Automaton Meets Algebra: A Hybrid Paradigm
for Efficiently Processing XQuery over XML
Stream

by

Hong Su

A Dissertation
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
in Partial Fulfillment of the Requirements for the
Degree of Doctor of Philosophy
in

Computer Science

by
Dec 14, 2005
APPROVED:
Prof. Elke A. Rundensteiner Prof. Murali Mani
Advisor Committee Member
Prof. George Heineman Prof. Mitch Cherniack
Committee Member External Committee Memeber

Brandeis University

Prof. Michael Gennert
Head of Department

Dedicated to Mom, Dad and Wai-Po

Contents

1

Introduction 5

1.1 Challenges of XML Stream Processing 5

1.2 State-of-the-Art of XML Stream Processing 7
1.2.1 Pure Automaton Paradigm 8
1.2.2 Loosely-Coupled Automaton and Algebra Paradigm . . . 9

1.3 Dissertation ResearchFocus 12
1.3.1 Architecture of Tightly-Coupled Automaton-Algelitaradigm 13
1.3.2 Automaton-in-or-out Optimization 15
1.3.3 Schema-based Optimization for Automaton Processing 20

1.4 DissertationOutline 24

Raindrop Architecture: Combining Automaton and Algebra Process-

ing Styles for XML Stream Processing 26

2.1 Three-level Algebraic Framework Overview 26

2.2 Semantics-FocusedPlan 27

2.3 Modeling Token-based Processing in Algebra 31
2.3.1 Token-Based DataFormat 31
2.3.2 Token-RelatedOperators 32
2.3.3 Stream-Specific Plan Structures 39
2.3.4 Regular Tuple-based Operators 40

2.4 Rewrite Rules Involving Token-Related Operators 40
2.4.1 Default Mapping RewriteRule 41
2.4.2 Token-or-Node Mode ChangeRule 42
2.4.3 Secondary Effect of Mode Change of Pattern Retrieval .45

2.5 Implementation Strategies for Token-Related Opesator 48
2.5.1 Implementation of TokenNav 49
2.5.2 Implementation of ExtractUnnest 55
2.5.3 Implementation of ExtractNest 56

2.5.4 Implementation of StructuralJoin 57

CONTENTS iii

2.5.5 Implementations in Automata with Final-State Dugtiis 59
2.5.6 Comparison between In-time and Identifier-basedcStru

turaldoins 60
2.6 Programming Model for Synchronizing the Execution oe@pors 62
2.6.1 AncestorUpstreamDrivenMode 62
2.6.2 DownstreamDrivenMode 64
2.6.3 ImmediateUpStreamDriven 67
2.6.4 Summary e e e 68
27 Experiments 69
2.7.1 Testing Queries Having Alternative Plans with SamiédBu
ingCost 70
2.7.2 Testing Queries Having Alternative Plans with Diffietr
BufferingCosts 74
3 Runtime Plan Optimization: Switching between Automaton and Alge-
bra Processing Styles 80
3.1 SolutionSpace 80
3.1.1 Token-or-Node Mode ChangeRules 81
3.1.2 Operator CommutingRules 85
3.1.3 Input Subplan ReorderingRule 86
3.1.4 Relationships among Rewrite Rules 92
3.2 CostModel e 92
3.2.1 Unit Costs of Automaton-Outside Operators 3 9
3.2.2 Costs of Input Subplans of StructuralJoin 7 9
3.2.3 Costs of Automaton-inside Operators 101
3.24 CostModel Summary 105
3.2.5 Discussion on Extension of CostModels 105
3.3 Combining Heuristics and Costs for Operator Commuting ... 107

3.4
3.5
3.6

3.7

3.3.1 Using both Heuristics and Costs for Operator Comrgutiri09
3.3.2 Heuristics for Commuting Select/NodeNav with Stugt]oin111

3.3.3 Operator Commuting Algorithm 113
Using Rank Functions for Input Subplan Reordering 115
Enumerative Search for One-time Optimization 116
Greedy Search for One-time Optimization 121
3.6.1 BaselineGreedy Search 121
3.6.2 Expediting CostEstimate. 122
Greedy Search with Pruning for Continuous Optimization. . . 129
3.71 BasicldeasofPruning 131

3.7.2 Pruning Plans Derived from Mode Change of TokenNav
Operators e e e 132

CONTENTS iv

3.7.3 Discussion on Pruning Other Pattern Retrieval Opeyat 134

374 Summary ... e e 135
3.8 Embedding Statistics Collection into Plan Execution 135
3.9 Run-time PlanMigration 138
3.9.1 Incremental Change of Automaton 139
3.9.2 Choosing Right Moment to Migrate 141
3.10 Experimental Evaluation 144
3.10.1 Getting ConstantValues 145
3.10.2 Experiment Design for Comparing ExhaustOpt and @ree
OptSearch Strategies 146
3.10.3 Comparing ExhaustOpt and GreedyOpt on Wide-angi8im
Pattern Trees 149
3.10.4 Comparing ExhaustOpt and GreedyOpt on Wide-andplom
PatternTrees 155
3.10.5 Comparing ExhaustOpt and GreedyOpt on Deep-angiSim
PatternTrees 157
3.10.6 Comparing ExhaustOpt and GreedyOpt on Deep-andsleéam
Pattern Trees 159
3.10.7 Study on when GreedyOpt Fails to Find Optimal Plan .60 1
3.10.8 Comparison of GreedyOpt and GreedyPruneOpt7 16
3.10.9 Overhead of One-time Optimization: From StatisGcd
lection to Plan Migration 168
3.10.10 Performance of Continuous Optimization 171
4 Schema-based Optimization in Automaton Processing Style 173
4.1 Introduction 173
4.2 TypelinferenceonQueryTrees 175
421 QueryTree e 176
422 Typelnference 178
4.3 Guidelines for Stream XML SQO 180
4.3.1 Automata-based Implementation 181
4.3.2 Necessity of Physical Implementation Analysis 182
4.3.3 Design Guidelines for XML Stream SQO 183
4.4 Stream-Specific XMLSQO, 184
441 SQORules 185
4.4.2 Desired Properties of Rule Application 718
4.4.3 Rule Application Algorithm 190
4.5 Execution of Optimized Queries 194
4.5.1 Encoding Event-Condition-Actions 195

452 ExecutionStrategy 196

CONTENTS %

4.6 Experimentation. 198
4.6.1 Practicability of SQO Techniques 199
4.6.2 Synergic Effect of Combining Type Inference and Sirea
SQO . . e 200
4.6.3 Necessity of “Usefulness” Criteria 120
4.6.4 Factorson Performance Gains 202
46.5 OverheadofSQO. 203
4.6.6 Summary of Experiments 204
5 Related Work 212
5.1 Related Work on XML Query Processing Paradigms 12 2
5.2 Related Work on Run-time Plan Optimization 215
5.2.1 Cost-based Optimization 215
5.2.2 XML Statistics Collection 218
5.2.3 Run-time Re-optimization 219
5.3 Related Work on Schema-based Optimization 220
6 Conclusions and Future Directions 224
6.1 Conclusion 224
6.2 FutureWork 226
6.2.1 Supporting XQueries with Window Joins/Aggregations 227
6.2.2 QueryoverIindexed XML Streams 227
6.2.3 XMLLoadShedding 228
6.2.4 Adaptive Query Approximation 229
6.2.5 Query over Compressed XML Streams 229
A Proof of Final State Duplicate Free Property 230
B Computing Pxg(plan) for Cost Model 233
C Proof of Optimality of Subplan Evaluation Order 235
D Combination Containing Operators with Pattern Dependeny Rela-
tionship being Invalid 237
E Order Insensitive 239

F Proof of Same Cost Changes 245

Vi

List of Figures

1.1 Example XML Documentand XQuery 7
1.2 A Tree Representation of XML Document in Figure 1.1 (@).... 7
1.3 XSM Automaton for Encoding an XPath expression “/a” 9
1.4 Tukwila Query Plan for Query in Figure .2 (b) 11
1.5 Alternative TukwilaQueryPlan 12
1.6 Comparisons of Two Automaton-Algebra Paradigms 12
21 Example XATTuples 28
2.2 Semantics-Focused Plan (annotated with intermedistgts) for

queryingdatainFigure 1.1 (@) 30
2.3 Stream Logical Plan for the Semantics-focused Plangorgi2.2 40
2.4 Default Mapping RewriteRule 41
2.5 Plan Rewritten from Figure 2.2: Default Mapping RewRale

Applied onNavUnn68t$s,/open_auctions/open_auction$a """ 42
2.6 Mode Change with Introducing/Eliminating Structucah) 43
2.7 Mode Change without Introducing/Eliminating Struefdoin 44
2.8 EliminateExtractg.,;o$coll when no Regular Tuple-based Oper-

ator ConsumeScoll 45
2.9 Plan Rewritten from Figure 2.5: Pattern Retrieval onerokr-

Node Mode Change Rule Applied dViavNestg, jsciier$0 47
2.10 Plan Rewritten from Figure 2.9: Pattern Retrieval okemsor-

Node Mode Change Rule Applied diavNestg, /phonede - - . . 47
2.11 Implementation obtreamSourd@okenNav 49
2.12 Automaton Encoding for Paths Involving “//” R o7
2.13 final stateduplicates 55
2.14 InvokingExtractNest Operator 58
2.15 Comparing In-time Structural Join and Identifier-lsaSeructural

Join ..o 61
2.16 QuerywithFilters 70

LIST OF FIGURES Vii

2.17 Performance of Alternative Plans for Queries with 2iBeFs of
Average Length1l 71
2.18 Ratio of Execution Time of Maximal Pushdown with Exéouit
Time of Zero Filter Pushdown for Queries with Different Nuenk

ofFilters 72
2.19 Performance of Alternative Plans for Queries with 1eFs of

Average Length5 o 73
2.20 Performance of Alternative Plans for Queries with 2eF$l (One

Filterhas“//”) 74
2.21 Query with Multiple BindingsinForClause 75
2.22 One Navigation Pushdown 75
2.23 Three Navigation Pushdown 76
2.24 Maximal Navigation Pushdown 76
2.25 PerformanceonDataSet1 78
2.26 PerformanceonDataSet2 78
2.27 PerformanceonDataSet3 79
3.1 Example Query for Automaton-in-or-out Optimization 81
3.2 Raindrop Plan for QueryinFigure 3.1 82
3.3 Mode Change with Introducing/Eliminating StructucatJ 83
3.4 Mode Change without Introducing/Eliminating Struefdoin . . 83
3.5 EliminateExtractg.,o$coll when no Regular Tuple-based Oper-

ator ConsumeScoll 84
3.6 Plan Derived from the Pull-out @foken N avs, /seiie, 30 from Plan

inFigure 3.2 85
3.7 CommutingN odeN avgcoi2 pathoScol3 with Selectgeon - 87
3.8 CommutingVodeN avgcoi1 patn2$col2 with Structural Join . . . 87
3.9 CommutingVodeN avgcoi1 path1 $col2 With NodeN avgeois parnsScold 88
3.10 Reordering Input Subplans of StructuralJoin 91
3.11 Automaton of Plan in Figure 3.2 and Stack Snapshots 102
3.12 Greedy-based Search 122
3.13 Detection of Same Cost ChangeClsst(FPy) — Cost(P3) = Cost(P)

—Cost(P1)? . . . 126

3.14 Reuse Cost Estimate for Mode Changes of Patterns ing=8yi4 (a)128
3.15 Incremental Change of Automaton for Migrating fromrAlaFig-

ure3.2toPlaninFigure3.6, 140
3.16 Pattern Tree Templates: (a) wide and simple; (b) widkcam-
plex; (c) deep and simple; (d) deep and complex 7 14

3.17 Extract-Same and Extract-Different Queries SharimgW&nd Sim-
ple Pattern Tree in Figure 3.16 (a) 150

LIST OF FIGURES Viii

3.18 Wide-and-Complex Query on Ebay Data: requiring torresuist-
ing whose $a/seller_info, $a/bid_history, $a/auction_info,

and$a/item_in fo satisfy 2, 2, 12,and 5 Filters Respectively . . . 156
3.19 Queries Conforming to Wide-and-Deep Pattern Treegar€i3.16

(C) « v o e 157
3.20 Queries Conforming to Wide-and-Complex Pattern Tmdegure

316 (d) ... 159
3.21 Extract-Same and Extract-Different Queries Confogmio Wide-

and-Complex Pattern Tree in Figure 3.16 (b) 116

3.22 ExhaustOpt and GreedyOpt for Environment Settingsigure

3.10 lllustrating “Missing Synergy Benefits”. Initial Plddsed:

All Patterns butp;; andpys Retrieved in Automaton. 164
3.23 EzxhaustOpt andGreedyOpt Comparison for Settings in Figure

3.10 illustrating “Wrong Accounting of Cost Cut”. Initialléh

Used: All Patterns Retrieved in Automaton. 616
3.24 Greedy and Greedy with Pruning for Buffer-Same Quéniésg-
ure 3.17 (A1) e 167

3.25 Cost Ingredients of Query Processing in One-time Qpéition . 170
3.26 Processing Rate of Wide and Complex Query in Contin@pts

mization Scenario 172
4.1 Grammar of Supported XQuery Subset 176
4.2 XQueryandQueryTree 177
4.3 XML Schemaand Schema Graph 179
4.4 Query Tree after Type Inference 180
4.5 Automaton Implementation 181
4.6 Filtering Propagation 184
4.7 SQODesignGuidelines. 185
4.8 Traverser on Context Node with Multiple Types 192
4.9 Encoding SQO into AlgebraicPlan. 206
4.10 “Conflict-free” Property of Automata 206
411 QueryTemplate 207
4.12 Effect of SQO on Queries Using a 800M PSD Dataset 207
4.13 Effect of Combining Type Inference and SQO on a 800M PSD

Dataset 207
4.14 Comparing Plans Only Adopting Necessary Ending MagtsS

fying with Plans Adopting All Ending Marks 208

4.15 Effect of Pattern Selectivity/Unit Gain on Saving Patication Cost208
4.16 Effect of Pattern Selectivity/Unit Gain on Saving Rufhg Cost . 209

LIST OF FIGURES iX

4.17 Effect of Pattern Selectivity/Unit Gain on Saving $&ten Evalu-

ationCost 210
4.18 Overhead of Applying Occurrence Rule 102
4.19 Overhead of Applying Exclusive Rule 112
4.20 Overhead of Applying Order Rule in WorstCase 211
5.1 Operator Re-orderingidddy 220
A.1 Stack Containing Duplicate Final States 231

F.1 Cost(Py) — Cost(P3) = Cost(Py) — Cost(P1) 245

Abstract

XML stream applications bring the challenge of efficienthpgessing queries on
sequentially accessible token-based data streams. Thmmatan paradigm is nat-
urally suited for pattern retrieval on tokenized XML stregrbut requires patches
for implementing the filtering or restructuring functioiti@s common for the XML
guery languages. In contrast, the algebraic paradigm ikestdblished for pro-
cessing self-contained tuples. However, it does not fmaditly support token in-
puts. This dissertation proposes a framework caRaihdrop which accommo-
dates both the automaton and algebra paradigms to taketadeaof both.

First, we propose an architecture feaindrop Raindrop is an algebra frame-
work that models queries at different abstraction level® répresent the token-
based automaton computations as an algebraic subplan lEgth&evel while ex-
posing the automaton details at the low level. The algelsalplan modeling au-
tomaton computations can thus be integrated with the agebubplan modeling
the non-automaton computations.

Second, we explore a novel optimization opportunity. OXMeiL stream pro-
cessing systems always retrieve all the patterns in a quetlyel automaton. In

contrast, Raindrop allows a plan to retrieve some of theepatitrieval in the au-

LIST OF FIGURES 2

tomaton and some out of the automaton. This opens uguszmaton-in-or-out
optimization opportunity. We study this optimization indwypes of run-time en-
vironments, one with stable data characteristics and otlefluctuating data char-
acteristics. We provide search strategies catering to eaginonment. We also
describe how to migrate from a currently running plan to a ptam at run-time.

Third, we optimize the automaton computations using themsehknowledge.
A set of criteria are established to decide what schema reintst are useful to
a given query. Optimization rules utilizing different tygpef schema constraints
are proposed based on the criteria. We design a rule apphcalgorithm which
ensures both completeness (i.e., no optimization is missed minimality (i.e.,
no redundant optimization is introduced). The experim@&nta on both real and
synthetic data illustrate that these techniques bringifsignt performance im-
provement with little overhead.

In conclusion, Raindrop accommodates the advantages lofdoddmaton and
algebra to efficiently process XQueries over tokenized XNheams. The pro-
posed automaton-in-or-out and schema-based optimizegatmiques can be also
applied to several well-known XML stream processing systauoch as Tukwila

and YFilter.

Acknowledgments

Rumor has it that every PhD thinks his/her PhD career is thghest one. Well,
definitely | think mine is tough. But without the patiencejdance and help from
my advisor, Prof. Elke A. Rundensteiner, it could have beemhrtougher. My
sincere thanks go to her, for everything she has done forngakis dissertation
possible.

| would like to thank my other committee members, Prof. Mukéni, Prof.
George Heineman and Prof. Mitch Cherniack, for their helgph @mcouragement. |
would especially like to thank Prof. Mani, who has collaliedaon my dissertation
work. Prof. Mani has spent enormous amount of time discgssiith me and
giving feedback on my papers in the past two years. My gigitalso goes to
Prof. Carolina Ruiz who has provided tremendous help to mapRhD research
gualification exam and comprehensive exam.

I would like to thank Jinhui Jian, a former Raindrop team memkho imple-
mented part of the Raindrop system. My thanks also go to tlbea team and
Cape team at DSRG lab, especially Xin Zhang, Song Wang, LiaggMBradford
Pielech and Luping Ding, who provided related code support.

My internships at IBM T.J. Watson Lab and HP software lab g apening

LIST OF FIGURES 4

experiences for me. It was great pleasure to work with my orenDr. Ming-ling
Lo (IBM), Dr. Sriram Padmanabhan (IBM) and Dr. Harumi KunoRH

| feel honored to have been supported by IBM Cooperativeofsthip for three
years. | thank IBM for giving me this great opportunity anfeahg me the sum-
mer internships at IBM Toronto lab. | deeply appreciate thenmhearted welcome
and help from my mentors there, Dr. Kelly Lyons, Mr. John Kegside and Mr.
Calisto Zuzarte.

It is always glad to see | am not alone on this long journey. drish the
friendship with DSRG members. The memory of the time we spmydther will
never fade away.

My fiance J.Wei is also my best friend and best technical sugposoftware
engineering related issues. | owe him a big, big “thank yadyy Mom and Dad
have always been there for me through all the highs and lowwsir Endless love
and support is the best thing a daughter can ever ask for. Myede"“wai-po”
(grandma at mother’s side) passed away last year. No worexgaess how much

I miss her. | dedicate this dissertation to her.

Chapter 1

Introduction

1.1 Challenges of XML Stream Processing

There is a growing interest in data stream applications asahonitoring systems
for stock, traffic and network activities [14]. Recently iars research projects
have targeted stream applications, such as Aurora [9], dierf23], STREAM
[15], Niagara [22], TelegraphCQ [21], Cougar [28] and CABE][Many current
research works (including all the works mentioned aboveysoon relational or
object applications, that is, they assume a tuple-like aettdel (a tuple can contain
flat values and objects as in a relational or object datatesgectively).

Due to the proliferation of XML data in web services [54], thas also a
surge in XML stream applications [18, 25, 30, 33, 32, 35, 3}, 6The major
task of a message broker is to route the XML messages to theegtéd parties
[35]. In addition, the message brokers can also perform agessestructuring or
backups. For example, in an on-line order handling systefh [Suppliers can

register their available products at the broker. The brakiéirthen match each

1.1. CHALLENGES OF XML STREAM PROCESSING 6

incoming purchase order with the subscription and forwetal the corresponding
suppliers, possibly in a restructured format at the reqokste suppliers. Other
typical applications include XML packet routing [8], sefiee dissemination of
information [10], and notification systems [59].

A challenge that these XML stream applications pose is thatbtion of a
“tuple” no longer completely fits as a processing unit. In XML context, we
use the term “tuple” to mean a list of cells with each cell eimihg a set of XML
element trees. This is because the XML query semantics féajefined as XML
tree outputs computed on the given XML tree inputs. In otherds, an XML tree
(just like a flat value or an object in the relational or objewtdel) is the natural
granularity for processing. We use the the XML document €dasn the XML
benchmark XMark [7]) in Figure 1.1 (a) as an example. Eaclertak the XML
document is annotated with a number in italic font servinthasdentifier for ease
of reference. This document is modeled as a tree as showmgumeFi.2. A node
in the tree represents an element, an attribute, or a PCDé&Xiéftagment. The
semantics of an expression, s&y/open_auctions/open_auction in the query in
Figure 1.1 (b), are defined as returning thestionelement trees in the document,
i.e., the trees rooted at the highlighted nodes in Figure 1.2

However, XML streams are often handled as a sequence oftwéntokens,
such as a start tag, an end tag or a PCDATA item. That is to gagc@ssing unit
of XML streams has to be a token, which is at a lower granyiahian an XML
node. Such a processing style, i.e., a processing unit laiadgower granularity
than the data model, has not been studied thoroughly by thbalse community as
of now. This granularity difference is a specific challenigatthas to be addressed

for XML stream processing.

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 7

1<open_auctions> for $a in stream(“open_auctions)
2<open_auction> /open_auctions/open_auction[initial],
3 <seller> $b in $a/seller,
4<sellerid>5 001 6</sellerid> $c in $a/bid/bidder
7<phone8 508-1234567 9</phone> Where
$b/phone/text() = “508-1234567"
10<phonex1 508-000456712</phone> return
13 </seller> <auction>
14 <bid> {$b, $c}
15 <bidder>16<bidderid>17 032 18</bidderid>19</bidder> </auction>
20 <bidder>21<bidderid>22 145 23</bidderid>24</bidder> (b) XQuery on Open_auctions Stream
25 </bid>

26 <initial> 27 15.0028 </initial>
29 </open_auction>

(a) Open_auctions Stream

Figure 1.1: Example XML Document and XQuery

open_auction

seller

sellerid

phone

“508-
0004567

“508-
1234567"

Figure 1.2: A Tree Representation of XML Document in Figurk (R)

1.2 State-of-the-Art of XML Stream Processing

Two camps of solutions have been proposed for modeling XNbash process-
ing. The first camp of solutions uses tokens as the processihighroughout the
whole evaluation process. In contrast, the second camputists uses different
processing units in different stages of the evaluation. hin first stage, it con-
sumes token inputs but generates tuple outputs. Tuple gBiDgeunits are then

used throughout the second stage. These two camps arer finttioeluced below

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 8

in Sections 1.2.1 and 1.2.2 respectively.

1.2.1 Pure Automaton Paradigm

The concept of an automaton was originally designed forlfalji the functional-
ity of matching expressions over strings. This functiayaik very similar to one
major XML query functionality, i.e., matching path express over tokens. Such
close resemblance has inspired several recent project8{685, 35] to exclu-
sively use automaton for the complete task of XML stream ygpescessing. Such
a pure automaton paradigrhas to strike a balance between the expressive power
of the query it can handle and the manageability of its contdr

For example, XPush [35], using a push-down automaton, stgpather lim-
ited query capabilities. Since the push-down automatonnieasutput buffers,
it cannot return the destination elements reachable viaRatlX not to mention
restructure the destination elements. It only returns deamoresult indicating
whether or not an XPath is contained in the input stream.

