served as a useful tool for development and evaluation. All of our test cases can be found in the appendices.
6.2 U-Filter Display Evaluation

To evaluate our GUI we relied on feedback from the DSRG (Database Storage Research Group). We designed the GUI iteratively along with the progress of the ASG Generator. Complexity was added to the display as the ASG Generator improved. On each iterative step feedback was received so that the display could be improved. Feedback from DSRG member Ling Wang was especially useful since she works closely with the U-Filter System.

One of her suggestions was to use a separate window to display the update process. This was suggested because many updates could be made for a given view query and it would be beneficial to be able to see these updates in a separate window. This change allows for direct comparison between the view ASG and the marked ASG showing the specified update.

Ling also suggested the use of the “stoplight” color coding scheme. This was an excellent idea because it is immediately recognizable to a first time user. The details of this scheme can be found in section 5.2

Her suggestions refined our display and aided in our goal to create a GUI that demonstrated the U-Filter the system clearly.

7. Conclusions
In this project, we helped design and implement an Annotated Schema Graph generator and GUI for the U-Filter framework in order to facilitate the calculation and display the translatability of XML view updates. Our approach is modular and extensible, using separate modules for each logical step in creating and displaying the ASGs.

We generate two ASGs to hold the hierarchy and constraints of an XML view query over an underlying database. The view ASG is constructed from an XAT representing the view query while the base ASG is constructed by querying the underlying database and the leaf nodes of the view ASG.
Our GUI allows for the creation, observation and marking of our ASGs, as well as the checking and categorization of update queries through intuitive controls and a clear layout and color scheme.

In the future, our solution can be optimized, either by using different technologies, such as APIs for querying relational databases or parsing XML, or by simply tweaking our code to make it more efficient. The overall U-Filter framework can be extended to support a broader range of databases as well as different types of update translation.

In the course of this project we met and overcame many trials and challenges. In the analysis and design stage, we had to read and analyze technical research papers on the U-Filter and RAINBOW frameworks. In the implementation stage, we had to integrate our code with other U-Filter code as well as another group’s code that was being developed concurrently. We had to modify both as they were partially broken and poorly documented. Iterative development over the course of the whole project gave us specifications and deadlines for small modules, but left us confused as to the larger picture and purpose of our project until we finally put it all together. Finally, we had a third group member who did not contribute significantly and dropped out during the second half of the project cycle, increasing the workload for the remaining project members.

However, no significant project is without its difficulties, and we truly believe we became better software engineers by going through it. We learned how to effectively manage specifications and deadlines in an iterative development cycle, and how to effectively handle any unforeseen workload increases. Learning to reuse legacy code was also important since we were adding to an existing system. We had to quickly understand the existing code and be able to modify and utilize it. Furthermore, we gained valuable experience using the Visitor and Strategy patterns, working with XQuery views, interacting with Oracle through JDBC, and finding and utilizing a good XML parser for parsing an XML schema document.
8. References
Akif, Mohammad et al. Java XML Programmer's Reference. Apress, 2003.
Alapati, Sam R., Expert Oracle9i Database Administration. Apress, 2003.
Birbeck, Mark et al. Professional XML. Second Edition. Apress, 2004.
Dillon, Sean et al. Beginning Oracle Programming. Apress, 2003.
Harold, Elliotte Rusty. XML 1.1 Bible. 3rd Edition. John Wiley & Sons, 2004.

Hólm, Bjarki et al. Oracle 9i Java Programming: Solutions for Developers using Java and
PL/SQL. Apress, 2001.

Navarro, Ann, and White, Chuck. Mastering XML. Sybex, 2000.
EL-Sayed, M., Wang, L., Ding, L., Rundensteiner, E. “An Algebraic Approach for Incremental Maintenance of Materialized XQuery Views.” ER2002.
Wang, L., Rundensteiner, E., and Mani, Murali. “U-Filter: A Lightweight XML View
Update Checker.” ER2005, April. 2005
http://www.w3.org/XML/

 HYPERLINK "http://davis.wpi.edu/dsrg/rainbow/objective.htm" \t "_parent"
http://davis.wpi.edu/dsrg/rainbow/objective.htm
http://davis.wpi.edu/dsrg/rainbow/xupdate/index.html#objective

 HYPERLINK "http://www.research.att.com/~john/Grappa/" \t "_parent"
http://www.research.att.com/~john/Grappa/
9. Appendix A - Test Cases and XML Default Views

