
Updating XML Views

Ling Wang, Elke A. Rundensteiner and Murali Mani

Worcester Polytechnic Institute
Worcester, MA 01609, USA

{lingw|rundenst|mmani}@cs.wpi.edu

Abstract

In this proposal we study the XML view up-
date problem from two aspects. First, we pro-
pose a theory and a checking algorithm to de-
cide whether a correct translation exists for a
given view update. Then we develop an up-
date translation mechanism to generate the
correct translations over the base data storage
when it is mappable. Our work can be used
by both commercial database or XML data
management systems as advanced features in
supporting XML view based application.

1 Motivation

With the growing popularity of XML, it has be-
come the primary data model for views. Both XML-
relational systems such as [10, 19] and native XML
systems such as [16] support creating XML wrapper
views and querying against them. However, update
operations against such virtual XML views in most
cases are not supported yet.

XML view update problem is more complex than
that of pure relational view update [2, 12, 14]. Not
only do all the problems in the relational context still
exist in XML semantics, but we also have to address
the new update issues introduced by the XML hierar-
chical data model and its flexible update language.

Two problems concerning updating XML views
need to be tackled. First, update translatability con-
cerns whether some updates on the base data stor-
age, which typically may be a relational database or
a native XML document, can be made to effect the
given update to the view without causing any view-
side-effect. Second, we need to devise an appropriate

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,

Trondheim, Norway, 2005

translation strategy. That is, assuming the view up-
date is indeed translatable, how to map the updates
on the XML view into the equivalent tuple-based SQL
updates or XML document updates on the base data.

This dissertation proposes to explore both aspects
of the view update problem. First, a light-weight up-
date translatability checking framework is proposed
based on a set of well-established theory and practical
reasoning algorithms. Our work in this direction can
be applied by any existing XML view update system in
industry and academia for analyzing the translatabil-
ity of a given update statement before translation of it
is attempted. Thereafter we aim to find a correct up-
date translation over the base data storage when it is
mappable. Work in this direction can be used by both
commercial database or XML management systems as
advanced feature in supporting XML view-based ap-
plications.

2 State-of-Art in View Updating

Update Translatability. An abstract formulation
of the update translatability problem is given by the
view complementary theory in [2, 12]. It uses the in-
variance of the complement of a view, namely database
side-effect free, to decide the translatability of a given
update. However, by requiring the database side-effect

free property, the complementary theory is too restric-
tive to be practical. In [14], the authors relax the
criteria for a correct translation as only requiring view

side-effect free. Based on the notion of a clean source,
it presents an approach in the relational context for
determining the existence of update translations by
performing a syntax analysis of the view definition.

The nested hierarchical structure of XML views and
the flexible update operations on the view place new
challenges on the update translatability issue for XML
views. Therefore the previous works in the relational
context need to be advanced.

Recent works [8, 9, 13] indicate a loose connection
between data provenance [8, 9] or lineage [13] and the
view update problem. The distinction between “why
provenance” and “where provenance” is used to guide
the view update process to find an appropriate update

1

48.00

45.00

37.00

price

A01

A02

A01

pubid

98003

98002

98001

bookid

2004Data on the Web

1985Programming in Unix

TCP/IP Illustrated

title

1997

year

Simon & Schuster Inc.A02

Prentice-Hall Inc.B01

McGraw-Hill Inc.A01

pubnamepubid

book

publisher

Primary
Key

Non Key

Legend:

CREATE TABLE publisher(
pubid VARCHAR2(10),
pubname VARCHAR2(100) UNIQUE NOT NULL,
CONSTRAINTS PubPK

PRIMARYKEY (pubid))

CREATE TABLE book(
bookid VARCHAR2(20),
title VARCHAR2(100) NOT NULL,
pubid VARCHAR2(10),
price DOUBLE CHECK (price > 0.00),
year DATE,
CONSTRAINTS BookPK

PRIMARYKEY (bookid),
FOREIGNKEY (pubid)

REFERENCES publisher (pubid))

CREATE TABLE review(
bookid VARCHAR2(20),
reviewid VARCHAR2(3),
comment VARCHAR2(100),
reviewer VARCHAR2(10),
CONSTRAINTS BookPK

PRIMARYKEY (bookid,reviewid),
FOREIGNKEY (bookid)

REFERENCES book (bookid))

t1

t2

t3

t1

t2

t3

Useful for advanced user.