Some projects adopt more powerful automata in order to geomore query
capabilities. Typical examples are XSM [52] and XSQ [65]muping the XQuery
and XPath languages respectively. However the supportabf isicreased expres-
sive power of the queries is not gained without sacrifice. Timéng-machine-like
model they adopt describes the computations at a ratherdes¥. | Such a query
model is somewhat similar to a procedural language thaeptesall internal de-
tails of the computations. Figure 1.3 gives an example of hgrvath expression
“/a” is modeled in XSM. The automaton reads a token from tipeiifbuffer one at
atime. The state transition indicates that if a certainndhas been read (expressed

as the part before

"), then the corresponding actions (expressed as the fart af

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 9

") will be taken. For instance, the transition from state Etate 2 indicates that
if a token<a> has been read, it should be copied to a certain output buffer.

*ri=
*rl=<a>|r++ Iw(x,*r) r++

*r = srir++ *r =<a>w(X,8X),wW(x,<a>),r+
©) 2

*r = er|w(x,eol),r++ *r =|w(x,),w(x,ex),r++

Figure 1.3: XSM Automaton for Encoding an XPath expressia “

Such a pure automaton paradigm has not been thoroughlyedtadia query
processing paradigm before by the database community. lglaipyems that have
been well studied in tuple-based algebraic frameworks iemaexplored in this
new paradigm. These include how to optimize the queries irodutar fashion,
how to rewrite the queries, how to cost alternative procgsgians, and how to

derive efficient implementation strategies.

1.2.2 Loosely-Coupled Automaton and Algebra Paradigm

On the other hand, the tuple-based algebraic query progeparadigr has been
widely adopted by the database community at large for quetiynization. Its suc-
cess is rooted at (1) its modularity of composing a query fimifividual operators;
(2) its support for iterative and thus manageable optinopadecisions at different
abstraction levels (i.e., logical and physical levels) éB) efficient set-oriented
processing capability.

It is thus not surprising that numerous tuple-based algefanad optimization

techniques based on it) for processing static XML have beepgsed [78, 46, 62]

LIn this paper, the term “algebra” specifically refers to tiglé-based algebra.

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 10

in recent years. Naturally it is expected that such an algelparadigm could

also be utilized for XML stream processing so that existeghhiques can be bor-
rowed. However, as we have mentioned before, such an algedaeadigm does

not handle the token input data model.

Recent work, such as Tukwila [42] and YFilter [30], aims tadge the token
inputs and the tuple inputs typically assumed by the algphradigm. They pro-
cess an XQuery in two stages. In the first stage, they use atacim handleall
structural pattern retrieval. XML nodes are built from tokeand organized into
tuples. These output tuples are then filtered or restrugturéhe second stage by
a more conventional tuple-based algebraic engine.

We now give an example for this approach. Figure 1.1 shows@uexy on the
stream in Figure 1.1. This query pairs sellers with biddéra certain open auc-
tion. Figure 1.4 shows the corresponding Tukwila query pM&j. The portions
underneath and above the line describe the computatiohe ifirst (i.e., automa-
ton) and second stage (i.e., algebra) respectively. Wiileatgebra processing is
expressed as a query tree of algebra operators (skipped figthre), the automa-
ton processing is modeled as a single operator cal&tan (YFilter also has a
similar module called “path matching engine”). Tukwila @s®s that retrieving a
pattern in an automaton is rather cheap. Therefore theyresthat all the patterns
should be retrieved in the automaton. As a result,XHecanoperator exposes a
fixed interface to its downstream operators, namely, thdibgs to all the XPath
expressions in the query as annotated besidXtBeanoperator in Figure 1.1.

However, in our work we will illustrate that this assumptiorade by Tukwila
does not necessarily always hold. For example, consideltennative plan which

only pushes the pattern retriewenauctiongopenauctionand$a/initial into the

1.2. STATE-OF-THE-ART OF XML STREAM PROCESSING 11

T
tuple processing (Sel $e =508-1234567”)
*
. I . .
automata processmg(X-Scan) $a = open_auctions/open_auction
$b = $a/seller
T $c = $a/bid/bidder

(Source “open_auctions” $S) $d = Sa/initial
$e = $b/phone/text()

Figure 1.4: Tukwila Query Plan for Query in Figure 1.1 (b)

X-Scaroperator. Only thosepenauctionelements that haviaitial child elements
are extracted and XML nodes are formed out of them. They atbdunavigated
into to locate the remaining patterns as we do when proagssaiic XML data.
Intuitively, patterns$a/initial, $a/seller and$a/bid/bidder are retrieved in par-
allel in Tukwila while they are retrieved in a serialized manin our alternative
plan. The alternative plan is shown in Figure 1.5. When onlgrg small number
of openauctionelements hamiitial child elements, this alternative plan saves most
of the pattern retrieval includingu/seller, $b/phone/text() and$a/bid/bidder.
It thus may perform better than the original Tukwila pfan

In summary, automaton processing, though accommodatedhilgabraic frame-
work as an operator, is not considered by the query procésdm rewritten with
any other operators. Such a paradigm does not benefit fronogpertunities
that an algebraic framework is supposed to provide. We thlighgs approach a
loosely-coupled automaton-algebparadigm due to the strict separation between

the token-based automaton processing and the tuple-blgdxtaic processing.

2Although Tukwila provides dollow operator which retrieves patterns in XML nodes, it is ex-
plicitly mentioned in [42] thafollow will be only used for retrieving XLinks instead of XPaths. It
appears that Tukwila does not consider moving patterresetriout of theX-Scanoperator.

1.3. DISSERTATION RESEARCH FOCUS 12

(Selse = “508-1234567")

f

(NodeNaV$a/bid/bidder$cj

f

(NOdeNaV$b/phone/text($e>

tuple processing (NodeNavsa/selleibb)
f

automata processir{g X-Scan’ $a = open_auctions/open_auctic
i $d = $a/initial

(SOU rce“open_auctions "$S>

Figure 1.5: Alternative Tukwila Query Plan

1.3 Dissertation Research Focus

We instead propose a paradigm that overcomes the limitafioriooth the pure
automaton and the loosely-coupled automaton-algebraligana. This paradigm
tightly couples automaton and algebra style of query psings Figure 1.6 shows

an abstract comparison between the loosely-coupled amititigoupled approaches.

Tuple-based plan

Tuple stream

Token-related
operators

Automata Mega-Operator, Tuple-based
O operators

(a) Loosely Coupled (b) Tight Coupled

Automata and Algebra Automata and Algebra

Figure 1.6: Comparisons of Two Automaton-Algebra Paragigm

1.3. DISSERTATION RESEARCH FOCUS 13

In the loosely-coupled paradigm, the pattern matching typeomputation
on tokens (the one captured most naturally by automaton otatipn) and the
remainder of the tuple-based computations (e.g., filtesimgdj restructuring) com-
municate through a fixed interface. We express this relglignas a query plan
divided into two separate boxes in Figure 1.6 (a). Insteadhe tightly-coupled
paradigm, even token-based computation is modeled as accmmpof the query
plan. This query plan is composed of multiple operators hEsach operator is at a
“proper” granularity, i.e., smaller than the mega-oparadescanbut still abstract
enough for easy specification of the pattern retrieval s¢éicgrin Raindrop model,
these operators modeling the automaton are uniformlyeealongside with the
tuple-based operators. In Figure 1.6 (b), we use one boxitong all operators in
the plan to express such uniformity. Rewriting rules cangy@ied to for example
switch computations into or out of the automaton. Therefmtiern retrieval is
no more restricted to be only performed in the automaton pa now list the

research issues that are addressed in this dissertation.

1.3.1 Architecture of Tightly-Coupled Automaton-Algebra Paradigm

We instead propose a paradigm that overcomes the limitatioboth the pure au-
tomaton and the loosely-coupled automaton-algebra marediWe also model the
pattern matching type of computation (the one captured madstally by automa-
ton processing) as a query plan composed of operators atragfeneularity than
X-Scan[42]. Such a model offers several benefits. First, the portibthe plan
modeling automaton processing can be reasoned over in alanddshion. That
is, optimization techniques can be studied for each opesajparately rather than

only for the automaton as a whole. Second, since the autonpatwessing is ex-

1.3. DISSERTATION RESEARCH FOCUS 14

pressed as an algebraic plan just like the other compugatiewriting rules can be
applied to, for example, switch computations into or outefautomaton. We have
implemented a prototype system based onftibistly-coupled automaton-algebra
paradigm [38].

The contributions of our system, call&ahindrop include:

e We accommodate both token-based processing and tupld-paseessing
within one uniform algebraic modelTo model the token-based processing
also as algebraic plans, we propose a data model for tokemslless a set of

algebra operators and plan structures that manipulatesok8ection 2.3)

e We present a three-level algebraic framework, semantics-focused plan
stream logical planand stream physical plan Each levels adds more de-
tails to the plan at the adjacent higher level. Such a lay&redework en-
ables us to reason at different abstraction levels, thuderarg optimizations

tractable and practical. (Section 2.1)

o We offer a set of rewriting rules that pushes or pulls pattetrieval into
or out of the automaton. This unique optimization oppotiurg not found
in either pure-automaton or loosely-coupled automatgefak paradigms.

(Section 2.4)

o We develop efficient implementations for operators modedintomaton pro-
cessing. These implementations take full advantage ohaattin behavior
and thus are in many cases more efficient than the other ingplidions in

the literature. (Section 2.5)

e The implementations of operators modeling automaton gsicg impose

1.3. DISSERTATION RESEARCH FOCUS 15

certain synchronization modes, i.e., certain operatorstine invoked at a
certain time to ensure both the correctness and efficienttyeaéxecution of
the plan. We propose a programming model to accommodatersades.

(Section 2.6)

e We perform extensive experiments illustrating that undéernt character-
istics of the input sources, no single strategy that pusbegpatations into
the automaton can ensure plan optimality. This confirms #wessity of
reasoning about computation push-in or pull-out of the mation. (Section

2.7)

1.3.2 Automaton-in-or-out Optimization

As mentioned in Section 1.2.2, the XML stream processintesys in the loosely
coupled paradigm always retrieve all the patterns in a guretlye automaton. In
contrast, Raindrop allows a plan to retrieve some of theepattetrieval in the
automaton and some out of the automaton. This opens up a nwizgiion
opportunity, calledautomaton-in-outi.e., given a query, which pattern retrieval
should be performed in the automaton and which should bemeed out of the
automaton.

Cost-based optimization is the mainstream optimizatichni&ue used in the
database community [63]. Therefore we also use a cost-lzagedach to explore
the automaton-in-or-out opportunity. There are three kaymonents in a cost-
based approach [69]: (1) a solution space of alternativespk®) a cost model for
comparison of alternative plans, and (3) a search strateggeflection of a plan

from the solution space. We now analyze the challenges wiging the above

1.3. DISSERTATION RESEARCH FOCUS 16

components that are specific to our scenario.

e Solution space can be delimited by a set of rewrite ruleseGan arbitrary
initial plan of a query, the solution space is composed offellalternative
plans that can be rewritten from the initial plan by the résvrules. The
rule that pushes or pulls pattern retrieval into or out ofdbiomaton is the
key rule we use to delimit the solution space. However, thiis alone is not
enough. When we compare the costs of two plans before andbgftattern
retrieval is pulled out of the automaton, in order for the panison to be fair,
we must place the pulled out pattern retrieval in an optinogition among
the other automaton-outside operators. We therefore reedddign more

rewrite rules to move the automaton-outside operatorsnakou

e For cost estimate, most previous research [63, 57] is orningpgte tuple-
based operators. For a Raindrop plan, in addition to cosieguple-based
operators, we also need to cost the token-based operatmts lags not been
studied before. The costs of token-based and tuple-basadtops must be
consistently defined so that the costs of a pattern retrkesfalre and after it

is pulled out are comparable.

e The search space in the automaton-in-or-out optimizateonbe exponen-
tial. Assume there are patterns in the query, we can choose to pull zero
patterns out of the automato@{ possibility), or to pull one pattern ou€¢
possibilities) and so on. Even just considering patterrienetl push-in or
pull-out, we can have’? + C! + C2 + ... + C" = 2" alternative plans, not
to mention that more alternative plans can be brought by oéverite rules.

How to efficiently find a “good” plan within such an exponehsaarch space

1.3. DISSERTATION RESEARCH FOCUS 17

is a major challenge.

To complicate matters further, stream sources are oftamantous from the
stream processors. It is very likely that the statisticsualtloe stream source are
unknown before the stream arrives. Ideally, we do not wadttticate time solely
for the statistics collection. The reason is that this waelguire buffering all the
data that arrive during the statistics collection only pergo that these data can be
processed later. It not only puts strain on the system meimgrglso increases the
guery response time. Therefore, we instead target at nuadiptimization, i.e., we
run an initial plan on the stream, collect statistics ana thgtimize the initial plan
using the statistics.

Compared to the compile time optimization, i.e., decidinglan before any
data are processed, run-time optimization faces an adédltichallenge, that is,
plan migration [85]. In the compile time optimization, onae optimal plan is
found, we simply start to run it on the data. In the run-timergrio, we how-
ever have to consider how to migrate from a currently runmilag to a new plan
found by the optimizer. We impose two requirements on tha pligration strat-
egy. First, it must be correct, meaning the process with e migration should
generate exactly the same result as that without the planatiog. Second, it
should also be efficient. Otherwise the benefits of run-timpgnmdzation may be
outweighed by its overhead.

When we process a query, two scenarios regarding the str@arorenent may
arise. In the first scenario, the stream environment hasestiva characteristics,
i.e., the costs and selectivities of all operators in theyjde not change over time.

This means that we can start off with a plan, collect stasstor a moment, and

1.3. DISSERTATION RESEARCH FOCUS 18

then optimize the plan. After this optimization, we do notén¢o collect statistics
or perform optimization any more since the current plan ieamaptimal for the
rest of the execution.

In the second scenario, the data statistics change over t8ueh variation
commonly arises due to the correlation between the sefegtiedicates and the
order of data delivery [13]. Suppose a stream source abopliogees is clustered
onage. A selectionsalary > 100,000 can have higher selectivity when the data
of elder employees are processed (elder employees uswally igher salary).
In such a scenario, we need to constantly monitor thesestitatiand constantly
optimize the plan. Compared to the first scenario where thien@ation only
needs to take place once, the second scenario poses dinwerequirement on
finding a new plan quickly.

Targeting the above challenges, we have developed a satltofiteies as be-

low:

1). We design two types of rewrite rules to optimize the awttum-outside pro-
cessing. One type of rules commutes the automaton-outpieiaimrs. The
other type of rules changes the evaluation order of the iopetators of
structural joins Structural joins are special joins in Raindrop that take ad
vantage of the automaton computations to efficiently “glliiegar patterns
into tree patterns. Correspondingly, we propose both &&csiand rank
functions (a cost-based technique) to optimize the plangufiese rewrite

rules. (Sections 3.1, 3.3 and 3.4)

2). We design a cost-model for both the token-based and-hgded computa-

tions. In particular, we observe that in the automaton cdatmns, some

1.3. DISSERTATION RESEARCH FOCUS 19

3).

4).

5).

6).

cost is amortized across multiple pattern retrieval. Thab isay, the cost of
retrieving multiple patterns is not a simple summation ef tst of retriev-
ing each individual pattern. We take this feature into aotethen develop-

ing the cost-model for the automaton computations. (Se@&ig)

For the stream environment with stable data charattexisve propose an
enumerative and a greedy algorithm to search through thei@olspace.
We propose to expedite the search by reducing the time spenbsting

each alternative plan. This is achieved by two techniquesemental cost

estimate and detection of same cost change. (Sections3.56n

For the stream environment with fluctuating charadiess we drop one
type of rewrite rules which usually is less likely to affebetplan perfor-
mance compared to other rewrite rules. This reduces the euailalterna-
tive plans in the search space. More importantly, withiis #garch space,
we are able to provide a greedy algorithm with pruning rulBse pruning
rules exclude some alternative plans that are guaranteei e optimal.

(Section 3.7)

We analyze the cost model and derive a minimal set ofstitzdithat need
to be collected at run-time. We enhance the Raindrop opsratothat they

can collect statistics at the same time when they are exéc(8ection 3.8)

We design an incremental plan migration strategy thagee the automaton
of the currently running plan. We also proposmigration windowwhich is
a period of time in which the migration can safely start withorashing the

system nor generating incorrect results. We further shaitvtthis migration

1.3. DISSERTATION RESEARCH FOCUS 20

window is already “widest”. In other words, we cannot defimnether mi-
gration window that contains the proposed one but still gotees that any

plan migration within it is safe. (Section 3.9)

1.3.3 Schema-based Optimization for Automaton Processing

If the schema of the XML stream is known, we can use it to furth@imize a
Raindrop plan. Among the three major functionalities of afilXquery language,
namely, pattern retrieval, filtering (e.g., join) and rasturing (e.g., group-by),
we can borrow existing techniques for the latter two funwidgies. For example,
semantic query optimization (SQO) has been well studie@lmtional databases.
Classical techniques include join elimination, filter aliattion, empty result de-
tection etc. They utilize schema knowledge such as keygforkey and domain
constraints. As long as the counterpart schema knowledgféei®d for the XML
stream, these techniques can be equally applied.

In contrast, pattern retrieval is specific to the XML data elod herefore, re-
cent work on XML SQO techniques [11, 26, 30, 35, 53] focusegaitern retrieval
optimization. Most of them fall into one of the following twaategories:

1. Techniques in the first category are applicable to botkigtent and stream-
ing XML. For example,query tree minimizatiofll, 83] would simplify a query
asking for “all auctions with an initial price” to one askifigr “all auctions”, if it
is known from the schema that each auction must have an ipitce. The pruned
query is typically more efficient to evaluate than the oréjjione, regardless of the
nature of the data source.

2. Techniques in the second category are only applicablernsigtent XML.

For example, “query rewriting using state extents” [53]lekp the fact that an

1.3. DISSERTATION RESEARCH FOCUS 21

index may have been built on element types. Given an elergpef &ll the XML
element nodes of this type (called “extents”) can be diyeaticessed using the
index. With the schema, the element types of the query sesait be inferred. The
extents of these inferred element types can then be retasgdery results. Since
in persistent XML applications, the data is available befthre query processing,
it is practical to preprocess the data to build indices. Difien is not the case for
XML stream applications since data arrives on the fly and liysna indices are
provided in the data.

We instead focus on SQO specific to XML stream processing.digtimguish-
ing feature of pattern retrieval on XML streams is that ie$plelies on the token-
by-token sequential traversal . There is no way to jump toreireportion of the
stream (similar to the sequential access manner on magapts). We however
can use schema constraints to expedite such traversal jpyirsiicomputations

that do not contribute to the final result, as illustrated xa@ple 1.

Example 1 Given a query/news[source] | /keyword contains “ipod”], without
schema, whether a news element satisfies the two filters yskaplvn when an
end tag of news has been seen. Four computations have to fogrped all the
time, namely, (1) buffering the news element, (2) retrg\pattern “/source”,
(3) retrieving pattern ‘/ /keyword” and (4) evaluating whether a located keyword
contains “ipod”. Suppose instead a DTRIELEMENT news (title, source?, date,
keyword*, ...)> is given. The pattern fdate” can be located even though it is not
specified in the query. If a start tag of date is encounterdchbwource has been
located yet, we know the currentws will not appear in the final result. We can

then skip all remaining computations within the curreriws element. This can

1.3. DISSERTATION RESEARCH FOCUS 22

lead to significant performance improvement when the sizekeoKML fragment
from date to the end ohews is large (saving the cost of computation (1)) or there

are a large number okeyword elements (saving the cost of computations (3) and

(4)).

Only a limited number of XML stream processing engines [1,3D, 35, 52]
have looked at the SQO opportunity. Among them, SQO in [3DjsbAot stream-
specific (further discussed in Section 5.3) while SQO in B5],is stream-specific
but has the drawbacks listed below.

Limited Support for Queries. First, [17, 35] address queries with limited expres-
sive power, i.e., boolean XPath matching that only retuo@dan values indicat-
ing whether an XPath is matched by the XML stream. In otherdaoboolean
XPath matching does not differentiateelvs[source]from /newgsource As for
XSM [52], even though it supports XQuery, its SQO essentiaptimizes only
those parts of XQuery that are equivalent to boolean XPattchitg. A more
powerful language, like XPath or XQuery, raises new chglksnin SQO as listed
below.

1. How to decide whether a schema constraint is usefié first use XPath as
an example. Given a quenewssource knowing that ‘sourcemust occur before
date’ is not helpful. Early detection of the absenceswoiurcewill not lead to any
cost savings in buffering, since nothing besides sharceneeds to be buffered
(this constraint however would be useful to the queeygsourcd). The above
constraint will not help the queryews[sourcé/title either, becausétle has al-
ready been retrieved by the time when the absenc®uoicewould be detected

as <date> is encountered. When it comes to XQuery, more subtletiash as

1.3. DISSERTATION RESEARCH FOCUS 23

variable bindings and nested queries, have to be considered

2. How to execute the optimized quey¥ML stream-specific SQO may take
place at a lower level than the other SQO. Typically, SQOrigples rewrite a
guery into a more efficient format at the syntactic level (eagth less predicates
[66], less patterns [11] or smaller extents [53]). HowewerXQuery can capture
the optimization in Example 1 at the syntactic level. Spegfysical implemen-
tations must be devised for these optimization techniqu®&#h more powerful
queries supported, the physical implementations beconre swnplex. For ex-
ample, for an XQuery that buffers data, temporary data mestidaned carefully
when computations are skipped. In Example 1, wkeuarceis found not to ap-
pear, the partially storedewsmust be cleaned. Or for an XQuery that has nested
subqueries, a failed pattern in the inner query should rietthe computations in
the outer query (discussed more in Section 4.2.1).
Overlooking Synergy of General and Stream Specific Optimizgons. Even
within the scope of the queries and the constraints thesespidress [26, 18,
52, 35], some optimization opportunities are overlookedese opportunities arise
from the synergy of general and stream-specific XML SQO. Kan®le, type
inference, which infers the types of the nondeterministicigation steps such as
“*" or “/[”, can be combined with the stream specific XML SQO émable more
optimization opportunities.
Lack of Strategies for Applying Possibly Overlapping Optimization Techniques.
[17, 35] both consider a single optimization technique ggine type of schema
constraint. Their proposed technique can be independapihjied on different
parts of the query. If more types of constraints are explonedltiple techniques

must be considered. We have observed that when applying thiierent tech-

1.4. DISSERTATION OUTLINE 24

niques or even one complex technique on different parts efgtkery, they may
“overlap”, i.e., unnecessarily optimizing the same parthef query which causes

additional overhead. Strategies are needed to avoid sddndant optimization.

In this dissertation, we propose XML stream specific SQO riggles that

overcome the above drawbacks. Our techniques have the bedtuves:

e Our techniques target at XQuery, a query language that is pmwerful and

a super set of the boolean XPath matching and XPath queryages.

e We utilize type inference techniques in our SQO which ersablere parts

of a query (i.e., the parts containing “//” or “*”) can be apiized.

e We design a set of optimization rules. Each rule utilizesfferint schema
type. We also design a rule application algorithm that essuno benefi-
cial optimization is missed (completeness); and no redoindgtimization

is introduced (minimality).

e We incorporate these SQO techniques into our XML streamgssing en-
gine. We propose strategies for correctly and efficientbleating the Rain-

drop query plans optimized with SQO.

1.4 Dissertation Outline

We present the three research problems, namely, an autoralgibra combined
architecture, run-time optimization, and schema-basennggation, in Chapters
2, 3 and 4 respectively. Related work is described in Chdpt&ve conclude and

discuss possible future directions in Chapter 6.

1.4. DISSERTATION OUTLINE 25

The materials in some chapters have been published as j@amnthaonference
papers. The materials in Chapter 2 have been presented,i89440]. The mate-

rials in Chapter 4 have been presented in [38, 41].