R-BookView.qlt

<BookView>
FOR $book IN document("default.xml")/book/row,

$publisher IN document("default.xml")/publisher/row
WHERE $book/pubid = $publisher/pubid
RETURN

<book>

$book/bookid,

 $book/title,

 $book/price,

 <publisher>

$publisher/pubid,

$publisher/pubname

</publisher>

</book>
</BookView>
R-PublisherView.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,
FOR $book IN document("TestCases/BookPubExp/default.xml")/book/row

WHERE $book/pubid = $publisher/pubid

RETURN

<book>

$book/bookid, $book/title, $book/price

</book>

</publisher>
</PublisherView>
R-V0.qlt

<BookView>
FOR $book IN document("default.xml")/book/row/title
RETURN

<book>

 $book

</book>
</BookView>
R-V1.qlt

<BookView>
FOR $book IN document("default.xml")/book/row
RETURN

<book>

 $book/bookid,

 $book/title,

 $book/price

</book>
</BookView>
R-V2.qlt

<BookView>
FOR $book IN document("default.xml")/book/row
WHERE $book/pubid="A01"
RETURN

<book>

 $book/title,

 $book/pubid

</book>
</BookView>
R-V3.qlt

<BookView>
FOR $book IN document("default.xml")/book/row
WHERE $book/bookid="98001"
RETURN

<book>

 $book/bookid,

 $book/title,

 $book/price

</book>
</BookView>
R-V4.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,
FOR $book IN document("TestCases/BookPubExp/default.xml")/book/row

WHERE $publisher/pubid = $book/pubid

RETURN

<book>

$book/bookid, $book/title

</book>

</publisher>
</PublisherView>
R-V5.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row,

$book IN document("TestCases/BookPubExp/default.xml")/book/row
WHERE $publisher/pubid = $book/pubid
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,

<book>

$book/bookid, $book/title

</book>

</publisher>
</PublisherView>
R-V6.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,
FOR $book IN document("TestCases/BookPubExp/default.xml")/book/row

WHERE $publisher/pubid = $book/pubid

RETURN

<book>

$book/bookid, $book/title,
FOR $price IN document("TestCases/BookPubExp/default.xml")/price/row

WHERE $book/bookid = $price/bookid

RETURN

<price>

$price/amount

</price>

</book>

</publisher>
</PublisherView>
R-V7.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,
FOR $book IN document("TestCases/BookPubExp/default.xml")/book/row,
$price IN document("TestCases/BookPubExp/default.xml")/price/row

WHERE $book/bookid = $price/bookid

RETURN

<book>

$book/bookid, $book/title,

<price> $price/amount </price>

</book>

</publisher>
</PublisherView>
R-V8.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row,

$book IN document("TestCases/BookPubExp/default.xml")/book/row,

$price IN document("TestCases/BookPubExp/default.xml")/price/row
WHERE $publisher/pubid = $book/pubid
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,

<book>

$book/bookid, $book/title,

<price>

$price/amount

</price>

</book>

</publisher>
</PublisherView>
R-V9.qlt

<PublisherView>
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/publisher/row,

$book IN document("TestCases/BookPubExp/default.xml")/book/row,

$price IN document("TestCases/BookPubExp/default.xml")/price/row
WHERE ($publisher/pubid = $book/pubid) AND ($book/bookid = $price/bookid)
RETURN

<publisher>

$publisher/pubid, $publisher/pubname,

<book>

$book/bookid, $book/title,

<price> $price/amount </price>

</book>

</publisher>
</PublisherView>
default.xml

<DB>

<book>

<row>

<bookid>98001</bookid>

<title>TCP/IP Illustrated</title>

<pubid>A01</pubid>

<year>1997</year>

<price>37.00</price>

</row>

</book>

<publisher>

<row>

<pubid>A01</pubid>

<pubname> McGraw-Hill Inc. </pubname>

</row>

</publisher>

</DB>

X-V1.qlt

<PublisherView>

FOR $book IN document("TestCases/STAR/XAT2ASG/XML-View/book.xml")/book

RETURN

<book>

$book/bookid, $book/title,
FOR $publisher IN document("TestCases/BookPubExp/default.xml")/book/publisher