A good book on network.

comment

002

001

reviewid

98001

98001

bookid

John

William

reviewer

review

t1

t2

Figure 1: Relational Database of Running Example

<DB>
<publisher>

<row>
<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</row> ...
</publisher>
<book>

<row>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<pubid>A01</pubid>
<price>37.00</price>
<year>1997</year>

</row> ...
</book>
<review>

<row>
<bookid>98001</bookid>
<reviewid>001</reviewid>
<comment>A good book on network.</comment>
<reviewer>William</reviewer>

</row> ...
</review>

<DB>

Figure 2: Default XML View of Database in Fig. 1

<BookView>
FOR $book IN document("default.xml")/book/row,

$publisher IN document("default.xml")/publisher/row
WHERE ($book/pubid = $publisher/pubid)
AND ($book/price<50.00) AND ($book/year > 1990)
RETURN {

<book>
$book/bookid, $book/title, $book/price,
<publisher>

$publisher/pubid, $publisher/pubname
</publisher>,
FOR $review IN document("default.xml")/review/row
WHERE ($book/bookid = $review/bookid)
RETURN{
<review>

$review/reviewid, $review/comment
</review>}

</book>},
FOR $publisher IN document("default.xml")/publisher/row
RETURN{

<publisher>
$publisher/pubid, $publisher/pubname

</publisher>}
</BookView>

<BookView>

<book>
<bookid>98001</bookid>
<title>TCP/IP Illustrated</title>
<price>37.00</price>
<publisher>

<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
<review>

<reviewid> 001 </reviewid>
<comment>

A good book on network.
</comment>

</review >
<review>

<reviewid> 002 </reviewid>
<comment>

Useful for advanced user.
</comment>

</review >
</book>

<book>
<bookid>98003</bookid>
<title>Data on the Web</title>
<price>48.00</price>
<publisher>

<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
</book>

<publisher>
<pubid>A01</pubid>
<pubname> McGraw-Hill Inc. </pubname>

</publisher>
<publisher>

<pubid>A02</pubid>
<pubname> Simon & Schuster Inc </pubname>

</publisher>
<publisher>

<pubid>B01</pubid>
<pubname> Simon & Schuster Inc </pubname>

</publisher>

<BookView>
(b)(a)

Figure 3: XQuery Views over Relational Database in Fig. 1

translation. Their work has several similarities with
ours, e.g., try to find the data trace (provenance)
at the query syntax level. However, we utilize this
data trace or provenance for a different purpose.
The question that [8, 9] tries to answer is: given
two equivalent queries that are rewritings of each
other, when are the provenances guaranteed to be
identical? Instead, we use the provenance to find a cor-
rect translation, if one exists, for a given update query.

Update Translation Strategy. Works in this direc-
tion are different from above. They assume all the
view updates considered are translatable and focus
on solving the ambiguity issue and finding the “best”
translation. The update translation strategy has been
studied for the Select-Project-Join views on relational
databases [17, 18, 1]. These works have been further
extended for object-based views in [4], when the view
is anchored in a pivot relation and updates are speci-
fied only in those well-nested relations.

The update translation in XML views has also
been explored to some degree in recent works such as
[6, 7, 22] and commercial database systems [3, 11, 21].
Under the assumption that the given update is trans-
latable, [6, 7] propose an update translation strategy
for converting the XML view update into a relational
view update. The main result of [22] is a proposal of
an XQuery update grammar. It also studies the exe-
cution performance of translated updates.

However, none of these works consider any of the
following basic questions: (i) what is the search space
for possible optimized translations? (ii) Which is the
most suitable one and how to identify it?

3 A Running Example

We now use an XML view defined over a relational
database as an example to briefly illustrate that up-
dates through XML views can be problematic.

Fig. 1 shows a relational schema and sample data,

2

which contains a list of publishers as well as their
published books and corresponding reviews. Recent
XML systems [10, 15] use a basic XML view, called
default XML view, to define one-to-one relational-to-
XML mappings (Fig. 2). On top of this default XML
view, a view query defines user-specific XML wrapper
views (Fig. 3a). Let’s first consider several update op-
erations.

Example 1 To delete only the title of a book is not

valid since the title of the book relation is NOT NULL.

Example 2 To delete the publisher of the first book

from the BookView is not translatable. The reason is

there is a foreign key from book relation to the pub-
lisher relation in the underlying relational database.

When the publisher is deleted, the corresponding book
tuple has to be either also deleted, or the pubid of the

book is replaced with NULL, depending on the deletion

policy defined by the foreign key constraints. However,
neither of these two are correct because they both would

cause the corresponding book to no longer appear in the

view. We thus say that this update is not translatable
since it causes a view side effect in the form of an

unintended view deletion.