26

Chapter 2

Raindrop Architecture:
Combining Automaton and
Algebra Processing Styles for

XML Stream Processing

2.1 Three-level Algebraic Framework Overview

The Raindrop algebraic framework is composed of plans atthevels. A lower
level plan adds more details to its adjacent higher level. X&uery will be first
compiled into the plan at the highest level. Step by stepjlitbe finally refined
into the plan at the lowest level.

1. Semantics-focused planThe plan at this level focuses on expressing the

semantics of an XQuery. The nature of the input source,wieether it is stored

2.2. SEMANTICS-FOCUSED PLAN 27

data or tokenized stream data, is not exposed yet. Generaédy@ptimization
techniques that are not specific to either stored or strepduata, such as XQuery
decorrelation that removes nested subqueries [29, 71[j@&y tree minimization
that removes redundant pattern retrieval [11], can be eghln this query plan.

2. Stream logical plan: The plan at this level is specialized to account for
the input being XML token streams, instead of assuming randocess to the
complete XML data. For this, the data model accommodatesninkd inputs.
Correspondingly, new operators and new plan structuresalaceintroduced to
model the automata processing. Moreover, rewriting rutesdafined to rewrite
the plans involving these new constructs.

3. Stream physical plan: This level provides implementation details for each
operator in the stream logical plan. In particular, the iempéntations of the op-
erators that model automata processing have an importanirée That is, they
require certain synchronization with other operators wuea their correctness.

The semantics-focused plan is described in Section 2.2ioBe.3 and 2.4
discuss the stream data model and rewriting rules in tharsttegical plan. The
stream physical plan is presented in Section 2.5. Sect®th2n presents a pro-
gramming model for synchronizing the execution of physimaérators. Experi-

mental results are reported in Section 2.7.

2.2 Semantics-Focused Plan

Our semantics-focused plas based on an XML algebra called the XML Algebra
Tree (XAT) [78, 79, 77]. The algebra defines a set of operatmiading (1) XML-

specific operators, e.g., operators for navigating intonisted XML structures,

2.2. SEMANTICS-FOCUSED PLAN 28

and operators for XML result construction, and (2) SQL-liggerators such as
Select Join, Groupby Orderby, Union, DifferenceandIntersect

The input and output of the operators are a collectioXAT tuples An XAT
tuple is composed of cells. A cell in an XAT tuple can be onehef following
types: (1) an atomic value, (2) an XML element node or (3) aordered or or-
dered collection of XML element nodesEach cell is bound to a variable that is
explicitly or implicitly specified in the query. Figure 2.lepicts some example
XAT tuples. $s, $a and$b are explicitly defined variables. The cells boundsto
$a and $b contain one XML element node respectively. ResultsSofinitial
and $b/phone are not explicitly bound to a variable in the query. The query
compiler assigns random variable names to their resulteha$d and$e. The
cells bound tdfd and $e contain a collection of XML nodes: the collection for
$d ($d = $alinitial) contains one element node while the collection $er($e
= $blphoneltext()) contains two text nodes. We use the notatigh to separate

items in a collection.

$s $a $d $b $e
<open_auctions> [<open_auction> .[<initial>15.00 <seller> ... 508 -1234567 ||
</open_auctions | <open_auction> <finitial> || </seller> 508-0004567

Figure 2.1: Example XAT Tuples

Table 2.1 gives the semantics of the XAT operators that véllused in this
paper. The full set of XAT operators can be found in [77]. Eapkrator in Ta-
ble 2.1 is defined in terms of the output expected when an iKgdt tuple « is
consumed. Some operators generate hew columns. For exaNdeUnnesor

NavNesbperator (generally referred Bvigateoperator when the difference be-

1XQuery supports both unordered and ordered expressions.

2.2. SEMANTICS-FOCUSED PLAN 29

tween them is not critical) navigates into a context nodefamis the destination
element nodes. Such a navigate operator generates newrlontaining the
destination element nodes. For example, in Table RalUnnesbr NavNestas

one output variabl&col2.

Operator Description
SOUrC€ purce Name $col Bind data source specified Byurce Name to column$col.
Taggey, $col(u) Tag an input tuple: according to patterp. Output a new tuple which

is the concatenation ef and taggered data. The taggered data is bound
to new columngcol.

Navunnesi;,1,pqtn $col2(u) Navigate into element node in colurinol1 of input tupleu. For each
destination node reachable viaath, output a new tuple which is the
concatenation of input tuple and n is bound to new columficol2.
NavNest o1, path Scol2(u) Navigate into element node in colurinol1 of input tupleu. All des-
tination nodes reachable vimth are aggregated into a collectiaw.
Output a new tuple which is the concatenatioruafnd the collection.
N is bound to new columficol2.

Select (u) If input tuple v satisfies conditior, output it.

Join.(u, v) If two input tuplesu andv, each from a different input source, satisfy
conditione, output a tuple which is the concatenationuoindo.

Table 2.1: Semantics of XAT Operators

Figure 2.2 shows the semantics-focused plan for the qudfigure 1.1 (b). It
also shows the output XAT tuples of some operators. We nowligtat the differ-
ence of two types of navigate operators, namidyUnnesandNavNest A vari-
able binding in a “for” clause is modeled afNavUnnesbperator. For example,
“for $a in Stream(“openauctions”yopenauctiongopenauctiori is expressed as
NavUnnestss jopen_auctionsjopen_auctionS@ Where$s represents the input stream.
The “for” clause iterates over the items in the expressimulte and binds the
variable to each item in turn. Therefo$e of an output tuple contains onlgne
element nodérefer to the output oV avUnnests, jopen_auctions/open_auction 3@ iN
Figure 2.2).

(LT

In contrast, a binding in a “let”, “where” or “return” clause expressed as a

2.2. SEMANTICS-FOCUSED PLAN 30

(Taggekauction>$b, $c</auction$f)

1
(Joirsa)

(Selecse= “508-1234567")

5 $a sd $h Se i
l<open_auctions> |.<open_auction> .|, <initial>15.00 <seller>... 508-1234567 || \
</open_auctions| <open_auction> <initial> || </seller> 508-0004567

(NavNestb, /phoneltext(be)

$s $a $d $b T .
[<open_auctions> [<open_auction> .} <initial>15.00 <seller>... (NavUnnesisa, /bld/bldder$C)
</open_auctions| <open_auction> <initial> || </seller>
(NavUnnesta, /seller$b)
$s $a $d \
Icopen_auctions> [<open_auction> .. <initial>15.00
</open_auctions> <open_auction> <initial> ||
(NavNestsa, /initial $d)
$s $a T

<open_auctions> |<open_auction> . l
</open_auctions> <open_auction>

@avUnnests, /openiauctiuns/openfaucticﬁg
[s |

open_auctions> .. 1
</open_auctions (

Source“open_auctions "$S)

Figure 2.2: Semantics-Focused Plan (annotated with imgiate results) for
querying data in Figure 1.1 (a))

NavNesbperator. Each such clause binds a variable to the expnassalts with-
out iteration. The namBavNesindicates that the output variable of an output tu-
ple containsa collection of element nodésfer to the outputs aVavNestg, /phone teat()Se
in Figure 2.2).

At this top level of the framework, we apply general optintiza heuristics
for query rewriting [78, 79]. For example, the operator edraut rule removes
redundant construction of intermediate results. As amakample, the navigation
merge rule merges two path expressions into a longer patiessipn. Since these
algebra rewriting heuristics are not stream specific, threyomitted here. See

[78, 79] for complete details.

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 31

2.3 Modeling Token-based Processing in Algebra

The second level in the framework, i.e., the stream logmadll is targeted at pro-
cessing the query on a tokenized input stream. In order totaiaithe “closure”

property of the algebra, i.e., use one data model througtheualgebraic frame-
work, the XAT data model is extended at this level to accomat@dlata inputs.
That is to say, besides the three data formats allowed in ahtple cell as de-
scribed in Section 2.2, a new data format cattedtextualized tokeis additionally

supported. New operators and query plan structures arenditeduced to manip-

ulate this new data format.

2.3.1 Token-Based Data Format

The new data format, calledontextualized tokenconsists of two partstoken
value describes the local characteristics of the token; takdn contextiescribes

the relationship between this token and the other tokertseiistream.

Token Value. A token value essentially is the information representec IBAX
event, namely, (1) the token’s type (i.e., a start tag, egtePCDATA item), (2)
the token’s name (for a start or end tag) or the token’s caritena PCDATA item)
and (3) the token’s attributes if any (for a start tag).

Token Context. We support context regarding the forward ancestor-descegnd
relationships between tokens. These relationships aré coosmonly queried in

XPath expressions usirahild anddescendanaxis specifications.

Definition 1 A tokent is associated witlan element if ¢ is e’s start tag, end tag

or direct PCDATA content. Each token is associated with thxane element.

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 32

Definition 2 A tokent is acomponent tokenf an element if the element associ-

ated witht is e's descendant element eiitself.

Example 2 In Figure 1.1 (a), token 2 is associated with @penauctionelement.

Tokens 2 to 29 are all component tokens of dpenauctionelement.

Three boolean functions are supported on the contextual@en types:

1. Reachable(t,t2, p) compares the accessibility relationship between tokens

t; andty: if £; andt, are both start tags, the function returns whether the elemen

associated withs is reachable via from the element associated with

2. Within(t1,t2) compares the component relationship between tokeasd

to: if t1 is a start tag, this function returns whetligiis a component token of the

element associated with.

3. t; = t3 compares whether andt, are associated with the same element in

terms of element identity (not only the same element coptent

2.3.2 Token-Related Operators

Operator

Description

StreamSourc8 cqm N ame Scol

Bind stream source specified byream Name to column$col.

TokenNaw o1, patn Scol2

Locate tokens that are components of the element which esaitite viapath
from $coll.

ExtractUnnesf,.;1 $col2

Compose tokens located by Tokenay1 pq+r $col2 into XML nodes. For each
destination node: reachable viaath, output a new tuple which is the concat
nation of input tuple ané. n is bound to new columficol2.

ExtractNess. ;1 $col2

Compose tokens located by TokenNay 1 pq:n$col2 into XML nodes. All des-
tination nodes reachable vimth are aggregated into a collectigd. Output a
new tuple which is the concatenation of input tuple aid N is bound to new
column$col2.

StructuralJoig,

Given two input tuples: andwv, if u.$e = v.$e, output a tuple which is the cont

catenation of, andv.

Table 2.2: Semantics of Token-Related Operators

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 33

We now introduce new operators that either generate or comguples con-
taining contextualized tokens, as listed in Table 2.2. Waotkethe semantics of
an operator bYOp,qramsoutvar(Uy), whereOp is the operator's namegarams
is a list of input parametersutvar is the output variable and,, is a collection of
the firstn input tuples. We use the monoid comprehension calculustf3&}press
Opparamsoutvar(Uy,), i.e., the output oDp on U,,. Informally, a monoid com-
prehension is in the form ohergeFunc{f(a,b,...)| a < A, b «— B, ...,preds,
preds, ...}. In the part after [”, A (resp. B) is a collection on which variable
(resp.b) iterates.pred; (or preds) is a predicate defined over variables sucla as
andb. The functionf(a, b, ...) constructs a collection that contains only one tuple.
This single tuple in the collection is composedagfb and so on. In the part be-

fore “|”, the functionmerge Func merges multiple collections into one collection.

In summary, a monoid comprehension returns a collectionciwis generated as

follows:

result : = an empty collection;
foreacha in A,bin B, ...,
if predi A preda A ...
result : = result mergeFunc f(a,b, ...)

returnresult.

For example, a monoid comprehensiofi(a,b)|a < {1,2},b « {4}} first
creates two collection§(1, 4)} and{(2, 4)}, then merges them using the function
U and returns a collectiof(1, 4), (2, 4}.

The notations used for defining the semantics of operaterdisied in Table

2.3. We illustrate each operator using the example in FijukeEach token in the

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 34

Notation Explanation

u.$c get binding of cell$c from tupleu

<c1 =v1,02 =0v3,... > construct a tuple with celt; assigned the value;, cell co assigned the value
v2...

U1 0 U construct a tuple by concatenating tuplesandus. If u; andug contain cells
that are bound to the same variable, remove one of the redtioels.

+ merge operator for list (a list is represented as [])

® compose tokens into XML nodes

Table 2.3: Notations Used for Defining Token-Related Opesat

input or output is annotated with its identifier.

StreamSource

This operator binds the sequence of the tokens from thensispacified bytr Name

to the output variable.
Example 3 For StreamSource«open_quctions$5, its first 4 output tuples are:

3s $5

<openauctions>! | <openauctions>!

<openauctions>! | <openauctior>2

<oper1auctions>1 <seller>3

<openauctions>! | <sellerid>*

Suppose the operator now consumes the firkikens, denoted &E,, in the
stream.n output tuples are constructed. Each output tuple confainthe explic-
itly specified output variable a$treamSource operator.$s is bound to the start
tag of the root element in the stream, denotedyas, identifies the root element
and thus also identifies the stream (in the rest of this sgotie always use a start
tag to identify its associated element). Simply identifysn element is not good

enough. We are also interested in the element content. fbnereach output tuple

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 35

also contains an implicit variablgs for $s. $s is bound to a component token
of the element associated wifts. In short, an output tuple a$treamSource

contains an identifier of the stream and a component tokemeagtteam.

StreamSourcesy Name$s(Ty) =

H {<$s=tg, 85 =t> |t — Ty}

Token Navigate Operator TokenNav

TokenN avg.1 patn$col2 Operator recognizes patterns over the token stream. It
returns the component tokens of the destination ele§wen2 accessible vigath
from the context elemerficoll. Each output tuple contains such a component

token and the token identifying the destination element.

Example 4 If TokenNavg, open_auctions jopen_auction 5@ takes the first 4 output tu-

ples fromStreamSource«open_auctions $s i Example 3 as input, its output is:

$s $a $a

<openauctions>' | <openauction>2? | <openauctiorn>2

<openauctions>' | <openauction>? | <seller>?3

<openauctions>! | <openauction-2 | <sellerid>*

For example, the second output tuple represents that tokiem 2<openauctiors>,
is reachable vig/open_auctions lopen_auction from token 1. It also represents

that token 3, i.e.<seller>, is a component of the element associated with token 2.

TokenN avgeon pan$col2(Uy) =

H{uo < $eol2 = u1.$coﬁl/1,$coflv2 = uQ.$cfovl1 > |
uy — U,, ug «— Up, Reachable(ul.Scoll,u1.$coNll,path),

Within(uy.$coll, ug.$coll)}

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 36

An input tupleu; € U, to T'okenN avg.1 patn$col2 contains bindings of vari-
able$coll and the explicit variablécol 1. If Reachable(uy.$coll, uy $eoll, path)
is true, them1.$coNll is the start tag of a destination element. For each component
token of this destination element, i.e., for eaﬁj1$coﬁl/1 that hasus, € U, and
Within(u1.$coNll, u2.$coNll) is true, an output tuple is constructed. The output
tuple is the concatenation af;, the start tag of the destination eleme$td2 =

uy.$col1), and the component token (i.8col2 = us.$coll).

Composition Operator ExtractUnnest

Sections 2.3.2 and 2.3.2 present two extract operakorsyactUnnestg,.,;1 $col2
andExtractNestg,.,;1$col2 (generally referred aSxtractoperator). Both of them
must have an input operator in the formBbkenN avg.,i1 parn$col2. The input
TokenN avg.o1 patn$col2 locates the component tokens$ab/2 while the extract

operators composes these component tokens into XML nodes.

Example 5 SupposeEztractUnnestg,$a consumes the first 3 output tuples of
TokenN avgs jopen_auctions /open_auctionS@ IN Example 4. It generates the below

tuple.

$s $a $a

<openauctions>! | <openauction>? | <openauctior>2 <seller>3 <sellerid>*
The cell$a contains a yet-to-be-completed element node. It is condpoke
tokens 2, 3 and 4. This tuple is a partial output for the inmérsso far. Eventually,

$a would contain a complete element node composed from toletoRen 29.

ExtractUnnestg., $col2(U,) =

Grou}){$col2} ,@($cft\)_l/2) Un

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 37

Group{$c U, is a function that groups input tuples on destination

ol2},®($col2)
node$col2 so that the component tokens (i.&:/o\lé) of the same destination node
are all collapsed into one group. The component tokens nvihe group are then

composed (represented@¥into one element node.

Composition Operator ExtractNest

The difference betweek'ztract Nest and ExtractUnnest is analogous to the
difference betweerNavNest and NavUnnest mentioned in Section 2.2. The
destinations found within the same context are aggregatedone single collec-

tion.

Example 6 Supposelxtract Nestg,$e consumes the first 2 tuples generated by

TokenN avgy, /phone teat()Se Which are,

$s $a $b $e $e

<open auctions>! | <open auction>> <seller>| <phone>" |508-1234567

<open auctions>! | <open auction>2 | <seller>3| <phone-'° |508-000456%"

the output tuple below is generated:

$s $a $b $e

<open auctions>! | <open auction>2 | <seller>3| 508 — 1234567||508 — 0004567

The output tuple represents that within apenauctionelement with a start
tag 2 (bound tdba), there is asellerchild element with a start tag 3 (bound $6).
So far, twophonesubelements of thisellerhave been formed and aggregated into

one collection (bound t&e).

ExtractNestgeon pan$col2(Uy,) =

Group g oy 4 (seoi2) (GTOUP (om0 @ (scoiz) Un)

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 38

From the definitions o’ ztract Nest and ExtractUnnest, we can se& ztract N est
has a further grouping on the outputiBitractUnnest by the context nodécol1.
In this way, all the destinations found within the same ceindee grouped together

and aggregated (representedia3 into one collection.

Structural Join

In Figure 1.1 (b), path expressiob@/seller and$a/bidlbidder share the same con-
text variable$a. To capture this relationshifgtructuralJointakes outputs of two

Extractoperators as inputs and “glues” bindings of individual patpressions.

Example 7 Suppose output tuples @fxtract Nestg,$0 and ExtractNestg,$c

are joined on$a. Assume the left input is one XAT tuple:

$s $a $b

<openauctions>" <openauctior>> <seller><sellerid>001 ..</seller>

and the right input corresponds to two XAT tuples:

$s $a $c
<openauctions>" <openauctior>?> <bidder><bidderid><032> ...</bidder>
<openauctions>* <openauctior>> <bidder><bidderid><145> ...</bidder>

Then two output tuples are constructed as below:

$s $a $b $c
<open auctions>! [<open auctior>2 <seller><sellerid> 001 | <bidder><bidderid>
.<lIseller> 032..</bidder>
<open auctions>! [<open auctior>2 <seller><sellerid> 001 | <bidder><bidderid>
.<lIseller> 145..</bidder>

2.3. MODELING TOKEN-BASED PROCESSING IN ALGEBRA 39

The output tuples represent that within apenauctionelement with start tag
2 (bound to$a), there is asellerelement (bound t&b) and twobidder elements

(bound to$c).

Below, we usd/ L,,; andU R,,5 to denote the first1 andn2 input tuples from

the left and right upstream operators respectively.

Structural Joing(U Lyp1, U Ry2) =

+H {ul our|ul « ULpy,ur < URp2,ul.$e = ur.$e}

2.3.3 Stream-Specific Plan Structures

XML streams arrive on the fly so that unless a token is explisitored, it can be
accessed only once. The token-related operators must hected in a way which
ensures that no repetitive token access occurs. An autancatoread data once
and concurrently recognize multiple patterns. We theesfoopose a special plan
structure that models the automata behavior.

Each pattern is defined as a sequence of states in the autonigite input
drives the transition between these states. Figure 2.2depistream logical plan
adopting this processing styl&oken N avg, /sciier$0 @andToken N avg, jpia/vidder 3¢
share the same upstream operafokenNay; /open_auctionsjopen_auction 5@~ This
sharing indicates that, for every token read from the comopsiream operator,
we try to match eithe$a/seller or $a/bid/bidder. The two downstream extract
operatorsEztractUnnestg,$b and ExtractUnnestg,$¢ compose theellerand

bidder element nodes respectively. Later &ftyucturalJoing, glues theseller

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 40

andbidderelements which are subelements of the sapgnauctionelement into

one output tuple.

(Taggcr <auction>$b, $c</aucti0n>$f)

Structuraloin $a)

(StructuralJoin $b)

(Sel $e = “508-1234567")

(ExtractNest $b Se) ExtractUnnest $a $b

(TokenNav $b, /phoneftext() $ey—) ExtractUnnest $a $¢
TokenNav $a, ‘initial $d (TokenNav Sa, /seller $b) (TokenNav $a, Midbidder $c)

ExtractNest $a $d

ExtractUnnest $s $a

(l'okenNav $s, open_auctions/open_auction $a>
)

(StreamSource “open_auctions” $s)

Figure 2.3: Stream Logical Plan for the Semantics-focudad iR Figure 2.2

2.3.4 Regular Tuple-based Operators

Apart from the token-based operators, the rest of the aprsrat a Raindrop plan
consume or generate the “regular” cells of tuples, i.e.y e not consume or
generate tokensNavUnnest, NavNest, Select andTagger defined in Table

2.1 are examples of such operators.

2.4 Rewrite Rules Involving Token-Related Operators

We now present two rewrite rules that involve token-relabtpérators. The first
rewrite rule maps the semantics-focused plan to a defaghrstlogical plan while
the second rewrite rule provides alternative stream logieens other than the de-

fault one.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 41

2.4.1 Default Mapping Rewrite Rule

The default mapping rewrite ruleshown in Figure 2.4, provides a default map-
ping from a semantics-focused plan (left in Figure 2.4) tdraasn logical plan
(right in Figure 2.4). First, the gener8ourceelement is replaced by a more
specific StreamSourcelement. Second, the bottommastvUnnest operator
(resp. NavNest) is mapped to dokenNav and anExtractUnnest (resp.
ExtractNest) pair. The purpose of this rewriting is to avoid the extractiof
the complete incoming stream. Extracting the completeriming stream not only
increases the response time but also may be impossible Wwhengut is infinite.
Therefore by default, we push the bottommost node navigageator into the au-

tomata.

NavUnnest (NavNest) $s, path1 $coll)

Source streamName $s)

T

(ExtractUnnest (ExtractNest) $s $coll)

(TokenNav $s, pathl $coll)

(StreamSource “streamName” $s)

Figure 2.4: Default Mapping Rewrite Rule

For example, this rule can be applied on Figure 2.2 to deridefault stream
logical plan as shown in Figure 2.5. In the default streamchigplan, all the
openauctionelements are extracted. The composed element nodes wilie n

gated by later operators.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 42

(Tagger<auction>$b, $c</auction>$f)

(Join$a)
/
Select $e= “508-1234567")

NavNest $b, /phone $&)
A
(" NavUnnest sa. bidbidder ¢)

NavUnnest $a, /seller $b)

(NavNest $a, /initial $d)

(ExtractUnnest ss $a)

(TokenNavss, /open_auctions/open_auction $a)

(StreamSource “open_auctions” $s)

Figure 2.5: Plan Rewritten from Figure 2.2: Default MappRewrite Rule Ap-
p“ed OnNavUnn63t$s,/open_auctions/open_auction$a

2.4.2 Token-or-Node Mode Change Rule

We providetoken-or-node mode change ruMhich rewrites an operator that re-
trieves pattern on XML nodes (i.d&NodeNay to an operator that retrieves pattern
on tokens (i.e..TokenNay. There are two circumstances for applying this rule.
Figure 2.6 shows the rule in the first circumstance. In thisucnstance, the top
plan does not contain 8tructuralJoing.,;. When rewrite rule is applied on
NavUnnest(NavNest)geon patn1$col2, the top plan is rewritten to the bottom
plan in which aStructuraljoing..; iS introduced. We call this rewrite rule a
mode change with introducing/eliminating StructuralJoite.