WHERE $publisher/pubid = $book/pubid

RETURN

<publisher>

$publisher/pubid,$publisher/pubname

</publisher>

</book>
</PublisherView>
X-V2.qlt

<PublisherView>

FOR $book IN document("TestCases/STAR/XAT2ASG/XML-View/book.xml")/book

RETURN

<book>

$book/bookid, $book/title,
FOR $publisher IN document("TestCases/STAR/XAT2ASG/XML-View/book.xml")/book/publisher

WHERE $publisher/pubid = $book/pubid

RETURN

<publisher>

$publisher/pubid,$publisher/pubname

</publisher>

</book>
</PublisherView>
book.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="book" type="BookType"/>

<xsd:complexType name="BookType">

<xsd:sequence>

<xsd:element name="bookid" type="xsd:string" nillable="false"/>

<xsd:element name="title" type="xsd:string" nillable="false"/>

<xsd:element name="price" type="xsd:double" maxOccurs="4"/>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

<xsd:element name="publisher" type="PublisherType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="PublisherType">

<xsd:sequence>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

<xsd:element name="pubname" type="xsd:string"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

publisher.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="publisher" type="PublisherType"/>

<xsd:complexType name="PublisherType">

<xsd:sequence>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

<xsd:element name="pubname" type="xsd:string"/>

<xsd:element name="book" type="BookType"/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="BookType">

<xsd:sequence>

<xsd:element name="bookid" type="xsd:string" nillable="false"/>

<xsd:element name="title" type="xsd:string" nillable="false"/>

<xsd:element name="price" type="xsd:double" maxOccurs="4"/>

<xsd:element name="pubid" type="xsd:string" nillable="false"/>

</xsd:sequence>

</xsd:complexType>

</xsd:schema>

10. Appendix B – Javadoc

Node ID (hash key)

Start ID

End ID

Type

Conditions

…

…

Parent

Children

ASGNode

ASGEdgeAnnot

Node ID (hash key)

Name

Type

Properties

…

ASGNodeAnnot

Arraylist

Arraylist

Hashtable

Hashtable

Root

Linked Node Table

Node Annot Table

Edge Table

launchWindow()

parseASG()

drawGraphs()

main()

selectViewQuery()

selectUpdateQuery()

launchWindow()

parseASG()

drawGraphs()

selectUpdateQuery()

visit()

getDOT()

visit()

getDOT()

Demo

UpdateWindow

ASGParser

MarkedASGParser

Figure 5.2 U-Filter Display Classes

launchWindow() – Assembles and launches the GUI window. Creates action listeners for the Select Update Query and Exit menu options.

drawGraphs() – Uses functions in XAT2ASG to generate ASG’s. Parses the ASG’s and generates graphs. Refreshes the tabs in the GUI with the new graphs.

parseASG() – Calls the ASG parser and returns dot code to generate the graph. Called by drawGraphs().

getFileName() – Prompts the user to select a new query which it returns.

readScript() – Opens a given script file and reads it into a string. Called by drawGraphs().

selectViewQuery() – Launches a dialog box which prompts the user to select a view query and other information used to generate a base ASG graph. If the entered information is valid it calls launchWindow() and drawGraphs().

Figure 5.4 Important methods in the Demo Class

Update Point

Unconditionally Translatable

Conditionally Translatable

Untranslatable

Update Display Key

PAGE
26

[image: image22.png]& ASGDisplay Interface o

File

[View Query | ViewASG | Relational Base ASG |

D

*, book pubid = publisher pubid

kI

[image: image23.png]*, publisher pubid = book pubid

[image: image24.png]Conbine 14011068
Torus colurn | $coll0002
T
Forg2siss
output columm | §oook.
binding | _fhook
~
N\ lnner
N\ Tree
\,
\
Tome Colurm 31594013
original eme | $ooll0002
new name | Scoll 0002
Group By 25209015 Select 1 T047S1

cutptcolum_| $2010007

cutptcolum | feoli0002

‘gouping coluranfs) | 10004

expression_| (BeolioN03 == "A0)

| loner
Tree

|
]

Conbite 966478
Toouscolumn_| $eoli0007

Growp By 036014
output columm | $eall0003
grouping coluran(s) | $hook.

[image: image25.png]Sowce 90016
output colum | s10004
Gt | defaltd

=t s~ Ittt

V toner
\ Tree

\

Conbize: 12032988

Torus colum | $eol10003

Bk 1070084
colua e | $ooli0002
o)
¥
Togger1 86589
output coluan | $coll0002

ool
togrtee | foook

<hook>