Example 3 Inserting a new book into BookView with
“bookid=98003” is not translatable since a book with

the same bookid already exists in the book relation.

An update over a given view can be problematic for
different reasons, such as violating constraints, caus-
ing view side effects or conflicting with the underly-
ing data as shown by the three examples above. An
update thus needs to be carefully checked before the
translation starts to avoid translation costs, or even a
faulty translation.

Example 4 Deleting the review of a certain book from

the BookView is translatable. We can either delete the

review tuple or replace the bookid with NULL. Both are
correct translations.

The update translation system needs to (i) explore
all the possible translations that satisfy some well-
established criteria, and (ii) choose the one that is “as
close as possible” to the original database state. That
is, we would like to minimize the effect of the view
update on the database.

4 Dissertation Objectives

In this proposal, we focus on the translatability and
translation strategies of updates through the XML
views, which wrap either relational or XML data.
Fig. 4 shows the system framework of our proposed
XML view updating system. The proposed techniques
will be implemented and tested in our XML view man-
agement system Rainbow [26]. In particular, we focus
on the following objectives.

Data
Storage XML Repository

XML/RDB
Schema

User
UpdatesView Query

Update
Checker
(U-Filter)

Annotated
Schema Graph

Generator

Update
Translator

(U-Translator)

RDBMS

XML
View
Updater

SQLXQuery

Error
Message

Figure 4: The Framework of XML View Updating System

• Resolve the mismatch between the XML hierar-
chical view model and the base data model. The
nested structure imposed by an XML view may be
in conflict with the hierarchy explicitly or implic-
itly defined by the underlying base data model.
In other words, if the base is relational, the con-
straints of the relational schema imply the base
hierarchical structure. If the base is an XML doc-
ument, its schema expresses the hierarchy. In ei-
ther case, the base hierarchy can possibly conflict
with the view hierarchy. This mismatch will affect
the translatability of the view updates. In partic-
ular, the challenge arises from the fact that the
XML view does not determine a unique relational
database schema or XML document schema un-
derneath, and so assumptions about the specific
nature of the base data storage cannot be built
into the view-update algorithm. Example 2 indi-
cates the update translation problem caused by
this mismatch.

• Handle flexible XML view updates. Compared to
the fixed tuple-based update in the relational view
update scenario, updates can be specified on any
XML view element. New issues thus arise. As an
example, XML views can be very complex and po-
tentially contain data duplications, although the
relational database can be normalized and the
XML document conforms certain schema. The
flexible granularity of XML updates thus could
touch part of the duplication, while leaving others
untouched. Such an update would not be trans-
latable without any side effect.

• Support efficient order sensitive update transla-

tion. The user can insert a new element into or
delete an existing element from certain position of
the XML view. This order-sensitive update trans-
lation is a problem specific for XML views, be-
cause both relational and the object-oriented data
model thus far have not covered ordered models.
We plan to support order sensitive updates not
only for translatability analysis but also for effi-
cient order handling techniques beyond the gen-
eral order sensitive XQuery processing.

3

5 Update Translatability Issue

In this direction, we propose a fundamental theory and
practical algorithms to determine whether a given up-
date over the XML view is indeed translatable.

5.1 Theoretical Foundation

We first need a theory that characterizes precisely the
conditions under which a mapping from XML view up-
dates into updates on the base data storage is correct,
be it XML or relational model.

For this purpose, we propose the concept of source
for a given XML view element, which characterizes the
search space of all potential correct update mappings.
Then based on the idea of the clean source, we propose
a clean source theory as criterion to determine whether
a given view update mapping is correct.

This theory is a natural extension of the earlier work
from the relational context [14], but now emphasizes
the new challenges defined by the XML data model.
These challenges are caused by two facts. (i) The po-
tential conflicts between the hierarchies of XML views
and the underlying relational or XML database exist.
(ii) Duplicates are rather common in XML views which
is a major reason of causing update not translatable.

We expect our clean source theory to serve as a
solid theoretical foundation for developing practical al-
gorithms towards update translatability checking.

5.2 Light-weight XML View Update Checker

We propose a lightweight view update checking frame-
work called U-Filter. To check whether a view up-
date is translatable, U-Filter first performs two steps
of schema-level (and thus very inexpensive) checking.
Only when necessary, more expensive checking requir-
ing the base data to be accessed is employed.

The first step, called update validation, identifies
whether the given view update is valid according to
the view schema. This view schema can either be pre-
defined or be inferred from the view definition query
and the base relational schema knowledge. Given that
a lot of work has already been done in the literature on
schema validation [5, 20], here we focus on two ques-
tions closely related with the view update issue: (i)
How to extract the view schema from the view query
and the relational schema? (ii) Which constraints
should the validation procedure consider? The prob-
lem in Example 1 is identified by this first step.