We now explain why this rewriting results in an equivalenarpl The in-
ternal logic of NavUnnest(NavNest)sqon patn1$col2 can be divided into two
parts. First, it locates the destination element nodes2$cthis is achieved by

TokenNav and ExtractUnnest(ExtractNest) in the rewritten plan. Second, it

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 43

(NavUnnest(NavNesP}coll, pathl$CO|2)

(ExtractOps$colo $coll)

(TokenNav$col0, patho$coll)

|

(StructuralJoingcoll)

éxtractUnnest(ExtractN ess):o|1$c09

(Extract0p§co|0$coll j(TokenNav $coll, path1$col2)

(TokenNav $col0, patho$coll)

Figure 2.6: Mode Change with Introducing/Eliminating $turalJoin

generates an output tuple for each destination element @i output tuple is a
concatenation of the input tuple and the destination elémede. This is equiva-
lent to the cartesian product of the input tuples and the fsgéstination element
nodes. Structural Join in the rewritten plan captures this part. In summary, the
rewritten plan has the same logics as the original plan.

Figure 2.7 shows the rewrite in the second circumstance. t@pelan is
the bottom plan in Figure 2.6 which containsS& uctural Joing.,;;. When the
rewrite rule is applied oV avUnnest(NavNest)s o patn1 $col2, it will not in-
troduce anotheStructuralJoing.,;. The resultedl’okenN avg.o1 patn1 $col2
and ExtractUnnest(ExtractNest)g..;1$col2 will be placed under the existing
Structural Joing,. We call this amode change without introducing/eliminating
StructuralJoinrule.

Figure 2.8 shows aBxtract Eliminationrule. In the top plan, no regular tuple-
based operators consuf@l1. That is to say$col1 need not appear in the output

tuples of StructuralJoing.,;;. We can then eliminat&ztractg.,o$coll which

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS

44

gavUnnest(NavNesﬁ)coll, path2$c0}

I

(StructuralJoinscoll)

(ExtractUnnest(ExtractNesg}oll $co|§
L)

(ExtractOpscol0 $coll)(TokenNawcol1, pathi$col2)

\/

(I’okenNaWcolo, path0$co@

I

(StructuralJoirscoll)

(Extractunnest(ExtractNeslholl $co@ (ExtractUnnest(ExtractNessyoll $co@

(ExtractOpscolo $coll)(TokenNavscol, path1$col2)(TokenNavscol1, path2$col3)

(TokenNavscolo, patho$coll)

Figure 2.7: Mode Change without Introducing/EliminatingusturalJoin

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 45

extracts component tokens of bindings$bi1 into XML element nodes. For
example, we can apply this rule on the plan in Figure 2.3 amdirte the op-
erator ExtractUnnestg,$a since no operator abov&tructural Joing, needs to

consume bindings dfa.
no operator consuming $coll
f
(StructuralJoirscoll)

(Extractunnest(ExtraCtNesltoll$col§ (Extractunnest(ExtractNeSi&oll$c0@
L T
(ExtractOpscolo $coll) (TokenNawcol1, pathi$col2) (TokenNavscoll, path2$col3)

— e

(TokenNavscolo, patho$coll j

g

(StructuralJoirscoll)

@xtractunnest(ExtractNesﬁ):oll $co|§ QExtractU nnest(ExtractNestgol1 $co@

f t

(TokenNawcoll, path1$col2)(TokenNavscoll, path2$col3)

(TokenNavscolo, patho$coll)

Figure 2.8: EliminateFztractg.,0$coll when no Regular Tuple-based Operator
Consumes$col1

2.4.3 Secondary Effect of Mode Change of Pattern Retrieval

Changing the mode of a pattern retrieval operatpmnay force the other operators
which havepattern dependencielationships withop to have mode changes as

well.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 46

Definition 3 Suppose we have two pattern retrieval operataisOp; andnavOps
which retrieve$v = $u/pl and$y = $x/p2 respectivelynavOp,; andnavOp, can

be either al'oken N av type orNodeN av type and they two do not have to be the
same types. x = $v/p3, we say$u/pl is theancestor patterof $r/p2; $x/p2

is thedescendant pattewf $u/pl of $v). We also say.avOp; andnavOps have

a pattern dependenaglationship.

When we retrieve a pattern in the automaton, its ancestterpathave to re-
trieved in the automaton. When we retrieve a pattern out efatitomaton, its
descendant patterns have to be retrieved out of the autam¥fe therefore have

Property 1.

Property 1 Secondary effect of Mode Change of Pattern Retrieval: When the
mode of a token pattern retrieval is changed, the mode ofoliltrt pattern re-
trieval on the descendant patterns will be also changed;nithe mode of a node
pattern retrieval is changed, the modes of all node pattetrigval on the ancestor

patterns will be also changed.

For example, if “StructuralJoin introduced” rewrite rutefigure 2.6 is applied
to change the mode d¥avNestg, /,none$e in Figure 2.5, all ancestor patterns of
$b/phone, namely,$a/seller and$s/open_auctions/open_auction, must all be
performed on tokens$s/open_auctions/open_auction is already performed on
tokens. Therefore we only need to pushin'seller before we push i8b/phone.
Figure 2.9 shows the plan after the mode change rule is @iV avUnnests, /seciier$b
in Figure 2.5. We then apply “StructuralJoin introducederon N av Nestgy, /pnoneSe

in Figure 2.9 and get a plan shown in Figure 2.10.

2.4. REWRITE RULES INVOLVING TOKEN-RELATED OPERATORS 47

(Taggel’<auction>$b, $c</auction>$f)

(StructuralJoirsa)

(Selectse = “508-1234567")

(NavUnnesta, sidibidder$c) (__NavNessb, /phonebe)

(NavNestsa, finitial $d) (ExtractUnnesta$h)

(ExtractUnnests $a) (TokenNavsa, /seller$b)
e

(Token Naws, lupen_auctions/open_aucti&@
[

(StreamSourceopen_auctions "$S)

Figure 2.9: Plan Rewritten from Figure 2.5: Pattern Re#di@n Token-or-Node
Mode Change Rule Applied aNavNestg, /sciier 30

(Tagger<aucti0n>$b, $c</aucti0n>$f>

(Joinsa)

(StructuralJoirsb)

(Selectge = “508-1234567” j

(NavUnnessa, /bid/bidder$c)

(_ ExtractNestsb, /phone$e)

(__NavNessa, finiial $d_) (_ ExtractUnnesta$b) (_ TokenNavsb, /phone$e)

(ExtractUnnests $a) (TokenNavsa, /seller$b)
—_—

(Token Nas, lopen_auctions/open_auctizﬁa

(StreamSourceopen_auctions "$S)

Figure 2.10: Plan Rewritten from Figure 2.9: Pattern Redien Token-or-Node
Mode Change Rule Applied aNavNestg, /phoneSe

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RSI8

If we continue to apply the mode change rewrite rules on ex&sge N av op-
erators in Figure 2.10, we will finally get a plan shown in Feg@.3. In this plan,
the only regular tuple-based operatoli8gger quction>$b,$c< /auction>- THIS Op-
erator does not consunfe. Therefore we can apply the “extract elimination” rule
on ExtractUnnestg,$a to eliminate it.

We can see that by applying different rewrite rules, we cahwgnwith plans
with different amounts of pattern retrieval performed oa tbkens. For example,
in the plan depicted in Figure 2.5, only one pattern, $&/ppen_auctions/open_auction,
is retrieved on the tokens. In the plan depicted in Figur®,2:/i0 more pattern,
i.e.,$a/seller and$b/phonel, are retrieved on the tokens. We show later that the
different amount of computations in the automata can havajamimpact on the

performance.

2.5 Implementation Strategies for Token-Related Opera-

tors

In this section, we present the stream physical level, the. implementation for
the stream logical operators. Since the implementatiothiregular tuple-based
operators can reuse the one developed for the static cdntexpipelining style

(i.e., operate on each input tuple rather than the wholetjnme omit their discus-
sion here. Instead, we focus on the implementation for tkerntwelated operators
which have no counterpart in the static context. A logicarapor may have sev-
eral physical implementations. Our purpose here is notionemate every possible
alternative, but instead to show one solid base implement&br each of the op-

erators. Clearly, there is room in the future to refine theppsed techniques or

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO RSI9

introduce other alternatives.

2.5.1 Implementation of TokenNav

A StreamSourc®perator can be viewed as a speciakenNavoperator which
locates the root element in the stream. Therefore we distnsamSourcegether

with the TokenNawperator.

Using Automata for Path Recognition.

We use automata to recognize the path expressions on tokamst Figure 2.11
(a) shows such an automaton for the plan in Figure 2.3. Tlraatbn is composed
of several smaller automata, each corresponding to a eliff@okenNavoperator

in the plan. Each final state (shown as a state with doublé&sjrcorresponds to

the end of a path in #dokenNawperator.

open_auction

(a) Finite Automaton

q4 a4 a4 q4

q2 q2 q2 q2 q2

ql ql ql ql ql ql

q0 qo qo0 qo0 qo qo qo
<open_auctions> <open_auctiorxseller> <sellerid> 001 </sellerid>

(b) Stack Content

Figure 2.11: Implementation @treamSourd@okenNav

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R0

A stack [80, 42] stores the history of the state transitidfigure 2.11 (b) shows
the snapshot of the stack after each token has been procddsedtack contains
instances of the states. Initially, the stack contains ¢iméyinstance of the start
stateqg. Each incoming start tag is looked up in the transition estdf each state
instance at the stack top. For any state that is transititmeate push its instance
onto the stack. If no transition is found, we push an emptylseiur example, this
would be the case whensellerid> is processed. When an end tag is encountered,
the state instances at the stack top are popped off; thusatieis restored to the
status before its matching start tag had been processeda IFGDATA item, no

change is made to the stack.

Synchronization of Automaton with Token-Related Operators

The output tuples ofokenNawdescribed in Section 2.3 are only logical concepts.
At the physical level, no XAT tuples are actually output BykenNav. Output
of TokenN avg.oi1 patnScol2 includes (1) token value, (2) information needed for
grouping the tokens that are the components of the same XMe (., identifiers
of $col2), and (3) information needed for grouping XML nodes that subele-
ments of the same node (i.e., identifierssedi1). The semantics df oken Nav’s
output expected by its downstream token-related opera@aptured by trig-
gering the corresponding downstream operators when geatiomaton events
happen.

Algorithm 1 illustrates the automaton behavistoreMgrin automaton stores
the data extracted from the streastoringCountemaintains the number of extract
operators that request to store the token currently beioggssed. A token may be

requested by multiple extract operators to be stored. Famele, suppose a query

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO

R$1

Algorithm 1 Pseudocode of Automaton

public class Automato#

1:

e A T o =
© N O U WNPRE O

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

int storingCounter;

StorageManager storeMgr;

void handleStartTag(Token startTag)

for each state on top of stack
state.transit(startTag);

end for

for each state pushed onto staitk
if state is associated with extract operatwn

storingCounter++;

end if

. end for
. if (storingCounter> 0) then

storeMgr.store(startTag);

end if
. for each state on top of stacko

trigger corresponding operators;

: end for

)

void handleEndTag(Token endTdg)
pop out all states at stack top;
if (storingCounter> 0) then
storeMgr.store(endTag);
end if
for each state popped aib
if state is associated with extract operatwn
storingCounter- —;
end if
end for
for each state popped atb
trigger corresponding operators;
end for

}

void handlePCData(Token pcdaa)

if (storingCounter> 0) then
storeMgr.store(pcdata);

end if

}

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$2

Automaton Event Operators Triggered

Instance ofy,, pushed onto stack ExtractUnnestg.o11$col2, ExtractNestg.o;1 $col2

Instance ofy,, popped off stack EzxtractUnnestg,1$col2, ExtractNestg.q;1$col2,
ExtractNestg.q128col3, Structural Joing.,o

Table 2.4: Association between Automaton Events and Opsréitiggeredd;, is a
final state offcol2 where$col2 is an output variable df oken.N avg,o1 patn$col2)

asks for returning botlopenauction and itsseller elements, then a component
token ofselleris requested to be stored by two extract operators, one faaatig
openauctionand one for extractingeller.

The three methods, namelgandleStartTag handleEndTagand handlePC-
Data, describe the process of handling a start tag, an end tag BGIDATA item
respectively. For example, ihandleStartTagthe processing takes three steps.
First, the automaton performs the state transitions anbdgsustate instances onto
the stack (lines 4 - 6). Second, the automaton computes ettt current token
needs to be stored: if yes, the token is put into the storagege (lines 12 to 14).
Third, the operators associated with the state instanc#semstack top are invoked
(lines 15 - 17).

In handleEndTagthe processing takes similar three steps. First, the attom
backtracks its stack (line 20). Second, the token is stdrededed (lines 21 - 22)
and thestoringCountelis maintained (lines 24 - 27). Third, the automaton invokes
the operators associated with the states that are just gayp@ines 29 - 31).

The methodhandlePCDatds straightforward. The automaton does not trigger
any stack transitions nor operators. It simply stores thertof needed (lines 34 -
36).

In the rest of this section, we first review the properties wf automata. We

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$3

then describe the implementations of tBetract and StructuralJoinoperators to
illustrate that indeed the association between automatentg and the execution

of these operators achieves the expected semantics.

Property of Automaton Implementation.

Our automata are designed to satisfy the “exclusive reaapgrty whenever pos-
sible. This property is important for two reasons. Firsgnsures the correctness
of synchronizing the automaton events and the token-ctlaperators (i.e., line
16 in handleStartTagand line 30 inhandleEndTagn Algorithm 1). Second, it
enables us to implement the structural join operator mdrgeitly than previous
literature. This will be illustrated when we describe theplementation strategies

of token-related operators in Sections 2.5.2 t0 2.5.4.

Property 2 Final State Reached by Destination Node Only (Exclusive-Reach).
Given aTokenN avg..1 patn$col2 operator, the instance of a final state @ith
can be only pushed onto the stack (resp. popped off the stdud) a start tag

(resp. end tag) of the destination no$i&!2 is encountered.

An automaton must be carefully constructed in order to fyatiiee “exclusive
reach” property. For example, for the XQueifpt $v in /a return $v//b”, we will
construct the automaton in Figure 2.12 (a) instead of theifégure 2.12 (b).
In both figuresyg; is the final state of pathia. The bottom parts of Figures 2.12
(a) and (b) show the stack contents as tokens-<c>... are processed. In
Figure 2.12 (a)¢; is pushed onto the stack only by the tokea>. In Figure 2.12
(b), besides<a>, ¢q; can also be pushed onto the stack<w> and which

are not bindings o$v.

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R%4

q2,93 ql, q2
92 q2 ql ql
ql.a2 1] ql,q2| |ql,q2 ql ql ql
q0 q0 q0 q0 q0 q0 q0 q0
<a> <c> <a> <c>
(a) Correct Automaton Encoding (b) Incorrect Automaton Encoding

Figure 2.12: Automaton Encoding for Paths Involving “//”

An XPath can be seen as a sequence of items where an item c&n‘¥/é or
a navigation step. If we divide the sequence into two paréscall the second part

a postfixof the path.

Theorem 1 If the “exclusive-reach” property holds, a final state carvieaat most
one instance in the stack (we say the automaton is “final stapticate free”) ex-
cept in two circumstances: (1) if there islwken N avgco1 pain$col2 wherepath
contains a*//” and the data is recursive; and (2) if there iF@ken N avg o1 parnScol2

where a postfix gbath is a “/I” followed by zero or more “*".

The proof of the theorem can be found in Appendix A. Figurd84a) and
(b) illustrate circumstances (1) and (2) in Theorem 4 respedy. In Figure 2.13
(a), the automaton encod&s//a. Given a recursive XML token stream, e.g.,
<a><a><la><la>..., two instances of final statg appear in the stack when
the secondca> is processed. In Figure 2.13 (b), the automaton encbdés//.
Even if the XML stream is not recursive, there can still be ingtances of final
stateg; in the stack since the start tags of any descenda#it 6f pushg; into the

stack.

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$5

/ a
—d—@ @@

$v/la $vibll
ql, g2 gl
ql, 92| | ql,q2 ql ql
q0,q1 || q0,ql a0, q1 qo q0 qo
<a> <a> <c>
(@) (b)

Figure 2.13: final state duplicates

When the automaton is ensured to be “final state duplicat®,fiee can ef-
ficiently implement the operators necessary to applyith&hin(t,, t2) andt;
= t5 boolean functions introduced in Section 2.3, i.e., funidor testing com-
ponent or equivalence relationships between tokens. Whahdiate duplicates
may exist, our implementations of these two functions arglar to existing tech-
niques in [42, 80]. Therefore in the following sections,,i®ections 2.5.2, 2.5.3
and 2.5.4, we focus on the circumstances where the automeatmal state dupli-
cate free because the corresponding implementations stiegliished from (and
more efficient than) those in the other systems [42, 80]. Vi&flprdescribe our

implementation when automata are not final state duplicateih Section 2.5.5.

2.5.2 Implementation of ExtractUnnest

At the logical level, arExtractUnnestg.,;; $col2 operator consumes outputs from
aTokenN avgon patn,Scol2 operator. This producer-consumer relationship is cap-
tured by the association of the final stateof path with ExtractUnnest. ExtractUnnest

is invoked twice, both when,, is pushed onto (line 8 ihandleStartTagn Algo-

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R%6

rithm 1) and later when it is popped off (line 7 imndleEndTagdn Algorithm 1)

the stack. The two invocation processes are described below

1).

2).

2.5.3

When an instance af, is pushed onto the stacKztractUnnestg,,;; $col2
is invoked (line 16 in Algorithm 1). From the “exclusive-md property
we know a start tag d¥col2 has been encountered. THistractUnnest
prepares a new XAT tuple. This tuple contains only one celicivlis a

placeholder of bindings cfcol2.

When an instance af, is popped off the stack, an end tag$ebi2 has been
encountered ExtractUnnestg.,;1$col2 is invoked again (line 31 in Algo-
rithm 1). A complete element node $fol2 is added into the corresponding

placeholder. The XAT tuple is then complete and can be output

Implementation of ExtractNest

ExtractNestg.,13col2 is associated witky,, andqy whereg,, andq, correspond

to the end and the beginning pith in TokenN avg.o1 patn$col2:

1).

2).

3).

When an instance af, is pushed onto the stack: if this is the first time an
instance ofy,, is pushed within a binding dfcol1, ExtractNest creates a
tuple with a placeholder. All the destination nodes locatgtthin the same

$col1 would be put into this placeholder.

When an instance af, is popped off,Extract Nest adds the newly com-

pleted destination node to the placeholder.

When an instance ajy is popped off the stack, by Theorem 4 we know

there cannot be another instance®in the stack. Therefore the placeholder

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R%7

contains only those destination nodes located within thmidibg of $col1.

Since$col1 has been completely processéth;tract Nest outputs the tuple.

Example 8 Figure 2.14 depicts the stream physical plan in Figure 2.6wWoken-
Nav operators replaced by an automaton. Figure 2.14 (b) showgthcessing of
token 7, i.e.<phone>. First, g5 is pushed onto the stackiztract Nestg,$e is
invoked. It creates a tuple with one cell which will store tieding of$e. Next,
the storing counter is increased by 1. This non-zero stocimgnter indicates that
token 7, namelyphone> needs to be buffered (refer handleStartTaghethod in
Algorithm 1). Note, token 7 is not necessarily physicaltyed as a token. It can
also be stored as a structure that is more convenient for lat@nipulation, such
as a DOM-like tree structure if later on a node navigate operas performed on
$e.

Figure 2.14 (c) shows the processing of token 9, képhone>. g5 is popped
off. This leads to the decrease of the storing counter toHX:tract Nestg,$e
is again invoked. The reference to thkone element in the storage manager is
passed to the placeholder. The dashed line in the placehald&ates that the
placeholder is “open”, in other words, there may be maieone elements that
could still be located within the sanseller.

The cellis “closed” in Figure 2.14 (d) when token 13 is proseg. Extract N estg,$e

is informed that the binding & is now complete and the tuple is ready for output.

2.5.4 Implementation of StructuralJoin

A StructuralJoing.,; operator must have an upstream operator in the form of

TokenN avgeoip patnScoll. This StructuralJoin is invoked when an instance of

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$%8

ﬁ'aggemuction>$ b,$c </aucti0n$}
¥

(StructuralJoiga)

(StructuralJoisb)
(ExtractNessabd)(Sebej="508-1234567")

ExtractUnnesta$b

(ExtractNessp$e)

(a) Query Plan with Automata

storingCounter = 1 Storage Manager

95 $e <phone>

q4

q2

gé (ExtractNestsb $e)
7 <phone>

(b) Processing Token 7
storingCounter=0 Storage Manager
4 se

32 <phone>508-1234567</phone>

ql

qo (ExtractNestsb $e)
9</phone>

(c) Processing Token 9
storingCounter =0 Storage Manager
$exﬁne>5os-1234567</phone>

qZ —

o <phone>508-0004567</phone>

q0 (ExtractNestsb $e j
13</seller>

(d) Processing Token 13

Figure 2.14: InvokingExtract N est Operator

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$%9

gn, the state that corresponds to the endhefh, is popped off the stack. The
input tuples taStructural Join contain only elements located within this binding
of $coll. ThereforeStructuralJoincan simply perform a Cartesian product on its
input tuples. The input tuples are purged after the Cargsiaduct so that they
would not participate in the next Cartesian product for gedént binding offcol1.
Since our structural join must be invoked when a certainraaton event happens,

we call it anin-time structural join

2.5.5 Implementations in Automata with Final-State Dupliates

In the two circumstances when automata have final-statdcdigs as described
in Theorem 4, there can be more than one final state in the. st#eldescribe the
modification to the above implementations fextract and StructuralJoinrespec-

tively.

Extract

Given aExtractg., $col2, supposey and g, are the final states dfcoll and
$col2 respectively. When the automaton are not final state duplifree, two
modifications have to be made to the above implementation8aof-act. The
first modification addresses the situation that multipléainses ofy,, may exist in
the stack. When an instance @f is popped off, we now have to identify which
element node has been completed. For example, in Figure(@1®&hen &g is
popped off due to a/a>, we need to know whether this/a> matches the first
<a> or the second<a>. This can be achieved by simply maintaining the number
of final states pushed onto or popped off the stack. Once we kvtuch element

node is completed, we then know in which placeholder in th&@ Xudples to add

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R0

this element node.

The second madification addresses the possibility thatiphellinstances of
go may exist in the stack. For an instanceggfin the stack, we have to identify
it is transitioned from which instance @f. This information is necessary since
we may perform &'tructural Joing.,;; later on the output oF ztractg..;1 $col2.
Each output tuple aEztractg.,;; $col2 not only contains an element node$obl2

but also an identifier o$col1.

StructuralJoin

Given aStructural Joing.,;1, Since its input tuples now carry the identifiers of
$coll, it will perform joins over$coll. Such aStructuralJoin is similar to that
developed in Tukwila [42] and YFilter [80]. We call it atientifier-basedtructural

join.

2.5.6 Comparison between In-time and Identifier-based StreturalJoins

Raindrop only chooses an identifier-based physical imphéatien for a structural
join in the “final state duplicate existing” circumstancesiheorem 4. In all other
circumstances, an in-time physical implementation is ehosln contrast, both
Tukwila and YFilter provide only the identifier-based stural join implementa-
tions. We now compare the in-time and identifier-based impl&ations in the
final state duplicate free environment.

In Figure 2.15 (a) which depicts an in-time structural jaach input tuple has
only one cell, containingelleror bidder. In contrast, in Figure 2.15 (b) which de-

picts an identifier-based structural join, an input tupléteuctural Joing,? must

2[42] does not have an explicit, separate structural joirratee since automaton computations are

2.5. IMPLEMENTATION STRATEGIES FOR TOKEN-RELATED OPERATO R$1

contain an identifier fo$a, i.e., theopenauctionelement. StructuralJoing, in
Figure 2.15 (b) joins the input tuples on the identifier®pénauction

Clearly, the in-time structural join is more efficient thalentifier-based struc-
tural join. First, in-time structural join takes less memsince the size of an input
tuple is smaller than that in the identifier-based struttioia. Second, in-time

structural join does not perform any value comparison.

$b $c
<seller>...</seller> |<bidder>...032...</bidder:

<seller>...</seller> |<bidder>...145...</bidder

(StructuralJoiga) sc
o <bidder> ...032... </bidder>

<seller>... </seller> kbidder> ...145 ... </bidder>

ql

0 (ExtractUnnesta$h) (ExtractUnnesta$c)

27 </open_auction> (_ TokenNavsa, setie$b) (TokenNavsa, ibidibidder$c)

(a) In Time Structural Join

$a $b $c
2 <seller>...</seller> | <bidder> ...032...</bidder:

<seller>...</seller> |<bidder>...145...</bidder:

(_ structuraldoisa) $a $c
2 <bidder>...032...</bidder
| $a $b
2 <seller> ...</seller> 2 <bidder>...145...</bidder

(__ExtractUnnestasb) (_ ExtractUnnesta$c)

(TokenNavsa, /seller$b) (TokenNavssa, /bid/bidder$c)

(b) Identifier -based Structural Join

Figure 2.15: Comparing In-time Structural Join and Idesttibased Structural Join

expressed in one mega operator as mentioned in Section dwlevdr structural joins are performed
within this mega operator.

3The structural join in [80] would even contain an identifier €ach navigation step on the path,
for example, a right input tuple in Figure 2.15 (b) would atsatain an identifier for thbid element.

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 62

2.6 Programming Model for Synchronizing the Execution

of Operators

In a traditional query plan, synchronization among opegai® usually achieved
by theiterator mode [35], namely, an operator is always invoked by its imiated
downstream operator. However, only using this model doemeet the needs of a
Raindropplan. First, execution df'oken N av operators, i.e., the automaton, must
be data-driven. Given tw@'okenNav operators such aokenNavg, /sciier 80
andTokenN avg, /bid/vidder 3¢, Whether the bindings d¥b or the bindings ofsc
will be retrieved first is completely decided by the data. del; to ensure the
correctnessExtract andStructual Join operators have to be invoked at a certain
time. For example, th8tructural Joing, operator must be invoked by its ancestor
upstream operatdfoken N avgs, /open_auctions /open_acutionSa When an end tag of a
binding of$a is encountered.

We propose to support three invocation modeRamndrop For each mode, we
describe (1) what operators can be invoked in this mode; (@nwhese operators

are invoked in this mode; and (3) why the operators are irakehis mode.

2.6.1 AncestorUpstreamDriven Mode

If an operator is invoked by its ancestor upstream operateisay this operator is
invoked in theAncestorUpStreamDrivemode.

Operators that can be invoked in this mode An operator in the format of
ExtractNestg.,13col2 or Structural Joing.,;; can by invoked by its ancestor
upstream operator in the format BbkenN avg,g ,$col 1.

When invoked in this mode an end tag of a binding &col1 is encountered.

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 63

Why invoked in this mode: Both Extract N estg.,;1$col2 andStructural Joing..
must be informed right at the point when an end tag of a bindih§col1l is
encountered.Extract Nestg.,1 $col2 can then output a newly-formed tuple and
Structural Joing.,;; can perform cartesian products on its input. Assagl

= $col0lp, then ExtractNestg.,1$col2 and Structural Joing.,;; must be in-
voked byT'okenN avg.q ,$coll whenTokenN avg.q ,23coll detects the finish

of a binding of$col1.

Example 9 Algorithm 2 shows the pseudocode offantract Nest operator. The
ExtractNest operator implements aancestorUpstreamDrivemethod. In this

method,Extract Nest outputs the tuple that is newly formed.

Algorithm 2 Programming Model for ExtractNest
public class ExtractNedt

1. BooleanisimmediateUpstreamDriven

2: List[] inputQueues

3: List outputQueup

4: public void ancestorUpstreamDrivefi()
/Iperform process (3) in Section 2.5.3;
5. enqueue a tuple that is just completely formed mitputQueug

6: }

7: public List downstreamDrivery)
8: returnoutputQueuglequeueAll();

}

©

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 64

2.6.2 DownstreamDriven Mode

This DownstreamDrivermode is similar to the traditional iterator mode, namely,
an operator is invoked by its immediate downstream operator

Operators that can be invoked in this mode any operator that is neither a
StreamSourcaor aTokenNawan be invoked by its downstreafitructural Join
operator (if any).

When invoked in this mode When aStructuralJoing.,;; is invoked in anAn-
cestorUpstreamDrivemode,Structural Joing,..;; INVOKES its upstream operators
to generate output for it to consume. Each upstream opeveten invoked, recur-
sively invokes its own upstream operators. From the petisgeof the immediate
and ancestor upstream operators of 8tisuctural Join, they are invoked by their
downstream operators.

Why invoked in this mode: When an end tag of a binding &tol1 is finished,
Structural Joing.,; iS invoked. StructuralJoing.,;; must invoke its upstream
operator to ensure they have all processed the currentigimdBcol1. Otherwise,
Structural Joing..,;; does not have input to consume.

For example, in Figure 2.3, when aiiseller> is encounteredStructural Joing,
is invoked. Extract Nestg,$e has finished the processing of the curretiier el-
ement, i.e., it has extracteshone/text() within this seller. Now, the operator
Selge— 50312345677 MUst be invoked to consume the outputfoftract N estg,$e

to generate the input t8tructural Joingg,.

Example 10 Algorithm 3 shows the pseudocodesofuctural Join. Structural Join
implements botlancestorUpstreamDrivesind downstreamDrivemmethods. Each

time when a</seller> is encountered, line 30 inandleEndTagn Figure 1 will call

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 65

theancestorUpstreamDrivanethod ofStructural Joing,. This method then calls
thedownstreamDrivemethods of botl§elg,_ <508 _ 12345677 and ExtractUnnestg,$b
(lines 8 - 11 in Algorithm 3)Selg.—«50s_1234567> @gain invokes thelownstream-
Driven method ofExtract Nestg,$e. At this time,Extract Nestg,$e simply re-
turns all tuples generated within this just-finishedller element (see line 8 in
Algorithm 2). EventuallyStructural Join consumes the output tuples of its up-

stream operators (line 12 in Algorithm 3).

Synchronization of Operators Invoked in AncestorUpstreanbriven and Down-
streamDriven Modes

When an end tag of a binding 8fol1 is encountered, botAxztract N estg,.q;1 $col2
and Structural Joing.,;; must be invoked in thAncestorUpstreamDrivemode.
However Extract Nestg.,1 $col2 must be invoked irAncesetorUpstreamDriven
mode beforeStructural Joing..; IS invoked inAncesetorUpstreamDrivemode.
Only in this way, the operators invoked in tAecestorUpstreamDrivemode can
work correctly with the operators invoked in tB®wnStreamDrivemode.

For example, when a/seller> is encountered, line 30 in Algorithm 1 calls the
ancestorUpstreamDrivemethod of Extract Nestg,$e first and theancestorUp-
streamDrivenmethod of Structural Joing, next. When theancestorUpstream-
Driven method of Extract Nestg,$e is called, Extract Nestg,$e puts the tuple
that is generated within the curresitller element into its output queue. Next,
the ancestorUpstreamDrivemethod ofStructural Joing, is called. Thisances-
torUpstreamDrivermethod calls theownstreamDrivemethod ofE ztract Nestg,$e
(line 10 in Algorithm 3). ThigdownstreamDrivemethod (lines 7 - 9 in Algorithm

2) then returns the tuple that is generated byaheestorUpstreamDrivemethod

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 66

Algorithm 3 Programming Model for In-Time Structural Join
public class StructuralJoif

1. BooleanisimmediateUpstreamDriven

2: List[] inputQueues

3: List outputQueup

/lwhen the operator is invoked by its ancestor upstreamabqer
public ancestorUpstreamDriver()
List outputTuples
List[] inputTuples
n = number of upstream operator of ti8&ucturalJoin
forinti=1;i <n;i++do
let upstreamOp denotes thé'" upstream operator;
10: inputTuples[i] = upstreamOp.downstreamDrive();
11: end for
12: outputTuples join inpuT uples[1], inputTuples[1], ..., andinputTuples(n];
13: if outTuplesare not emptyhen
14: for each downstream operatmownStreamOpf this StructuralJoindo

© o N a R

15: if downStreamQjslmmediateUpstreamDrivethen

16: downStreamOjpmmediateUpstreamDrive(itputTuplel
17: else

18: outputQueuenqueuefutputTuplek

19: end if

20: end for

21: end if

22: }

/lwhen the operator is required by its downstream operatoum
23: public List downstreamDriveny)
24: returnoutputQueue.dequeueAll();
25 }

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 67

of ExtractNestg,$e.

2.6.3 ImmediateUpStreamDriven

The ImmediateUpStreamDrivemode is also calledlata driven An operator is
said to be invoked in thimmediateUpStreamDrivemode if it is invoked by its
immediate upstream operator.

Operators that can be invoked in this mode regular tuple-based operators that
do not have &'tructuralJoin in its downstream.

When invoked in this mode As the namedata drivensuggests, the operator is
invoked once its immediate upstream operator generatesitout

Why invoked in this mode: If an operator does not haveSaructural Join in its
downstream, e.gT'agger quction>$b,$c< Jauction>Sf N Figure 2.3, it will not be
invoked in a downstream driven method. We thus desigintimedidateUpStream-
Driven mode so that such an operatgy is invoked by its immediate upstream

operatorupstreamOp onceupstreamOp has generated output fop to consume.

Example 11 Algorithm 4 shows the pseudocode SHlect. Select implements
an immediateUpstreamDrivemethod. TheSelect operator first consumes in-
put tuples from its upstream operator (line 5). If thiglect operator does not
have downstream§tructuralJoin, then its downstream operators must not have
downstreamStructuralJoin as well. That is to say, the downstream operators
of Select must also be invoked in thenmediateUpstreamDrivemode. There-
fore, when thisSelect has generated output, it invokes its downstream operator to

consume its output (lines 6 - 9).

2.6. PROGRAMMING MODEL FOR SYNCHRONIZING THE EXECUTION OF
OPERATORS 68

Algorithm 4 Programming Model foGelect
public class Select
1. BooleanisimmediateUpstreamDriven

2: List[] inputQueues

3: List outputQueup

4: public void immediateUpstreamDriven(List inputTuplgs)

5: List outputTuples= selection predicate evaluation oputTuples

6: if outputTuplesare not emptyhen

7. letdownstreamOp denotes the downstream operator of thigect;

8: downstreamOpmmediateUpstreamDriveatputTuplel

9: end if

10: }
Operator Invocation Modes Operator Supports
ExtractUnnest DownstreamDriven
ExtractNest DownstreamDriven, AncestorUpstreamDriven
StructuralJoin DownstreamDriven, AncestorUpstreamDriven
Regular tuple-based Operators DownstreamDriven, ImmediateUpstreamDriven

Table 2.5: Operators and the Invocation Modes They Support

2.6.4 Summary

We define a programming model which supports multiple intiocamodes. Dif-
ferent operators can be invoked in different modes. Eversmgbe operator can be
invoked in different modes. Table 2.5 summarizes what dpesaan be invoked
in which modes.

All modes are defined in a modular manner. This can be a signifadvantage
when a flexible configuration of the synchronization amongrafors is needed.

For example, in Figure 2.14 (a), suppose a rewrite rule s@88electg,—_ «503_1234567

2.7. EXPERIMENTS 69

with Structural Joing, and StructuralJoing, SO thatSelectg,—«s503_1234567
ends up as a downstream operatof tfuctural Joing,. SinceSelectg.—_ «503_1234567
now has no downstreaitrcutural Join operator, it has to be invoked in &m-
mediateUpstreamDrivemanner instead of thBownStreamDrivemmanner as be-
fore. This can be simply achieved by setting the Booleanevalu“isimmedia-
teUpstreamDriven” (see line 1 in Figure 4) to true. Therefany output from
Structural Joing, will be immediately sent tdSelectg,—«503_1234567> fOr con-

sumption (see lines 15 - 16 in Algorithm 3).

2.7 Experiments

We have implemented a prototype Ré&indrop[38] with Java 1.4.1. We use ToX-
Gene [24], an XML data generator, to generate the XML documeWwe ran ex-
periments on two Pentium 11l 800 Mhz machines with 512MB meyraach. One
machine sends XML token streams via sockets to another maethich would
then process the received data. The execution time we reped not include
the network transmission time. The experiments reportatlinsection focus on
showing the performance differences among the plans wiferdint amounts of
computation pushed into the automata.

The cost of query execution consists of two parts: one fofebiufy the data,
and the other for manipulating (e.g., filtering or restruicty) the buffered data.
The queries we test can be divided into two categories. Fareaygn the first
category, all of its candidate plans buffer the same amoludat@. Therefore the
performance differences among candidate plans only rigsuttthe differences in

the data manipulation costs. For a query in the second agtegmmme candidate

2.7. EXPERIMENTS 70

plans trade buffering costs for manipulation costs, i.effding more data in the
hopes that later manipulation may be accelerated. The npeaifuce differences

among the candidate plans then show the tradeoff betwedwdtheosts.

2.7.1 Testing Queries Having Alternative Plans with Same Bftering

Cost

Figure 2.16 shows an example query template from an XML baack, XMark
[7]. This query asks to return amydderelement that satisfies a set of filters where
each filter is a linear XPath, i.e., XPath with no filters. Noteany alternative
plan, abidderelement always has to be buffered because it may appear fimghe
answer. Therefore all plans have the same buffering costs.
for $a in stream(“open_auctions ")/open_auctions
open_auction/bidder[filter1][filter2]...[filtern]

return
<auction>{$a}</auction>

Figure 2.16: Query with Filters

We now analyze which factors may lead to performance diffege among
candidate plans. Suppogeélter; has a low selectivity, i.e., it is rarely satisfied,
then we should evaluate this filter before the other filtetss Tollows the classical
“push down operators of low selectivity” optimization tedtue. However, in the
automata, all filter patterns are retrieved in parallel. rialeo to assure that the other
filters are evaluated aftgfiilter; is evaluated, we must leave the other filters out of
the automata.

Let us consider the opposite case where all filters are frafyusatisfied. A

plan that pushes all filters into the automata (cafteakimal-navigation-pushdown

2.7. EXPERIMENTS 71

plan) can evaluate all filters in one single access of thenmk&he other plans,
however, have to access thilder elementsn times if there aren filters to be
evaluated out of the automata. Therefore a maximal-naeiggushdown plan

should outperform the other plans.

Testing on Cheap Filters

We perform a series of experiments to confirm our analysithérirst experimen-
tation, we vary the selectivity ofilter, in the data set. The selectivity of all the
other filters is 100%. The length of each filter is 1, i.e., e@tdr has only one de-
terministic navigation step and does not have any descéad&n(e.g.,bidderid).
The cost of evaluating such a filter is rather cheap. The geerdadth ofbidder,

i.e., the number of its children elements, is set to 30.

Data Size = 84M, Filter Number = 20,
Average Filter Pattern Length = 1

—e— Zero Filter

/ Pushdown
30000 /
—— One Filter
20000 " Pushdown
10000 .;/:7.4’./- —=— Maximal

Navigation
Pushdown

Execution Time (ms)

0% 13% 25% 50% 75% 100%
Pattern Selectivity

Figure 2.17: Performance of Alternative Plans for Queriéh 20 Filters of Aver-
age Length 1

We test three plans. In the zero-filter-pushdown plan, adirflare evaluated
out of the automata bufilter; is evaluated before any other filters. In the one-

filter-pushdown plan, onlyilter; is evaluated in the automata. The evaluation or-

2.7. EXPERIMENTS 72

Pattern Selectivity | 0% | 12% | 25% | 50% | 100%
Query with 5filters | 1.06 | 1.02 | 1.03 | 0.95 | 0.90
Query with 10 filters| 1.23 | 1.07 | 0.85 | 0.98 | 0.75
Query with 20 filters| 1.47 | 1.18 | 1.00 | 0.85 | 0.65

Figure 2.18: Ratio of Execution Time of Maximal Pushdownhaiixecution Time
of Zero Filter Pushdown for Queries with Different Numbefg$-dters

der of the other filters does not matter here since they haseime selectivity. The
third plan we test is the maximal-navigation-pushdown plais seen from Figure
2.17 that at the lower end of selectivity (0% - 25%), the Zdter-pushdown plan
performs better than the maximal-navigation-pushdown.p¥d the higher end of
selectivity (25% - 100%), the maximal-navigation-pushdgwan performs better
than the zero-filter-pushdown plan. At all times, the zeltetfipushdown plan be-
haves similarly to the one-filter-pushdown plan. That isayp gvaluating a single
pattern on tokens has a similar performance as evaluats@dttern on element
nodes. Therefore in the following experimentations, wey dhistrate one of these
two plans.

Figure 2.18 further compares the performance of differeetrigs. All queries
conform to the query template in Figure 2.16 but differ in thenber of filters.
The ratio of the execution time of maximal-navigation-pd@sivn with that of the
zero-filter-pushdown plan is reported.

The purpose of Figure 2.18 is to show that measures are ndedgdge
whether it is worthwhile to consider alternative plans. Baimple query, such
as the one with 5 filters, both the zero-filter-pushdown andimal-navigation-
pushdown plans always perform similarly (the ratio is clas&) when the selec-

tivity of filter; varies. As the query gets more complicated, i.e., the nuraber

2.7. EXPERIMENTS 73

filters increases, the differences among alternative gahmore significant.

Testing on Expensive Filters

We now test two queries with more expensive filters. In the &egery, filter,
still has a length of 1 but all other filters are longer. Capawingly, savings from
the evaluation on gilter; (i # 1) are larger than those in Figure 2.17. Figure
2.19 gives the experimental result. When the selectivityibfer; is 0%, the ratio

of the execution time of a maximal-navigation-pushdowmplath that of zero-
filter-pushdown plan can reach 1.46. This is the same asnhaguery with 20
shorter filter patterns (refer to the first cell in third rowRigure 2.18). Also, the
crossover between the two plans shifts from 25% in Figuré &150% in Figure
2.19. In other words, the zero-filter-pushdown plan is mikely to win over the

maximal-navigation-push down plan compared to the scesami Section 2.7.1.

Data Size = 56M, Filter Number = 10,
Average Filter Pattern Depth=5

2 —e— Zero Filter
520 / Pushdown
1S

- 15000 .—/744'7/'

c
5 .
< 10000 —=— Maximal
(53
Q
X
[N

— Navigation
5000 Pushdown

0 25% 50% 75% 100%
Pattern Selectivity

Figure 2.19: Performance of Alternative Plans for Queriéh @0 Filters of Aver-
age Length 5

The second query we test has only two filtergilter; still has a length of

1 but filters starts with a “//”. In the automata, “//” is encoded as a sgifle

2.7. EXPERIMENTS 74

on a state (refer to Figure 2.12). Any component tokebidéler will lead to an
automata state transition. Computing such a filter is mopeesive than a filter
with only deterministic navigation steps, because to atala filter withn deter-
ministic navigation steps, component tokendifder that are more than levels
deep withinbidder would not induce any transitions. Figure 2.20 confirms that t
performance difference among alternative plans of thisygoan be significant.

Data Size = 56M, Filter Number = 2 (with // in one Filter)

30000

@ 25000 / —+— Zero Filter
£ / Pushdown
°E>20000
E ::
< 15000 /
510000 —+— Maximal
§ - Navigation
w5000 Pushdown

0

0% 25% 50% 75% 100%

Pattern Selectivity

Figure 2.20: Performance of Alternative Plans for Querigl #/Filters (One Filter
has “/I")

2.7.2 Testing Queries Having Alternative Plans with Diffeent Buffer-

ing Costs

We now study a set of queries which conform to the templatevehio Fig-

ure 2.21. This query pairseller and certairbidder subelements that are located
within the sameopenauction Figures 2.22, 2.23 and 2.24 show three alterna-
tive plans for this query, namely, pushing one, three, onalligation operators
down to the automata respectively. In the one-navigatissiidown plan in Fig-

ure 2.22, eaclopenauctionelement has to be buffered since it will be navigated

2.7. EXPERIMENTS 75

into later to find theinitial, seller and bidder subelements. In contrast, both
the three-navigation-pushdown and maximal-navigatieshdown plans in Fig-
ures 2.23 and 2.24 buffer only a minimal amount of data,thebidderandseller,
for later navigation or result construction.
for $a in stream(“open_auctions”)/open_auctions

open_auction/auction]initial],

$b in $a/seller,

$c in $a/bid/bidder(filter1][filter2] ...[filtern]

return
<auction>{$b, $c}</auction>

Figure 2.21: Query with Multiple Bindings in For Clause

»
(NavNestsc, filterl $e)

(NavUnnestsa, /seller$b) (NavUnnestssa, /bid/bidder$c)
(NavNestsa, initial $d)
(ExtractUnnestss $a)

(TokenNavsss, lopen_auctions/open_aucti(ﬂia)

Figure 2.22: One Navigation Pushdown

We vary three factors in the data set. First, we vary the teiigcof the filter
linitial but keep the selectivity of all the other filters at 100%. Sekave vary the

size of the data that are subelementsénauctionother tharselleror bidder. We

2.7. EXPERIMENTS 76

+
(NavNest $c, filterl $e

t

StructuralJoin $a

N

ExtractUnnest $a $c)

\

TokenNav $a, /seller $b)
(ExtractUnnest $a, /seller $b) [

(Extl‘aCthCSl Sa $d) (TokenNav $a, /seller $b) o
?

(TokenNav $a, /initial $d)
X

Figure 2.23: Three Navigation Pushdown

(StructuralJoinsa)

StructuralJoinsc)

(ExtractNestsc $e)

(TokenNavsc, filterl $e)

(ExtractUnnestsa$c)

—
ExtractUnnestsa$b

(TokenNav$a, /bid/bidder$c)
(ExtractNestsa $d) (TokenNavsa, /seller$b)

(TokenNav$a, /initial $d) ‘

Figure 2.24: Maximal Navigation Pushdown

2.7. EXPERIMENTS

77

Data Set | extra buffering ratio%

average number cfellers
within anopenauction

Data Set 1| 0%

1

Data Set 2| 50%

1

Data Set 3| 0%

10

Table 2.6: Data Characteristics of Three Data Sets

call the ratioK = (the size of the above data) / (the overall sizealferandbidder)

an extra buffering ratio Third, we vary the number dgeller elements in each

openauction We fix the average number bidderelements in almpenauctionto

20. We generated three data sets whose data characteaistisisown in Table 2.6.

Figures 2.25 and 2.26 show the results on the first two dasa Séte X-axis

shows the selectivity ofilter,. We make two observations from these two figures.

1). The three-navigation-pushdown plan is always bettar the one-navigation-

pushdown plan due to two reasons. First, three-naviggti@hdown plan

never buffers more data than one-navigation-pushdown. glanlata set 2

where the extra buffering ratio is 50%, it buffers much lestadSecond, the

Joing, operator in Figure 2.22 is an identifier-based join. It is encostly

than theStructural Joing, operator in Figure 2.23.