In the second step, called schema-driven translata-

bility reasoning, any update determined to be valid by
Step 1 is further examined. Here the potential view
side effects are checked, which can be caused by differ-
ent reasons, including foreign key constraints conflict-
ing with the view structure or base data duplication
in the view. This compile-time check only utilizes the
view query and the relational schema. Example 2 is
identified here.

Updates identified as translatable by the previous
two steps could potentially still conflict with the base
data. For instance, in Example 3, u3 survives the
first two steps, but is found not to be translatable.
In our third step, the run-time data-driven translata-

bility checking, such conflicts will be identified by issu-
ing probe queries. This check can only be resolved by
examining actual base data. This is typically rather
expensive. Hence it is practical to employ this only at
last, when the prior check steps have been considered
and the update passes these filters.

Moreover, for an order-sensitive XML view speci-
fied using a FLWOR expression, an order-sensitive up-
date can delete an existing view element in a certain
position or insert a new view element into a certain
position of the view. This update can cause new data-
related update translatability issues in terms of the
update position itself being defined. Special order-
specific probe query are utilized to verify the legacy of
the deleting or inserting position.

5.3 Research Progress

As preliminary work thus far, we have proposed and
proven the general update translatability theory for
XML views published over a relational database [24].
An initial study of the update translatability of XML
views over the relational database in the “round-trip”
case is done in [23]. The round-trip case is charac-
terized by a pair of reversible lossless mappings for
(i) loading the XML documents into the relational
database, and (ii) extracting an XML view identical
to the original XML document back out of it. We
prove that any valid update operation over such XML
views, given a valid pair of round-trip mappings, is
always translatable.

We will continue to explore the update translatabil-
ity checking approaches for both relational databases
and XML documents. We aim to develop a complete
theory and establish practical algorithms for the up-
date translatability issue.

6 Update Translation Strategies

Now assuming the view update is indeed translatable,
the question remains how best to translate the updates
on the XML view into the equivalent tuple-based SQL
updates or XML document updates on the base data.
This requires understanding the ways in which indi-
vidual view update requests may be satisfied by up-
dates over the underlying data storage. In some cases,
there will be precisely one way to perform the database
update that results in the desired view update. How-
ever, in most other cases, the new view state may cor-
respond to many database states. Consequently, the
question of choosing a view update translator arises.
Of these database states, we would like to choose one
that is “as close as possible” under some measure to

4

the original database state, namely, to minimize the
effect of the view update on the database [4, 17].

6.1 Challenging Issues

A set of criteria must first be established to dis-
tinguish between a “good” and a “bad” translation.
The five validity criteria from relational view updates
[17, 18, 1, 4] are syntactically based, namely, they
are based on the schema knowledge of the view and
the underlying data storage. The semantic consid-
eration [1, 18], namely to consider the “real” world
meaning of the view, are not addressed by these cri-
teria. In the XML view update context, we need to
modify these criteria.

Conceptually an enumeration of all possible valid
translations of each view update on the view should
be examined. For practical reasons, we do not want to
instantiate this enumeration, we merely use it to define
the space of alternatives. We identify a search space
of correct update translations based on the syntax of
a view definition.

When the underlying data storage is a relational
database, the mismatch between the two update lan-
guages (XQuery FLWU updates on the view versus
SQL queries on the base) must be dealt with. Fur-
ther, new optimization techniques on generating effi-
cient base updates, which consider the performance
impacts imposed by for example using some partially
materialized index, need to be designed.

Order functions deserve special attention in XML
view update study. Special probe queries over the
XML base will be employed, which extract informa-
tion to generate a proper order code or position in the
XML document for the newly inserted view element.

6.2 Research Progress

We have accomplished the order sensitive query opti-
mization when an XML view is defined over the rela-
tional database [25]. We present a general approach
for supporting order-sensitive XQuery-to-SQL trans-
lation that works irrespective of the chosen XML-
to-relational data mapping and the selected order-
encoding method. We will continue to explore the up-
date translation approaches for XML views published
over both relational databases and XML documents.
We aim to develop a reliable and efficient algorithm
for the update translation.

7 Conclusions

In this proposal, we tackle the problem of updating
XML views in the context of both XML and relational
data model underneath. We propose to develop a full-
fledged XML view update system, which first deter-
mine whether an update is mappable and then find
a correct update translation over the base data stor-
age when it is mappable. We expect this work to be

used by both commercial database or XML data man-
agement systems as advanced features for view based
applications.