2). The crossover point of one-navigation-pushdown andimeabnavigation-

pushdown plans occurs at a lower selectivity in Figure 2h2@ that in Fig-

ure 2.25. This is because in Figure 2.26, the cost that thenavigation-

pushdown plan saves in pattern retrieval is offset by the ttad the one-

navigation-pushdown plan spends in buffering extra data.

Figure 2.27 reports the results on the third data set. Theltoé the per-

formance differences between one-navigation-pushdowmsaximal-navigation-

2.7. EXPERIMENTS

Data Size = 48M, Seller Number=1,
Extra Buffering Ratio = 0%

ad ——1 Nav

2 30000
2 / Pushdown
\625000 / /

5

iZ 20000 74‘\‘ -=— 3 Nav

§ 15000 k//./.7/ Pushdown

g
92 10000
5 / —4— Maximal Nav
5000 Pushdown
0

0% 25% 50% 75% 100%
Pattern Selectivity

Figure 2.25: Performance on Data Set 1

Data Size = 92M, Seller Number =1,
Extra Buffering Ratio = 50%

—— 1 Nav

'g 50000 / Pushdown
.g 40000 /./ —=— 3 Nav

'é 30000 4/\#:‘ Pushdown
= A

g 20000 ://'/- —4— Maximal

i 10000 Nav
Pushdown

0% 25% 50% 75% 100%
Pattern Selectivity

Figure 2.26: Performance on Data Set 2

2.7. EXPERIMENTS 79

pushdown plans remains similar to that in Figure 2.25. Hawéwee-navigation-
pushdown performs extremely badly (its performance whersétectivity is larger
than 25% is not shown due to extremely high cost). This is lmean Figure
2.23, abidder is paired with eaclseller by StructuralJoing,. Therefore each
bidderis duplicated 10 times since there are siller elements within the same
openauction Correspondingly, any downstream computation didderelement
will be duplicated. For example, a singtedder element will be navigated into
10 times byNavNestg. riner, $e in Figure 2.23 to evaluatgilter;. In the other
two plans, either/oing, in Figure 2.22 orStructuralJoing, in Figure 2.24 is
performed after locating all the patterns withiidder so that no navigation com-

putation is duplicated.

Data Size = 56M, Seller Number =10,

Extra Buffering Ratio = 0%
80000

" —— 1 Nav
570000 Pushdown
E50000
(0]
E50000 —=— 3 Nav
- ushdown
40000 e Pushd
O,
230000
820000 — . —+— Maximal
o L —"
10000 e Nav
0 Pushdown

0% 25% 50% 75% 100%
Pattern Selectivity

Figure 2.27: Performance on Data Set 3

80

Chapter 3

Runtime Plan Optimization:
Switching between Automaton

and Algebra Processing Styles

In the previous chapter, we have illustrated that the dessregarding which pat-
terns to be retrieved in the automaton or out of the automedorhave significant
impact on the performance of query evaluation. In this alrapte explore how to

get a good plan taking advantage of this optimization oy

3.1 Solution Space

We provide a set of rewrite rules in Raindrop. From an ingilan, by repeatedly
applying the rewrite rules, we can get a batch of alterngttems that compose
the search space. We now describe these rewrite rules.slohihpter, we use the

query shown in Figure 3.1 as the running example. Figurel®®/s a plan, which

3.1. SOLUTION SPACE 81

retrieves all pattern in the automaton, for this query.

for $a in stream(“open_auctions”)/auctions/auction[reserve]
$b in $a/seller, $c in $a/bidder
Where $b//profile contains “frequent” and $c//zipcode = “0160¢
return
<auction> {$b, $c} </auction>

Figure 3.1: Example Query for Automaton-in-or-out Optiatinn

3.1.1 Token-or-Node Mode Change Rules

Thetoken-or-node mode change rulesas described in Section 2.4, change the
modes (i.e., on tokens or on nodes) of pattern retrievak iBrithe key rewrite rule
for generating alternative plans in our solution spacecé&m pattern retrieval on
tokens (resp. on nodes) is performed in the automaton (oeg@f the automaton),
we also say this rule pulls pattern retrieval out of the awttmm or pushes patterns
retrieval into the automaton. For ease of reading, we rduagetrules briefly.

Figures 3.3 and 3.4 show the token-or-node mode change irulego cir-
cumstances. In Figure 3.3, n®ructuralJoing.,; €Xists in the top plan so
that a Structural Joing.,; 1S introduced wher$col2 = $coll/pathl is pushed
down. In Figure 3.4, &tructuralJoing.,;; €Xists in the top plan so that no new
Strucutral Join is introduced wheBcol3 = $coll /path2 is pushed down. Figure
3.5 further shows a rule that eliminates an unnecesBaty actg,.;o$coll operator
when$col1l is not consumed by any non-automaton operators.

An interesting feature of the mode change rules is that wheepwgh a pattern
retrieval, saycol2 = $col1/path, into the automaton, the resultafivken N avgqo1 parn Scol2

can only be placed in one unique position, i.e., right on togpBoken N av that re-

3.1. SOLUTION SPACE 82

El—aggefauction>$ b,$c </auctioa>
1

(StructuralJoirsa)

(Selects$f = “01609")
[)

(Select$e contains “frequer)"(StructuralJoirsc)

ExtractNestsc $f

TokenNavc, //zipcodebf

(ExtractNesESa:Bd) (StructuralJoirsb) (ExtractUnnesSasBc)

ExtractNestb $e

EokenNavssa, /reserv€$)i (ExtractUnnes$a$g 6okenNaV$b, Ilprofile $B (TokenNavSBa, Ibidder $9
* <

TokenNawsa, /seller $|

ﬁokenNa\ﬁs, /auctions/auctioﬂi}

(StreamSourca)pen_auction ” s}

Figure 3.2: Raindrop Plan for Query in Figure 3.1

trieves$coll (e.g., in Figure 3.47 okenN avg..i1 patn2$col3 has to be placed above
TokenN avg.oip pathoScoll). In other wordsT'okenN avgeo parn$col2 cannot be
commuted with any other operators. This is because of tHaeifly access nature
of stream processing. Tokens cannot be accessed'‘tWioken N AVgcol1 path$col2
must be immediately evaluated on the tokens that composénigis of$col1.

In contrast, when we puicol2 = $coll/path out of the automaton, the resul-
tant NodeN avg .1 patn$col2 may be placed in multiple positions. For example,

Figure 3.6 shows a plan after we pilllbken N avg,, ;sciie, b out of the plan in Fig-

Tokens can however be stored as XML element nodes which ceepbatedly accessed.

3.1. SOLUTION SPACE

83

(NavUnnest(NavNesﬁcoll, pathl$CO|2)

(ExtractOp$colo $coll)

(TokenNav $colo, patho$coll)

|

(StructuralJoingcoll)

éxtractUnnest(ExtractN ess):o|1$c09

(Extract0p§co|0$coll)(TokenNavscoll, path1$col2)

(TokenNav $colo, patho$coll)

Figure 3.3: Mode Change with Introducing/Eliminating $turalJoin

éavUnnest(NavNesacoll, path2$coE3

I

(StructuralJoinscoll)

(Extractunnest(ExtractNesl}oll $co|§
L)

(ExtractOpscolo $coll)(TokenNawcoll, pathi$col2)

—

(rokenNavsscolo, path0$co@

]

(StructuralJoirscoll)

(Extractunnest(ExtractNesticoll $co@ (Extractunnest(ExtractNes(s):oll $co§
L)

(ExtractOpscolo $coll)(TokenNavscol1, pathi$col2)(TokenNavscol1, path2$col3)

(TokenNavscolo, patho$coll)

Figure 3.4: Mode Change without Introducing/EliminatinguSturalJoin

3.1. SOLUTION SPACE 84

no operator consuming $coll
f
(StructuralJoirscoll)

(Extractunnest(ExtractNesitoll$col§ (Extractunnest(ExtractNeSiﬁoll$co@
T
(ExtractOpscolo $coll) (TokenNawcoll, pathi$col2) (TokenNawscoll, path2$col3)

— e

(TokenNavscolo, patho$coll)

g

(StructuralJoirscoll)

/\

@xtractunnest(ExtractNesﬁ)oll $co@ @xtraetu nnest(ExtractNestgol1 $co@

(TokenNawcoll, path1$col2)(TokenNavscoll, path2$col3)

e

(TokenNavscolo, patho$coll)

Figure 3.5: Eliminatelxztractg.,;o$coll when no Regular Tuple-based Operator
Consumes$col1

3.1. SOLUTION SPACE 85

ure 3.2. If later we pull ousd = $a/reserve, the resultaniVavNests, /reserveSd
is placed by default betweeRztractUnnestg,3a and NavUnnests, /seiier$b-
However it can also be placed for example betwéamUnnestg, /scie,$b and
NavNestgy, / /profitebe, DecauseNavNests, /sque,50 still outputs tuples carrying

cells bound tdba.

(Taggeﬁauction>$ b,$c</auction}

(StructuralJoirsa)

1 3
ﬁ (Select$f: “01609”)
/ /
(ExtractNest#a$d) (SeIeCISBe contains “frequer) (StructuralJoirsc)
7 ~
(NavNes&b, //profile$e) (ExtractNestsc $f)
+
(NavUnnestsa, /sellel’$b) (ExtractUnnes$a$c) (TokenNavssc, //zipcode@
% —_— ——
ﬁ'okenNa\&a, /reservdia (ExtractUnnessa) (TokenNa\ﬂsa, /bidder$c)

TokenNas, /auctions/auctio
[)
(StreamSourceren_auction ’$§

Figure 3.6: Plan Derived from the Pull-out 8bken N avg, /seiier$b from Plan in
Figure 3.2

Operator commuting has been long studied as an importaimhiaption op-
portunity [19, 45]. This motivates us to introduce a secoimd lof rewrite rules in

the next section to explore this opportunity.

3.1.2 Operator Commuting Rules

We now list the commuting rules. We u&. to represent &elect or aNodeN av

operator. ¢ represents the selection predicateip is a Select operator, or the

3.1. SOLUTION SPACE 86

path expression iOp is a Node N av operator. P, P, and P, in the rewrite rules

represent subplans. We also uses ; to represent &tructuralJoin operator.

Commuting Op.1 With Opes:
Opc1(Opea(P)) = Ope2(Ope1(P)) when bothel and ¢2 involve only

columns output generated by a subplan

Commuting Op, with StruturalJoin:
Opc(P1 D<igy Ps) =

(Op(Py)) <i5y P> whenc involves only columns output b¥; .

Figures 3.7 , 3.8 and 3.9 show the examples of commutingée N av op-
erator with aSelect, anotherNode N av and aStructural Join operator respec-
tively. A NodeN avgeon patn1 $col2 can commute with any automaton-outside op-
erator as long as th&ztract operator that extract8coll is still placed under

NodeN avgeoi1 parn1 Scol2 after the commuting.

3.1.3 Input Subplan Reordering Rule

After we have determined where to plac&ladeNavoperator, we can have fur-
ther optimization decisions to make. For example, in Figdu& according the
execution style oStructural Join operators as described in Section 2.5.4, when
Structural Joing, is invoked as a/auctior>> is encountered, only the three high-
lighted operators can have data in their output queues (hatethe output of
any descendant operator $fructural.Joing. must have all been consumed when
</bidder> was encountered).

For each of the three operators, denoted@aghe intermediate operators be-

3.1. SOLUTION SPACE

87

(Selectscoll ...)
f

(NodeNaV$co|2, path2$col3;

[

(NOdeNaV$coIO, path0$co|1)

(NOdeNaV&:oIZ, path2$col3)
(Selectscolt ...)

(NOdeNaV$00IO, path0$coll>

Figure 3.7: CommutingVodeN avg o2 patn2$col3 With Selectgqq

(NodeNavscou, pa!h1$CO|2>
L

(StructuralJoin)

(Extractscolo$coll) (op)
(TokenNawscolo, pathabcol

StructuralJoin

(NOdeNavﬂicoll, pathl$CO|2> (op)
f
(Extractscolo $coll)

TokenNawscolo, patha$col

Figure 3.8: CommutingVodeN avg.o1 path2$col2 with Structural Join

3.1. SOLUTION SPACE 88

Q\IodeNavsscou, pathl$CO|2>

f

(NOdENaV$col3, path3$co@
*

(NOdeNaV&:oIO, pa1h0$coll>

1I

(NOdeNaV$col3, palh3$C0|4>

T

Q\IodeNavsscou, pathl$CO|2>
T

(NOdeNaV$coIO, palh0$C0|]>

Figure 3.9: CommutingV odeN avg.oi1 patn1 Scol2 with NodeN avg.i3 pans$cold

tweenop and StructuralJoing, must be evaluated whesttructuralJoing, is
invoked. We call the intermediate operators betweeandStructural Joing, an
input subplan obtructural Joing, andop the entry operator of this input subplan.
For example, the three dashed boxes in Figure 3.6 contar thput subplans of
Structural Joing, with entry operatordiztract N estg,$d, ExtractUnnestg $a
and Structural Joing,. respectively. Even though there is no intermediate oper-
ator betweenEztract Nestg,$d and Structural Joing,, for uniformity, we say
Extractnestg,$d is the entry operator of an empty input subplayofuctural Joing,.
The methodancestorUpstreamDriveim Algorithm 3 in Section 2.6 describes
the process of evaluating these input subplans. Whea/anction> is encoun-
tered, StructuralJoing, is invoked. It then in turn invokes its input operators

(lines 7 - 9 in Algorithm 3). Each such input operator agawokes its input op-

3.1. SOLUTION SPACE 89

erator. Finally, the entry operator is invoked by its par@merator. Therefore the
data in the output queue of the entry operator are consunhéitealvay through
the input subplan. In this way, an input subplan is thoroyghvialuated. After all
three input subplans have been evaluat&thuctural Joing, performs Cartesian
products on the output of these input subplans (line 10 iroAtlgm 3).

We now propose to further optimize to this process. Algonith improves
Algorithm 3 in two ways.
Precheck of Output of Entry Operators. The first improvement is that when
Structural Joing, is invoked, it checks whether all entry operators have gener
ated some output during the processing of the current bindir$a (lines 7 - 12
in Algorithm 5). Only if yes, Structural Joing, goes on to evaluate the input
subplans. For example, suppoBetract Nests,$d does not have output when
checked, i.e., the currenti.ction element does not haveraserve child element,
then we can save the evaluation of the input subplans cadamthe two dashed
boxes.
Immediate Stop at Empty Output of Input Subplans. The second improvement
is that when we evaluate the input subplans one by one, if plauldoes not
generate output, we immediately stop evaluating the rdxtlaos (lines 17 - 19)
since it is guaranteed that thgructuralJoin would not output anything. We
however need to assure that all unconsumed data are clepnddrst, for those
input subplans that have already generated output beforstapethe evaluation,
we clean up their output (lines 28 - 30 in Algorithm 5). Secofw those input
subplans that have not been evaluated yet, we clean up tipeit, ii.e., the data
generated by their entry operators (lines 31 - 33 in Algarith). This assures

correctness as no old data will be mixed with the new datavtiibbe generated

3.1. SOLUTION SPACE 90

Algorithm 5 Optimized In-Time Structural Join (Compared to Algorithin 3

public class StructuralJoif

1:

public ancestorUpstreamDriver()

booleanall EntryHaveResults = TRUE;
booleanallSubplan HaveResults = TRUE;

int 4;

List inputTuples|];

int n» = number of input operators of thigtructural Join;
/[Precheck of Output of Entry Operators

7. for each entry operatamtryOp of input subplansio

10:
11:
12:
13:
14:
15:
16:

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:
28:
29:
30:
31:
32:
33:
34:

35:

if entryOp has no data in its output quetteen
allEntryHaveResults = FALSE;
break;
end if
end for
if allEntryHaveResultshen
for (1 =1;i < mn;it+)do
Let inputOp denotes theé'” input operator;
List curInputTuples = output generated whenputOp is evaluated,;
/limmediate Stop at Empty Output of Input Subplans
if curInputTuples are emptythen
allSubplanHaveResults FALSE;
break;
else
inputTuples[i] = cur InputTuples;
end if
end for
end if
if allSubplanHaveResulthen
outputTuples = join inputTuples[l], inputTuples[l], ..., and
inputTuples[n];
else
for (intj=1;] <i; j++) do
clean up output queue of th& input operator.
end for
for (intj=i+1;j <n;j++) do
clean up output queue of the entry operator of ffenput subplan.
end for
end if
... Illines 13 - 21 in Algorithm 3 in Section 2.6 in Chapter 2

}

3.1. SOLUTION SPACE 91

(StructuralJoin

AN

o O w)
ik
(StructuralJoin)

@ O w

Figure 3.10: Reordering Input Subplans of StructuralJoin

within the nextauctionelement.

The order in which we evaluate the input subplans is impotfianthe effi-
ciency. For example, in Figure 3.6, supposselier seldom has arofile, then the
second input plan should be evaluated before the third iplaut. Therefore if we
find that the second input plan does not generate any outghitve binding of$a,
we do not need to evaluate the third input plan. This can leaayhificant cost sav-
ings when there is a large numberlafider elements in amuction We therefore
offer a third rewrite rule calledhput subplan reordering This rule switches the

order of the input subplans whose topmost operatorsarandop, respectively.

Reordering Input Plans:

op1 Dlg g op2 = op2 Dlgj Op1.

This rule is graphically shown in Figure 3.10. In Figure 3.@ assume the
input subplans are evaluated from left to right. We changeotidler of the input

subplans in the top plan and get the bottom plan.

3.2. COST MODEL 92

3.1.4 Relationships among Rewrite Rules

Theoperator-commutingndinput-subplan-reorderingules are designed to com-
plement theéoken-or-node mode changa@es. The comparison of the performance
when a pattern is retrieved in or out of the automaton shoelthis. That means
both the automaton processing and non-automaton progessiuld be optimized.
Given a set of patterns to be retrieved in the automaton, utereaton part of the
plan is uniquely determined. There are however altermnafiwethe non-automaton
part of the plan. Theperator-commutingndinput-subplan-reorderingules are

then applied to optimize the non-automaton part of the plan.

3.2 Cost Model

In order to be able to compare two alternative Raindrop plessnow propose a
cost model. In traditional databases, the cost of a planfinatbas the processing
time on the whole input data. Since the input stream can lplgdsé infinite, we
need to define the cost of the plan as the processing time onteifiput unit.
Because we never allow pulling out the bottommoskenNawoperator in order
not to buffer the complete incoming stream (refer to Sec?i@nl), all alternatives
have the same bottommoBbkenNawoperator. We therefore define the cost of a
plan (resp. an operator) as the average processing timeooagsing the data that
originate from one destination element located by the buttostTokenNawper-
ator. For example, the cost of the plan in Figure 3.2 is theameetime spent on

processing onauctionelement; the cost &Foken N avgy, //prorile Se is the average

3.2. COST MODEL 93

time for locating allprofile elements within onauctionelement. For simplic-
ity, in the rest of this chapter, we refer to the destinatitement located by the
bottommosftTokenNawas abottom input element

We propose our cost model for a scenario with the followirafdess: (1) the
statistics are unavailable before the stream comes in; 3riti¢ query however is
known beforehand, i.e., users preregister their queriesdoéhe stream arrives. In
this scenario, we can run an initial plan of the query on tleining stream and
collect the statistics needed for this particular query. Wilefurther discuss for
other scenarios, which parts in our proposed cost modelditdrich parts need to
be extended in Section 3.2.5.

As described in Section 2.2, besides XML specific operatoch s naviga-
tion, Raindrop also supports SQL-like operators suclselect Join, Groupby
Orderby; Union, DifferenceandIntersect In the first step of cost-based optimiza-
tion for Raindrop plans, we consider onBelect operator among the SQL-like
operators. We can however extend to support the other Loferators in fu-
ture work. Note that the cost model for the SQL-like opermtisr not a major
challenge since it has been widely studied in relationalokzdes. The novel aspect
of Raindrop cost model lies more in costing the automatorichvis little studied

before.

3.2.1 Unit Costs of Automaton-Outside Operators

In Raindrop implementation, the cost of a unary automataside operator is

linear in the number of its input tuples. Also, the cost of thalti-way oper-

2Strictly speaking, the cost of a plan in our definition exesitheStreamSourcand the bottom-
mostTokenNawperators. Since these two operators are common in alhatiee plans, we are not
interested in their costs when comparing two alternatieagl

3.2. COST MODEL 94

ator, i.e.,StructuralJoin is linear in the product of the number of input tuples
from each of its child operators. In other words, in curreatri@rop implementa-
tion, given an automaton-outside operatprthat has. child operators:hildOp1,
childOps, ..., childOp,, its cost can be expressed|asildOp1| x |childOpsy| x
.. X |childOpy,| x UnitCost(op) where|childOp;| (1 < i < n) denotes the car-
dinality of the input originated fronahildOp; during the processing of a bottom
input element; and’nitCost(op) is the processing time on each input tuple.

We further assume that the unit cost of an operator is notteffidoy how many
number of input tuples the operator processes each timeoray20] observes
“intra-operator non-linearity” of tuple processing by goecator. That is, the unit
cost of tuple processing may decrease as the number of tigulesocessing in-
creases. According to [20], this reduction in unit cost maseadue to two reasons.
First, an operator may optimize its execution better witigéa number of tuples
available for processing. For example, merge joins can bd imstead of nested
loop joins for larger number of input tuples. Second, thaltotimber of calls to the
operator code decreases, cutting down the overhead ofidanzlling. In Rain-
drop plans, operators do not have different evaluatioriegjies to cater to larger
number or smaller number of tuples. Therefore, “intra-aparnon-linearity” can-
not arise because of the first reason mentioned above. Mstsinmmlels, relational
[63?] or XML [6, 57], ignore such “non-linearity” arising becaai®f the second
reason. This is because it is hard to quantify the overheag@fator code which
is very low level. We assume the same in Raindrop.

An important question to ask is, given an operatpris it possible to observe
its UnitCost(op) during the execution of an arbitrary plan? If yes, we canatliye

use thisUnitCost(op) observed during the execution of an initial plan. If not, we

3.2. COST MODEL 95

then have to analyze what factors contributé&’taitCost(op), i.e., cost models for
such operators have to be defined at a lower granularity thainCost(op). For

different operators, the answer is analyzed below:

1). A Selectoperator, when appearing in one plan, must appear in alr othe
equivalent alternative plans because we do not provide anyite rule to
eliminate aSelectoperator. Therefore, no matter what the currently running
plan is,UnitCostof a Selectoperator is always observable. Since we assume
that theUnitCost(op) is not affected by how many number of input tuples
are processed each time the operator code is célledtCost(op) observed

in a currently running plan is the same as that in any otharspla

2). A NodeNawoperator does not appear in all plans due tottien-or-node
mode change ruleAlso, aStructuralJoinoperator may not necessarily ap-
pear in every plan, e.gStructuralJoing.,;; appears in the bottom plan
but not the top plan in Figure 2.6 in Section 2.4.2 in ChapteT zerefore,
UnitCosts of these two operators are not always observable in armtlyre

running plan.

In summary, we may have to estimate the unit cost bfodeNavor a Struc-
turalJoin for costing a plan other than the currently running plan big ts not
necessary for &electoperator. Therefore in the rest of this section, we analyze
how to estimate th&nitCostfor the NodeNavand StructuralJoinoperators only.

Table 3.1 gives the notations used for estimating tléseCost

UnitCost of NodeNav. UnitCost(NodeN avg, ,$v) is the timeN ode N av spends

on navigating into the tree rooted at a node which is a bindihgu to find all

3.2. COST MODEL 96

Notation Explanation

M) for NodeNavu,Pv, we usepli] to denote theit" navigation' step on pgtb._ p[0]
denotes the binding &fu. n,[; denotes average number of children of a binding[of
within a binding of$u

Wpli] fc;r$NodeNav$u,p $v, w,[;) denotes average number of a bindingf within a binding
of $u
Cluisit time for visiting one node in an XML element tree

Chicartesian | COSt of performing a binary cartesian product, one inpuietfiom either side

Table 3.1: Notations Used in DefiningJnitCosts for NodeNav and
StructureJoin

the nodes that are bindings 6. Supposep = p[1]/p[2]/.../p[n] where p[i]

(1 <4 < n)is either a navigation step or a descendant axis “//” (fdfaumity,
we also view “//” as a special navigation step). To matchithenavigation step,
every child of bindings of the — 1** navigation step is visited. The number of
these child nodes within a binding 8f. is n,;_1jw,|;—1). Thus the time spent on

finding pli] iS 1, 1)wp[i—1)Cuisie- We then have the below equation.

Equation 1 UTL’L'tCOSt(NOdeN(I’U$u7p[1}/p[g}/___/p[nﬁv) = Z?:l np[i_l]wp[i_l]cmit.

UnitCost of StructuralJoin. Suppose &'tructural.Join hasn child operators
childOpy, childOps, ..., childOp,. TheUnitCostof StructuralJoin is defined

as the time spent on cartesian producting a tuple outpukiiyfOp,, a tuple output

by childOpa, ..., with a tuple output byhildOp,,. This time spent on the cartesian
product may differ whem differs. The values of for a StructuralJoing, op-
erator in different alternative plans can be differemtan increase after the mode
change of aVodeN av operator (see Figure 2.6 in Section 3.1.1). We ignore this
difference to avoid an overcomplicated cost model. We theseuse the unit cost

of performing a binary Cartesian product (i.e.= 2) as the general unit cost of a

StructuralJoin We then have the below equation.

3.2. COST MODEL 97

Equation 2 UnitCost(StructuralJoin) = Chicartesian-

3.2.2 Costs of Input Subplans of StructuralJoin

We have studied how to gétnitCost(op) for an automaton-outside operatgr.
Now we consider how to compute the costopf denoted a€’ost(op). As men-
tioned in Section 3.2.1C ost(op) = |childOp;| x |childOpa| X ... X |childOpy,|
x UnitCost(op). |childOpi| x |childOps| x ... x |childOp,| is the amount
of input to op during the processing of a bottom input element. In a traoti
plan, the amount of data that needs to be processed by anagsranly affected
by how much data is filtered by its descendant operators tie selectivity of its
descendant operators). However, wheBtaucturalJoinis invoked, an input sub-
plan is executed only when its left sibling subplans havgetlerated some output.
Therefore the amount of data that needs to be processed mpansubplan is
also affected by the likelihood of the left sibling subpldraving generated some
output.

We now define two conceptselectivityandnon-empty-output probabilifyof
operators. We also define a third conceptry planfor entry operators. These

concepts are used to compute the cost of an input subplan.

Selectivity: The selectivity of an operatep, denoted as (op) is defined as below:

1). If op is aTokenNavg, ,$v or Extractg,$v, o(op) is the average number

of bindings of$v generated within a binding &..

2). If opiis aSelect, NodeNav or Structural Join, o(op) is defined as in the

traditional databases. Suppagehasn child operatorsg(op) is defined as

cardinality of op’s output
[17, cardinality of input from it" child operator of op"

3.2. COST MODEL 98

Non-empty-result Probability: The non-empty-result probability of an operator
op is denoted a4 (op). “7 ()" in the notation means “not generating an empty

result”, i.e., generating some result. It is defined as below

1). If opis aTokenNavg, ,$v, Pxg(op) is the probability of a binding o$u

containing at least one binding 5.

2). If opis aSelect or NodeNav, P (op) is the probability ofop generating

some output during the processing of one input tuple.

Entry Plan: As described in Section 3.1.3,%ructuralJoing, has several en-

try operators. For example, in Figure 3.6, the three higitdid operators are the

entry operators obtructural Joing,. There are intermediate operators between

an entry operator and thi€oken N av operator that retrieve®v. We call the plan

consisting of these intermediate operators (includingethiey operator) aentry

plan. In Figure 3.6, there are five intermediate operators batwementry operator

Structural Joing. andTokenN avgs jquctions jauction 30, 1.€., Structural Joing,.,
ExtractUnnestg,$c, Extract Nestg $f, TokenNav&,//zipcodeSf, andTokenNavM/biddmﬁc.
We say the plan composed of these five operators an entry ptae entry oper-

ator Structural Joing.. We use the functiomntry Plan(op) to denote the entry

plan of an entry operatap.

Assume the input subplans 8tructural Joing, from left to right aresubplan,
subplans, ..., subplan,, with entry operatorgntry,, entrys, ..., entry, respec-

tively. Equation 3 computes the costafbplan; (1 < i < n).

Equation 3 Cost(subplan; of StructuralJoing,)

= number of bindings o$v within one bottom input element (1)

3.2. COST MODEL 99

x evaluation time ofubplan; on input generated within a binding &0 (2)

= Hop € operator set between bottommost TokenNav and TokenNav that retrieves $v o(op)
3)

x probability of subplan; being evaluated (4)

x amount of input tuples teubplan; within a binding of$v(5)

x evaluation time okubplan; on one input tuple (6)

= Hop € operator set between bottommost TokenNav and TokenNav that retrieves $v a(op)
(1)

x Pyg(entryr) Pag(entrys)...Pag(entryy) (8.8)

x Pyg(subplany)...Psq(subplan;_1) (8.b)

x o(entryPlan(entry;)) (9)

x UnitCost(subplan;) (10)

In Equation 3, Expression (1) is expanded into Expressign &hen we
say “operator set between bottommdsiken Nav and theTokenNav that re-
trieves $v”, the set does not include bottommdBbken Nav but it includes the
TokenNav that retrieves$v. Any operator in the set is @okenNav that re-
trieves an ancestor pattern&f or $v itself. For example, suppose we want to cost
an input subplan obtructuralJoing. in Figure 3.6. To compute the number of
bindings of$c in the bottom input element, the operators set between ttierbo
mostTokenNawv (i.e., TokenN avg, /quctions/auction$@) @nd theT'oken N av that
retrievessd (i.e., TokenNavs, /seier$c) is {T'okenNavg, sener$ct. EXpression
(3) is then expanded agT'okenNavg, sciier8¢), 1-€., the number of bindings of
$c within a binding of$a.

Expression (2) is expanded into Expressions (4) (5) and E&Xpression (4)

3.2. COST MODEL 100

later is expanded into Expressions (8.a) and (8.b). Exime$8.a) gives the prob-
ability of all entry operators generating output while Eegsion (8.b) gives the
possibility of all left sibling input plans ofubplan; generating output.

Finally, Expressions (5) and (6) are expanded into Expoass{9) and (10)
respectively. The average number of tuples generateghtyy; within a binding
of $v is the selectivity of the entry plan afntry;, i.e., o(entryPlan(entry;))
in Expression (9). The unit cost of processing one inputetugl subplan; is
UnitCost(subplan;) in Expression (10).

o(entryPlan(entry;)) and UnitCost(subplan;) require us to compute the
selectivity and the cost of a plan respectively. This candmaputed exactly as in

traditional databases. We compute the selectivity of a atabelow.

1). For a planP = P4(Pg) which means subplafs, consumes output of sub-
plan Pg, 0(P) =o(Pp) x o(P4); andCost(P) =n x UnitCost(Pg) +n

x o(Pg) x UnitCost(P4) wheren is the number of input t@z.

2). ForaplanP = P4 JoinOp Pr which means subplaR, is joined with sub-
plan Pg by JoinOp, o(P) =0 (Pa) x o(Pg) x o(JoinOp); andCost(P)
=na x UnitCost(Ps) + ng x UnitCost(Pg) + na x ng x o(JoinOp)

x UnitCost(JoinOp) wheren 4 andnp are the number of input tuples to

P4 and Pp respectively.

By breaking a bigger plan into smaller subplans, we can eadlgtcompute

the selectivity/cost of a plan from the selectivity/cositefoperators.

3.2. COST MODEL 101

3.2.3 Costs of Automaton-Inside Operators

In the previous section we have discussed how to computs émsautomaton-
outside operators. We now describe how to compute the coisted automaton-
inside operators. We first briefly recap how an automatonesl tis retrieve pat-
terns while more details can be found in Section 2.5. An aatombehaves as

below:
1). When an incoming token is a start tag:

a. If the stack top is not empty, the incoming token is lookedruthe
transition entries of every state at the stack top. The aatompushes
the states that are transitioned to onto the stack. If nestate tran-
sitioned to, the automaton pushes an empty set (denot@doaso the

stack.

b. When the stack top contains an empty set, the automatectigipushes

another empty set onto the stack without any lookup.

2). When an incoming token is an end tag: the automaton pepstétes at the

stack top off the stack.

3). When an incoming token is a PCDATA token, the automatohkesmano

change to the stack.

4). Anincoming token (start tag, end tag or PCDATA token}ased if required

by an Extract operator.

When costing a pattern retrieval, we need to be careful vathdrtized” com-

putations. For example, in Figure 3.11, when a stack topatostinstances of

3.2. COST MODEL 102

ql ql ql ql ql ql
q0 ||_q0 q0 q0 q0 q0 | [90

<auctions> <auction> <id> 001 </id> <seller>

Figure 3.11: Automaton of Plan in Figure 3.2 and Stack Snatgsh

g4 and g5 (see the rightmost stack), an incomiagseller> will lead to a stack
backtrack. However we cannot solely assign this backtngckbst to the pattern
retrieval$a/seller. This is for two reasons. First, even if the query does nofask
$a/seller, backtracking is still needed whetiseller> is encountered in order to
restore the stack to the status before the matchingl/er> has been encountered.
Second, the backtracking cost is a constant, i.e., it is fiettad by which states
are popped or the number of states popped. For example,andgementation,
we can simply move the reference to the stack top one levehdovaccomplish
the state pop-off.

To avoid repeatedly costing the same amortized computatisa analyze the
cost of retrieving a patterp by comparing the cost of running a stream on an
automatonA,,;;, and the cost of running the same stream on another automaton
Awithout- Awitn, denotes an automaton that encoiegp and all the ancestor pat-
terns of$v/p (e.g., the ancestor patterns$éf /profile are$a = auctions/auction

and$b = $a/bidder). Ayitnouwt €Ncodes only the ancestor pattern$ofp. Since

3.2. COST MODEL 103

Notation Explanation

Q(A) states in an automatof

Qeztract(A) states associated with extraction operators, e.g., siat@sdqr in Figure 3.11

CronEmp cost of processing a start token when stack top is not empty

Cemp cost of processing a start token when stack top is empty

Chacktrack cost of popping off states at the stack top

Ceatract(q) cost of buffering elements, whose start tags activates gtat a bottom input element

Nactive(q) the number of times that stack top contains a sjatéen a start tag arrives in a bottom
input element. Each such tag is the start tag of a child of ameht that activateg

Nstart, Nend number of start or end tags in a bottom input elemeifktart) = n(end).

Table 3.2: Notations Used in Cost of Automaton-Inside Ofpesa

Ayt and A iinowe ONly differs in that4,,;;;, retrieves an additional pattegn the
cost difference of running a stream ah,;;, and A,;tnoue 1S then the cost of re-
trieving p in the stream.

We first study how to compute the cost of running a stream orugomnaaton.
Given an automato with a start state which is activated by a start tag of the
bottom input element (i.egy in Figure 3.11), the cost of running a stream on the

automatorA is:

Equation 4 Cost(A) =

state transiting cost for processing start tags ()
+ stack backtracking cost for processing end tags 2)
+ extracting cost for processing tokens 3

Using the notations in Table 3.2, we can refine Equation 4 teakon 5.

Equation 5 Cost(A) =
quQ(A)nactive(Q) CnonEmp (13.)

+ [nstart - quQ(A)nactive (Q)] Cemp (1b)

3.2. COST MODEL 104

+ Nend Chacktrack @)
+ quQemact(A) nactive(Q) Ce:ctmct(Q) (3)
= 2 gco(ayNactive() (CronBmp = Cemp) + Nstart(Cemp+ ChackTrack) (4)
+ quQemact(A)nactive (@) Ceatract(q) (5)

Expression (1) in Equation 4 is expanded into Expressiore @nd (1.b) in
Equation 5. A start tag activates more than one state onlynwke&occurs in
the query, namely, there avetransitions and self transitions. For example, in
Figure 3.11, ifq, is at the stack topgs must be at the stack top as well. Sinte
transitions and self transitions usually is only a smalltiporof the transitions in
an automatonEqEQ(A) Nactive(q) 1S approximately equal to the number of start
tokens that are processed with a non-empty stack top. Tdrer&xpression (1.a)
is the cost of processing start tags with a non-empty staek to

The number of start tags that are processed with an emptly &tpds (2540,

- number of start tags that are processed with an non-emgti 86p) = @start -
YqeQ(A)Nactive(q))- Expression (1.b) of Equation 5 thus is the cost of proogssi
start tags with an empty stack top.

The cost of processing an end tag is equal to the cost of pgpihthe states
at the stack top, namelgyq.ii-ack- Since there are.,,; end tags in a bottom input
element, Expressions (2) in Equation 5 is the cost of pringsnd tags.

In Expression (3) in Equation 3, € Qcxtract(A) IS a state associated with
an Extract operator. ngcrive (¢)Cextract(q) then denotes the cost of storing the
elements whose start tags activaté herefore Expression (3) in Equation 5 is the

total extraction cost.

3.2. COST MODEL 105

We now know how to compute the cost of running a stream on angivéeoma-
ton. We can then compute the cost df'akenNavg, ,$v operator by computing
Cost(Awitn) - Cost(Awithout), @S Shown in Equation 64, in the equation denotes

the sub-automaton that encodes'p only.

Equation 6 Cos(T'okenNavg, ,$v)
= Cost(Awitn) — COS{ Awithout)
= D00 Awitn)—Q(Awisnons) Mactive(@) (COStnonEmp — Costemp)
+ zquewtr(Lct(Awith)_Qewtv-act(Awithout) Nactive () Costeatract(4)
= 2 qeqa,) Nactive(1) (CostnonEmp — Costemp)

+ zqueztract(Ap) nactive(Q) COStemtract(Q)

3.2.4 Cost Model Summary

The cost of a plan consists of two parts. The first part is thet oball pattern
retrieval performed in the automaton. We use Equation 6 toptte the cost of
each pattern retrieval. The second part is the cost of autorautside operators.
The automaton-outside operators can be divided into dedisfanct groups, each
group composed of tructuralJoinand its input subplans. We can use Equation 3

to compute the cost of each such group.

3.2.5 Discussion on Extension of Cost Models

In the beginning of Section 3.2, we mentioned that we assimaaiser query is
known beforehand. With this assumption, we can then run @ialiplan of the
query and collect the statistics needed for this partiogueary. The impact of this

query specific statistics collection mechanism is thathose operators that appear

3.2. COST MODEL 106

in all alternative plans, we do not need to further analyzatfdictors contribute to
their UnitCost because theil/nitC'ost can be directly observed in the currently
running plan.

There are two scenarios in which the above statistics ¢@leenechanism
does not fit. The first scenario is that the stream query enggiseto process a
large number of queries so that it cannot afford to colleecH statistics for
each query. Statistics summary techniques [2, 84] are degdachieve good
scalability. The second scenario is that the user adds a ey @fter the stream
starts to arrive. Of course we can still run an initial planttué new query and
collect statistics for it if scalability is not a concern BerAnother solution is that
we always summarize the statistics as the stream runs soribata new query is
added, we can immediately provide cost estimates and claggis@ for this query.
This solution is essentially static optimization, i.e.{tipg the statistics, choosing
a plan and running the chosen plan.

In summary, in both scenarios, we can estimate the cost @refim general
statistics instead of specific statistics for this paracydlan. A summary statis-
tics collection mechanism may not observe WwitCostof all Select operators
in the plans. For example, operators that involve a “contlinction such as
Selectge contains “frequent” @r€ quite common in queries on text-centered XML
document [7]. The query-specific statistics collection heaatgsm ensures that we
can directly observe thegnitCostof such operators. In the summary statistics col-
lection mechanism however, we need to enhance our cost paelalyzing what
factors contribute to evaluating, for example, a “contdiniction. Except such en-
hancement on analyzing thénitCosts of the functions used ielect operators,

all the other parts of our cost model still fit in the summaigtistics collection

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING107

mechanism.

3.3 Combining Heuristics and Costs for Operator Com-

muting

The operator-commuting and input-subplan-reorderingsraptimize the non-automaton
part of a plan. The operator-commuting rule reorders twaatpes that have a
parent-child relationship while the input-subplan-resdg rule reorders subplans

that have a sibling relationship. We sometimes refer toethe® rules as parent-

child operator reordering and sibling operator reorderggpectively. These two

rules are not independent of each other. That means, optgrézplan using one

rule first and then optimizing the plan using the second roleschot ensure the
resultant plan is overall optimal. We now give an examplditstrate the depen-

dency relationship between the two rules.

Example 12 Without the input-subplan-reordering rule, the likelittbof an oper-

ator being executed is only decided by the selectivity alétcendant operators.

For example, in Figure 3.2, if we push downlectg ;— «1609» UnderStructural Joing,,
Selectg r—«p1609» Will e placed betweeRztract Nestg.$ f and Structural Joing,.
Selectgj— 1609 WaS abovertractUnnestg,$c before the push-dowrEztractUnnestg,$c
simply wraps tokens that are components of bindingscahto tuples. In other

words, ExtractUnnestg,$c does not filter the input so that whether it is exe-

cuted beforeSelectg;—«p1609» OF In parallel with Selectg ;<1609 does not af-

fect the cost obelectsr— <1609 . Therefore, pushing dowSelectg 16097 UN-

der StructuralJoing, does not change the cost Stlectgs—«pi609». HOwever

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING108

pushing dowrSelectgs—«p1609» UNderStructural Joing, can decrease the cost of
Structural Joing, sinceSelectg;—«1609» CanN filter input toStructural Joing,.

In summarySelectg s—«1609» Would be pushed down und&tructural Joing,
when only the operator-commuting rule is considered. Hawdévwe in addi-
tion consider the input-subplan-reordering rule, leavifglectss—«y1609» above
the Structural Joing. operator as in Figure 3.2 may be better than pushing it
down because we may be able to save the evaluatidieltts 16090 When
its left sibling subplans, for exampl&electse contains “frequent”, are very selec-
tive. Therefore, the parent-child operator relationships plan optimized without
input-subplan-reordering rule are not necessarily the saam those in a plan opti-

mized with the input-subplan-reordering rule.

Since the search space generated by only the token-or-node change rules
can be already very large (a query withpatterns can have up & alternative
plans), we prefer to optimize the non-automaton part of a jptaa short time.
We therefore use a search strategy that basically congltemperator-commuting
and input-subplan-reordering rules independently, djgtimize in two phases. In
the first phase, we optimize using only the operator-conmgutile on the initial
plan and get a new plan.. In the second phase, we then optihgdzglan derived
in the first phase using the input-subplan-reordering rullg.oSuch a strategy
prevents a search space explosion compared to considdringnzbinations of
applying both types of rules. It however is not exactly anejmehdent search,
since some operator-commuting decisions we make in thefieste target leaving
opportunities for the later input-subplan-reorderingiropation. For example, in

Example 12, we may choose to plagelects 1609 @boOVeStructural Joing,.

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING109

We present how to make the operator commuting decisionsisrséttion while

we present how to make the input-subplan-reordering aewsn Section 3.4.

3.3.1 Using both Heuristics and Costs for Operator Commutigy

The operator commuting in Raindrop plans can be dividedtintotypes. One is
commutingSelectlike operators with each other. BesideslectoperatorsNode-
Navoperators are specigklecioperators becauseModeN avg,, ,$v has only one
child operator and filters out input tuples whose binding$woftlo not contain a
pathp. The second type is commutiBglectlike operators wittstructuralJoinop-
erators. Note that in a Raindrop pl&tructuralJoinoperators cannot be commuted
with each other. Suppose we ha$eéructuralJoing, and StructuralJoing,
where$v is a descendant element withira (i.e., $v can be expressed &s =
$u/p). Because of the sequential manner of accessing tokemrsty@abinding of
$v must be completely accessed before the correspondingngimdif« has been
completely accessed. That dictates tRatucturalJoing, is always performed
before Structural Joing, on the data that are located within the same binding of
$u. That is to say, the order among ancestor and descesdanttural.Join op-
erators is fixed by the query semantics. TherefSteucturalJoin can only be
commuted withSelectandNodeNawoperators.

For the first type of commuting, i.e., commutiBglectlike operators with each
other, we can utilize some existing techniques. [19] predas cost-based tech-
nigue for determining the order &electlike operators. The basic idea is to define
a rank function on the operators. The operators are thenateal in the ascending
order of their rank functions. This order is guaranteed toptmal. The rank

function on aSelectlike operatorop is defined as-ank(op) = #g;(lop) where

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTINGL10

o (op) is the selectivity obp (i.e., it of sulpul biiesy and(nitCost(op) is the
cost of processing one input tupledp. Intuitively, this rank function indicates that
if the operator has a low unit cost (i.e., processes one tople: quickly) and a low
selectivity (i.e., filter many of its input tuples), it shdube executed early. Such
a rank function based technique can also be used to conBalgetor NodeNav
operators in Raindrop.

For the second type of commuting, i.e., commuthigdeNavor Selectwith
StructuralJoin the above cost-based technique no longer applies. [4&hdsgtthe
rank function based technique in [19] to reor@#lectand Join operators. [45]
assumes certain properties of tBelectandJoin operators. SupposeJain oper-
ator has two child operatorSel, and Sels. [45] assumes that commuting either
Select operator withJoin only affects the costs of these two operators commuted.
For example, commutindgel; with Join does not change the cost §&l>. Sup-
pose aStructuralJoinalso has two childselectoperatorsSel; and Sel, from left
to right. Since we only evaluat8el, after Sel; has generated output, the cost
of Sels is affected by the non-empty-probability 8&/;. CommutingSel; with
Join can increase the cost 6kl,. The assumption that only the costs of the op-
erators involved in the commuting are changed is violateterdfore, the rank
function based technique does not work for commutBadector NodeNawith
StructuralJoin We instead propose heuristics for making decisions fon $yjge
of commuting.

In summary, we use the existing rank function based teclenj@@, 45] to
commuteSelector NodeNavoperators in Raindrop while we propose heuristics
to commuteNodeNavor Selectwith StructuralJoin We have discussed how to

computes (op) andUnitCost(op) in Section 3.2. We now describe our heuristics

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTINGL11

for commutingNodeNavor Selectwith StructuralJoin

3.3.2 Heuristics for Commuting Select/NodeNav with StruairalJoin

We categorizeéStructural Joing, into three cases and propose heuristics for each

case.

Case 1:Structural Joing, with Duplicate $v Output

Heuristic 1: Given aSelecior NodeNawperatorop and aStructuralJoin we place
op beneath thestructuralJoinif an ExtractUnnestg,$w or NavUnnestg, ,$w
(NavUnnestg, ,$w # op) exists in the plan.

For example, in Figure 3.6V avUnnestg, /scue-$b would be placed beneath
Structural Joing, since there exists AokenNavg, /piqder$c in the plan. Sup-
pose we instead plac¥ avUnnests, /sciier$b above Structural Joing,, if one
auctionhas 10bidders, Structural Joing, will output 10 tuples for thiswction
one tuple for one differertidder. Then the samauctionwill be navigated into 10
times byNavUnnestg, /scie-$b to locate theseller.