References

[1] A. M. Keller. The Role of Semantics in Translating View Up-
dates. IEEE Transactions on Computers, 19(1):63–73, 1986.

[2] F. Bancilhon and N. Spyratos. Update Semantics of Relational
Views. In ACM Transactions on Database Systems, pages
557–575, Dec 1981.

[3] S. Banerjee, V. Krishnamurthy, M. Krishnaprasad, and
R. Murthy. Oracle8i - The XML Enabled Data Management
System. In ICDE, pages 561–568, 2000.

[4] T. Barsalou, N. Siambela, A. M. Keller, and G. Wiederhold.
Updating Relational Databases through Object-Based Views.
In SIGMOD, pages 248–257, 1991.

[5] M. Benedikt, C. Y. Chan, W. Fan, and R. Rastogi. DTD-
Directed Publishing with Attribute Translation Grammars. In
VLDB, pages 838–849, 2002.

[6] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. On
the Updatability of XML Views over Relational Databases. In
WEBDB, pages 31–36, 2003.

[7] V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From
XML view updates to relational view updates: old solutions to
a new problem. In VLDB, pages 276–287, 2004.

[8] P. Buneman, S. Khanna, and W.-C. Tan. Data provenance:
Some basic issues. In Foundations of Software Technology
and Theoretical Computer Science, 2000.

[9] P. Buneman, S. Khanna, and W.-C. Tan. Why and where: A
characterization of data provenance. In ICDT, 2001.

[10] M. J. Carey, J. Kiernan, J.Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian. XPERANTO: Middleware for Pub-
lishing Object-Relational Data as XML Documents. In The
VLDB Journal, pages 646–648, 2000.

[11] J. M. Cheng and J. Xu. XML and DB2. In ICDE, pages 569–
573, 2000.

[12] S. S. Cosmadakis and C. H. Papadimitriou. Updates of Re-
lational Views. Journal of the Association for Computing
Machinery, pages 742–760, Oct 1984.

[13] Y. Cui, J. Widom, and J. L. Wienner. Tracing the lineage
of view data in a warehousing environment. In ACM Trans-
actions on Database Systems, volume 25(2), pages 179–227,
June 2000.

[14] U. Dayal and P. A. Bernstein. On the Correct Translation of
Update Operations on Relational Views. In ACM Transactions
on Database Systems, volume 7(3), pages 381–416, Sept 1982.

[15] M. F. Fernandez, A. Morishima, D. Suciu, and W. C. Tan.
Publishing Relational Data in XML: the SilkRoute Approach.
IEEE Data Engineering Bulletin, 24(2):12–19, 2001.

[16] H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Nierman, S. Pa-
parizos, J. Patel, D. Srivastava, and Y. Wu. Timber: A native
xml database. In VLDB, 2002.

[17] A. M. Keller. Algorithms for Translating View Updates to
Database Updates for View Involving Selections, Projections
and Joins. In Fourth ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, pages 154–163, 1985.

[18] A. M. Keller. Choosing a View Update Translator by Dialog
at View Definition Time. In VLDB, pages 467–474, 1986.

[19] M. Fernandez et al. SilkRoute: A Framework for Publishing
Relational Data in XML. ACM Transactions on Database
Systems, 27(4):438–493, 2002.

[20] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Taxonomy of
xml schema languages using formal language theory. In ACM
TOIT, 2005.

[21] M. Rys. Bringing the Internet to Your Database: Using SQL
Server 2000 and XML to Build Loosely-Coupled Systems. In
VLDB, pages 465–472, 2001.

[22] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updat-
ing XML. In SIGMOD, pages 413–424, May 2001.

[23] L. Wang, M. Mulchandani, and E. A. Rundensteiner. Updating
XQuery Views Published over Relational Data: A Round-trip
Case Study. In XML Database Symposium, pages 223–237,
2003.

[24] L. Wang and E. A. Rundensteiner. On the Updatability of
XQuery Views Publised over Relational Data. In ER, pages
795–809, 2004.

[25] L. Wang, S. Wang, B. Murphy, and E. A. Rundensteiner. Or-
der Sensitive XQuery Processing over Relational Sources: An
Algebraic Approach. In IDEAS, 2005.

[26] X. Zhang, K. Dimitrova, L. Wang, M. EL-Sayed, B. Murphy,
L. Ding, and E. A. Rundensteiner. RainbowII: Multi-XQuery
Optimization Using Materialized XML Views. In Demo Ses-
sion Proceedings of SIGMOD, page 671, 2003.

5