Our experiment in Figure 2.27 in Section 2.7.2 in Chapter<ilhastrated that
such duplicate computations seriously degrade the pldarpgnce. We therefore

propose such a heuristic to avoid any duplicate computgtion

Case 2: IntermediateStructural Joing, without Duplicate $v Output

Heuristic 2: We place &elecor NodeNavoperatolop above aStructural Joing,
if (1) exceptop, no ExtractUnnestg, ,$w nor NavUnnestg, ,Sw exists in the

plan and (2) otheStructural Join operators exist abov8tructural Joing,,.

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTING112

This heuristic is designed to provide more opportunities dwuctural join
related optimization. Two operators that belong to the ingans of different
StructuralJoinshave no impact on each other’'s execution. For example, in Fig
ure 3.2, suppose we placelects, contains “frequent @Nd Selectg s «p109» DE-
neath Structural Joing, and StructuralJoing, respectively. Each time when
a </seller> is encountered angrofile elements are located within thigller
(resp. When &/bidder> is encountered andcode elements are locatedyelects, contains “frequent”
(resp.Selectgr—«p16097) Would have to be performed. Instead, consider the case in
which we placeSelects. contains “frequent> @NASelectsr— <1609 ADOVEStructural Joing,
and Structural Joing, as in Figure 3.2. When &/auction> is encountered,
bidder elements would have to be found within thigction beforeSelects. contains “frequent”
could possibly be performed. This is beca@ricutralJoinonly evaluates its in-
put subplans when all entry operators have generated o(sgeit precheck of out-
put of entry operators” in Algorithm 3). Moreover, The ewation of Selectg ¢—«p1609”
will not be performed ifSelectse contains “frequent> dOES NOt geNerate any output
(see ‘immediate stop at empty output of input subplans” igotithm 3). There-
fore, bothSelects, contains “frequent» @NdSelectsr—«p1609> are more likely to be
avoided after the commuting.

Generally speaking, before this commuting rewriting, Bedectand Node-

Nav operators were scattered in the input plans of diffe&nicturalJoins After

the rewriting, these operators are “concentrated” intosthigplans of les$truc-
turalJoin operators. For example, &electoperators occur in the input subplans
of Structural Joing, in Figure 3.2. Such operators are then less likely to be eval-

uated because of the optimization techniqueSthucturalJoin

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTINGL113

Case 3: TopmostStructural Joing,

Heuristic 3: We place &elecbr NodeNawperatowp underneath &tructural Join
if no other Structural Join operators exist abov&tructural Joing,.

Placingop aboveStructural Joing, does not open up any optimization oppor-
tunity for input subplan reordering as in the second casmalt even increase the
cost of Structural Joing, because more data that could otherwise be filtered out
by Select or Node N av are now input t&Structural Joing,. Therefore for such a
topmostStructural Join, Select or NodeN av operators should be placed under-
neath it. For example, in Figure 3.2, we keep btliects, contains “frequens @Nd
Selectgs — «g1609» UNderneattbtructural Joing,, since itis the topmositructural Join

in the plan.

3.3.3 Operator Commuting Algorithm

We now describe the algorithm that commutes the operatoasRaindrop plan.

Lemma 1 shows an important property that is utilized in tigeoathm.

Lemma 1 Order of Applying Commuting Rules Being Insensitive: Given two
operatorsopl andop2 (opl or op2 can be either &elector a NodeNay, whether
we commutepl with StructuralJoin or commutep2 with Structural Join first

does not affect the final outcome.

Proof 1 We decide which categoryStructuralJoirbelongs to by checking whether
this StructuralJoircan output duplicates and whether it is the topn&tsticturalJoin
Commuting two operators would not eliminateAntractUnnestg,$w or NavUnnestg, ,$w.

It therefore does not change the property dfauctural Joing, outputting dupli-

3.3. COMBINING HEURISTICS AND COSTS FOR OPERATOR COMMUTINGL14

cates or not. Also, the commuting would not eliminate &tmycturalJoirso that it
does not change the property ob&ructural Joing, being topmost or not. That is
to say, no matter how we commute operators, the categonatlatuctural Join
belongs to does not change. Since whether an operator sheuddmmuted with a
Strucutral Join is completely decided by the category of tmicutralJoinwhich
is unchanged, the order in which we commute operators w8tracutralJoirdoes

not affect the final outcome.

Algorithm 6 Commuting Operators Using both Heuristics and Costs
1: for eachStructuralJoin in the plando
2. if StructuralJoin falls in the first or third categorthen

3 while its parent is &elector NodeNawoperatordo

4 commute thisStructural Join with its parent

5: end while

6. else

7 while it hasSelector NodeNawhild operatorsio

8: commuteStructural Joing, with each child operator
9 end while
10: endif
11: end for

12: for eachStructuralJoin in the plando
13: for each input subplan dftructuralJoin do

14: commute operators within the input subplan according tw thaek func-
tions

15: end for

16: end for

Algorithm 6 shows the optimization using the operator-canting rules. We
perform the commuting in two steps. In the first step, we usdtturistics to com-
mute Structural Join with Select or NodeNav operators (lines 1 -11). Lemma
1 shows that the order in which we commut&elector a NodeNawvith Struc-

turalJoin does not matter. We therefore traverse edhicturalJoinand commute

3.4. USING RANK FUNCTIONS FOR INPUT SUBPLAN REORDERING 115

the Selector NodeNawperators with it. Since In the second step, we visit each in-
put subplan ofStructural Join operators. For each input subplan, we use the rank
functions [19, 45] to commute between tBelecandNodeNawoperators (lines 12

- 16).

3.4 Using Rank Functions for Input Subplan Reordering

The problem of reordering input subplansS$fructural Join bears some resem-
blance to the problem of ordering select and join operatt®s45]. However, the

operators [19, 45] considered to be reordered must havesaigong-producing re-

lationship, i.e., the output of one select operator will fxe input to another select
operator. In contrast, the subplans in our scenario do na sach relationships.
For example, in Figure 3.2, the output of the subplan comtgifelects s «1609”

is not sent to the subplan containisglects. contains «frequent- W therefore ex-

tend the techniques in [19, 45] and derive a criterion, showihheorem 2, for

deciding the optimal evaluation order of input subplans.

Theorem 2 The cost of input subplans is minimal when they are evaluiat¢ioe
ascending order of their rank functions as defined below:

o(entryPlan(entryOp))UnitCost(subplan)
1—P_4 ¢ (subplan)

rank(subplan) =

The proof can be found in Appendix C. Intuitively, this critm says, a subplan
should be evaluated early if (1) its entry operator filterswynef its input tuples, i.e.,
smallo(entryPlan(entryOp)), (2) it costs little, i.e., smallnitCost(subplan),
and (3) it often does not generate any output each time wreegtthcturalJoinis

invoked, i.e., smalP. ¢ (subplan).

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 116

3.5 Enumerative Search for One-time Optimization

In the previous two sections, we studied how to optimize thre automaton part of
a plan. We now address whether a pattern should be retriavibe automaton or

out of the automaton. In this section, we present an enuimersgarch algorithm

which ensures: (1) all possible alternative plans are egdlso that it guarantees
to find the optimal plan and (2) an alternative is never exqadwice.

Suppose the initial plan haspattern retrieval operators. Our exhaustive search
algorithm enumerates the combinations (i.e., subsetsjeof pattern retrieval op-
erators. For each combination of operators, we change thlesnaf the operators
in the initial plan and get an alternative plan. However, @asesl in Lemma 2,
certain combinations can lead to the generation of plartsatteeredundant. Such

combinations are not explored by our exhaustive searchitidgo

Lemma 2 Combinations Containing Operators with Pattern Dependency Rela-
tionship being Redundant: SupposeravOp; and navOpy have pattern depen-
dency relationship. They retrieve two pattefns= $u/pl and$y = $z/p2 where

$x is an element withigv. navOp; andnavOps can be either & okenNav or

a NodeNav type. They are not necessarily the same types. A combinedion
taining bothnavOp; andnavOp, produces the same plan as another combination

that contains no operators with pattern dependency retestiip.

Proof 2 We distinguish between three cases: fi$st/pl and $x/p2 are both re-
trieved in the automaton; secon#l,/p1 and $z/p2 are both retrieved out of the
automaton; third$u/p1 is retrieved in the automaton whifer /p2 is retrieved out

of the automaton. The fourth case, i.8u/pl is retrieved out of the automaton

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 117

while $z/p2 is retrieved in the automaton, is not supported in Raind®pcause

as mentioned in Section 2.4.38if/p1 is retrieved out of the automaton, then its
descendant pattertu/pl must be retrieved out of the automaton as well. We now
prove that the combination in the first case is redundant. pioefs of the two
other cases are similar and can be found in Appendix D.

Case 1: Suppose a plan containsikenN avg, 1 $v and al okenN avg,, 28y
where$u /pl is the ancestor pattern éfz/p2. Changing the modes of both means
we pull out both$u/pl and $x/p2. However, pulling outu/pl alone will make
$x/p2 to be pulled out as a second effect. For example, in FigureiRing out
$a/seller requires$b/ /profile to be also pulled out. Therefore, this combination
generates the same plan as the combination that contéikgnN avg,, ,,1 $v but

notT'okenN avg,, 2%y .

If a combination contains no pattern retrieval operatoas llave pattern depen-
dency relationship with each other, we say this isahd combination. Changing
the modes in a valid combination must uniquely lead to a plagardless of the
order in which we change the modes of the operators in it. Larrstates this

order insensitivgproperty of a valid combination.

Lemma 3 Combinations being Order Insensitive: If two pattern retrieval opera-
tors navOp; andnavOps have no pattern-dependency relationship, then regard-
less of the order in which we change the modes@fOp,; and navOp,, the two

plans derived contain the same operators.

Proof 3 We distinguish between three cases the same as those usa\iog

Lemma 2. We prove the first case, i.e., given two operataisen Nav; and

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 118

TokenNavo, NO matter in what order we change their modes, we get the same
plans. The proof for the other two cases can be found in Apgpdhd

Case 1. Supposel'okenNav; = TokenNavg, ,2$v. Pulling out$u/p can
eliminate the operators or introduce new operators into gien in four ways.
First, TokenNavg, ,$v and Extractg,$v are rewritten into NodeN avg,, ,$v.
Second, if before the rewriting there exists Botract operator that extract$u,
then anExtract operator that extract§u will be introduced to the plan after the
rewriting. Third, the descendant patters$f/p that are retrieved in the automa-
ton will be pulled out. Fourth, if there exists no other ogerain the format of
TokenNav;. TokenNavg, ,,$v" but there exists &tructural.Joing, before the
rewriting, thisStructuralJoing, is eliminated after the rewriting.

Later, if we change the mode 6bkenN av,, we have the below observations:

1). Mode change df'oken N av, will introduce neither al'oken N avg,, ,$v nor
a Extractg,$v. 1t will not elimiate anExtract. Neither will it introduce a
Structural Join operator. Therefore it will not cancel out the first, second

and fourth changes resulted from the mode chandBoéfen N av; .

2). SinceTokenNavy does not have a pattern dependency relationship with
TokenNavy, mode change df'okenNawvs will not affect those operators
whose modes have been changed as a secondary effect of Hoeitpof
$u/p. That is to say, it will not cancel out the third change resdifrom the

mode change dfokenNav;.

In summary, a mode changeBbken N avs that occurs after the mode change

of TokenNav, does not cancel any change that has been made. Therefore the

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 119

order in which we change the modesitfkenNav, and TokenNav, does not

matter.

Algorithm 7 Exhaustive Search
ExhaustOptfur Plan, navsToBeTried)
Input: cur Plan - a current plan, will be set to the initial plan when the aitjon
is first called,
navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;
Output: the best plan in the search space

1. PlanbestPlan = curPlan.
2: int n = number of pattern retrieval operatorsrinvsT oBeT ried,
3: for (inti=1;i <n;i+t+t)do

4: NavOpcurNavOp = it" operator imavsToBeT ried;
5. PlannewPlan = copy ofcur Plan;
6: Change mode afur NavOp in newPlan,;
7. Optimizenew Plan using operator-commuting rules (see Algorithm 6);
8: OptimizenewPlan using input-subplan-reordering rules;
9: ListnewNavsToBeTried,
10: for (intj=4i+1; j<n;j++)do
11: NavOpnewN avOp = j** operator imavsToBeTried,;
12: if newNavOp andcur NavOp have no pattern dependency relationship
then
13: addnewNavOp into newN avsToBeTried,
14: end if
15: end for

16: curBestPlan = ExhaustOpt{ew Plan, newNavsToBeTl ried);
17: if cur BestPlan costs less thabest Plan then

18: bestPlan = cur BestPlan.
19: endif
20: end for

21: returnbestPlan.

Algorithm 7 utilizes Lemmas 2 and 3 to search through thetsmiuspace.
The algorithmExhaustOptiakes two input parameters, namely, a plan and a list

of pattern retrieval operators. The first tinkerhaustOpt is called,cur Plan is

3.5. ENUMERATIVE SEARCH FOR ONE-TIME OPTIMIZATION 120

the initial plan andnavsToBeTried contains all the pattern retrieval operators
in the initial plan. Suppose there ameoperators inmavsToBeTried. For each
operatornavOp; (1 < i < n) in the navsToBeTried list, we make a copy of
curPlan, change the mode ofavOp in the plan copy and then get a new plan
(lines 4 - 6). We will getn new plans. We recursively appbthaustiveSearch
with the input parametersewPlan and newNavsToBelried (line 16). For
a plannewPlan that results from the mode change afvOp;, we make sure
thatnewNavsToBeTried does not contain any operators that have dependency
relationship withnavOp; (lines 12 - 13), because changing the modes of such an
operator anchavOp; is forbidden by thenvalid combination lemma

We now illustrate this algorithm ensures that no altermagian is missed.
Given an arbitrary pla,,, that can be derive by changing modes of a sublist of
thenavsToBeTried in the initial plan, it must be explored lyxhaustOpt. We
denoted the sublist & AssumeS = {navOpy, navOpyy1, ...} (1 < k < number
of pattern retrieval operators imvsToBeTried). When ExhaustOpt is called
the first time, among new plans, one results from the mode changefOpy.
When ExhaustOpt is recursively called on this new plan, it will change the mod
of navOpy,. 1. The process continues. Whé&:haustOpt is called the S| time
(|S| denotes the number of operatorsS)) P, must be generated.

Also, the process mentioned above is the only way BaiaustOpt can gen-
erateF,,,. Whenever we change the mode of@Op; in the current plan and get
a new plan, only operators occurring aftervOp; in thenavsToBeTried list are
added into thewew N avsToBeTried list (see line 10 wherg starts fromi + 1).
P,ny can be only generated when the exhaustive applies tokene®-rewrite rule

in the order ofnavOpy, navOpy,41 and so on. Thereforé,,,, is never explored

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 121

twice.

3.6 Greedy Search for One-time Optimization

For a query withn patterns, the search space can have uptq,C! = 2" al-

ternative plans. We say “up to” because some combinatiansnaalid and thus
excluded. Finding an optimal plan obviously will be timeasaming. In this sec-
tion, we present a greedy search algorithm that aims to icid a good but not

necessarily optimal plan.

3.6.1 Baseline Greedy Search

Figure 3.12 intuitively depicts how Greedy search workse Titial plan shown
asP in Figure 3.12 has a set of pattern retrieval operators @enasS,. For each
pattern retrieval operator ifly, we change its mode and get a new plan, denoted as
Py, ..., P, respectively. We use operator-commuting and input-submardering
rules to further optimize the new plans (the circles®@n ..., P, in Figure 3.12
denote such optimization). If the cheapest plan amongntimew plans is also
cheaper than the initial plan, we then select this cheapastgs the new current
plan. For example, in Figure 3.12;, which results from the mode change of
navOp1, is selected after the first iteration (the highlighted nog@esents a new
current plan).

With the newly selected plan, we begin the next iteration.this iteration,
we again change the mode of a set of operators, denotéqd, aghereS; = 5
— navOp; — operators that have pattern dependency relationship wittp; .

Similar to the first iteration, we optimize, cost and comptme new plans. We

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 122

then get a new current plaR;s in Figure 3.12. The iterations continue until no
new plan is found to be cheaper than the current plan, i.e.p#st plan found
so far. Algorithm 8 shows the pseudocode for this searchegssoc We call this

algorithmGreedyOnpt

Change NavOp

Figure 3.12: Greedy-based Search

We now compute the upper bound on the number of alternatarespxplored
by the GreedyOpt algorithm. In the first iteration, Greedy&ploren alternatives
plans. In the second iteration, GreedyOpt explore at mostl alternative plans.
After at mostn iterations, the process terminates. Therefore Greedykpbbre at

most)_"" | i =n(n + 1)/2 alternative plans.

3.6.2 Expediting Cost Estimate

In the section, we propose techniques to expedite the G@gadyigorithm. These
techniques reduce the time spent on processing an alierrtin, more specifi-
cally, costing an alternative plan. When we apply a mode ghand get a new
plan, we need to cost this new plan. In a naive approach, wemegte the cost

from scratch. In contrast, we can analyze what parts of ptaratiected by the

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 123

Algorithm 8 Greedy Search in an One-time Optimization Scenario
GreedyOptfur Plan, navsToBeT ried)
Input: cur Plan - a current plan, will be set to the initial plan when the aitjon
is first called,

navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;
Output: the best plan among the plans explored

1: PlanbestPlan = curPlan;
2: for each operatonavOp in navsToBeTried do
3: PlannewPlan = copy ofcur Plan;
4: Change mode afavOp in newPlan,;
5. OptimizenewPlan using operator-commuting rules;
6: OptimizenewPlan using input-subplan-reordering rules;
7. if newPlan costs less thabest Plan then
8: bestPlan = newPlan
9. endif
10: end for
11: if best Plan = curPlan then
12: letnavOp; denotes the operator whose mode change lealist®@lan;
13: navsToBeTried = navsToBeTried — navOp; — all operators that have

pattern dependency relationship withvOp;;
14: returnGreedyOpt(best Plan, navsToBeT'ried);
15: else
16: returncurPlan.
17: end if

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 124

mode change and avoid recomputing. We propose two tectsjigeeincremen-

tal cost estimatanddetection of same cost change

Incremental Cost Estimate.

We first define several concepts needed in our analysis.

Definition 4 For a NavOpsg, ,$v, we call StructuralJoing, its context Struc-

turalJoinbecauseStructural Joing, joins on the context eleme$it of NavOpg,, ,$v.

Definition 5 The heuristics in Section 3.1 impose thébdeN avg, ,$v cannot
be moved above &tructuralJoing, that can output duplicates of bindings of
$v or is the topmosStructural Join. We call thisStructural Join a confining

StructuralJoirof NavOpsg,, ,$v.

The confiningStructuralJoin confines how far theVavOpg, ,$v operator
itself (whenNavOpsg,, ,5v is @ NodeNav) or theT'okenNav operator rewritten

from NavOpg, ,$v (WhenNavOpsg, ,,$v is aT'oken N av) can be moved up.

Definition 6 We define a functiomoveScope(navOp) to denote a set dtructural Joins.
The set consists of all th&tructuralJoins between the context and confining

Structural Joins of navOp, including the context and confinirffructural Joins.

Example 13 In Figure 3.2, forT'okenN avg, /seiier$b, StructuralJoing, is its
contextStructural Join. If we change the mode @foken N avg,, /seier3b, the re-
sulting Node N avg,, /scie, $b Cannot be moved abov&tructural Joing, because
there exists arExtractUnnestg,$c in the plan. Structural Joing, is then also
TokenN avg, ;seiier$0's confiningStructural Join. moveScope(T'okenN avg, /seiier$b)

thus is{Structural Joing, }.

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 125

Suppose we change the mode of'akenNavg, ,$v operator in the current
plan P, rent @and getP,.,. We use a boolean valuglntroduced to denote
whether an operator in the form éfxtractg;$u is introduced intaP,.,, because

of this change. We then have Equation 7.

Equation 7 Cost change from a pattern pull-out

= COSt(Pnew) - COSt(Pcurrent)

= automaton cost irP,,.,, — automaton cost it..,rent Q)
-+ automaton-outside cost iR,.,, — automaton-outside cost iR..;;rent (2)
= Cost(Extractg$u) * isIntroduced — Cost(TokenN avg, ,$v) (3)

+ ZsjEmoveScope(TokenNavu,pv)COSt of input subplans of sj in Ppew

_ ZsjemoveScope(TOkenNavu,pU)COSt of input subplans of sj in Peyrrent (4)

According to Equation 6 in Section 3.2.3 TakenN avg, ,5v operator costs
the same in every alternative plan where it appears. Howelangingl'oken N avg,, ,$v
to NodeNavg, ,$v can introduce a newztractg,$u operator iffu was not ex-
tracted in the current plan. Therefore, we expand Expreddipinto Expression
(3) in Equation 6. Also, sinc&VodeNavg, ,$v cannot be placed above the con-
fining StructuralJoin the mode change does not affect the operators beneath the
confining StructuralJoin We thus expand Expression (2) into Expression (4) in
Equation 7. We can use Equation 7 to compute the cost chaogeR,, ¢, t0
P,..., when we pull out a pattern from the automaton.

Equation 8 gives the cost change that would result from a-pusha pattern
into the automaton. Equation 8 is the reverse of EquatiorisElimiated is a
boolean value that indicates whether an operator in the fafrdxtractg,$u is

eliminated fromP,,,--.,: because of this change.

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 126

Equation 8 Cost change from a pattern push-in

= Cost(Ppew) — Cost(Peyrrent)

= Cost(TokenNavg, ,$v) — Cost(ExtractgSu) * isEliminated

+ ZsjEmoveswpe(TokenNa%u,p%)cost of input subplans of sj in Phew

— 2" jemoveScope(Token Navs,, ,$v)C0St 0 f input subplans of sj in Peyrrent

Detection of Same Cost Change.

From Equations 7 and 8, we can derive Theorem 3.

Theorem 3 Given two pattern retrieval operatorsavOp; andnavOps, if moveScope(navOpy)
N moveScope(navOpy) = (), then the cost change resulted from the mode change

of navOpy in a plan is independent from the mode change@fOps in this plan.

The proof of Theorem 3 can be found in Appendix F. Figure 3H@ws how
to utilize Theorem 3. Given a plaR;, we get two plang® and P; by changing
the modes ofhavOp; andnavOps in P; respectively. Suppose we now change
the mode ofnavOp; in P3 and get a new plaP;. If moveScope(navOpy)
N moveScope(navOps) = (), we then knowCost(P;) — Cost(Ps) is the same
as Cost(P,) — Cost(P;). We can simply comput&ost(Py) as Cost(Ps) +
Cost(Py) — Cost(P)).

P1 p2
O change mode of NodeNavO

T P3

change mode of TokenNav ; P4

Figure 3.13: Detection of Same Cost Change: Clsst(P;) — Cost(P3) =
Cost(Py) — Cost(P1)?

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 127

Example 14 Suppose we have a plan in Figure 3.14 (a). This plan correggpon
to P; in Figure 3.13. We pull out each of the follloken N av operators respec-
tively and get four new plans. Assume we chose the plan digepull-out of
TokenNavg, ,48d, shown in Figure 3.14 (b), as the new current plan. This new
current plan corresponds t@ in Figure 3.13. The part in Figure 3.14 (b) that
is different from Figure 3.14 (a) is highlighted. To make tiext move, we now
need to pull outl’oken N avg, ,58e andToken N avg, ,3$c (we do not consider the
pull-out of TokenNavg, ,23b because it has pattern dependency relationship with

TokenNavg, ,43d). Thereafter, we need to estimate the costs of the two news.pla

1). ForTokenN avg, ,5%e, moveScope(TokenN avg, ,48d) N moveScope(TokenN avg, ,55e)
= {StructuralJoiny} N {Structural Joing,} = (). Therefore the two cost
changes that the pull-out GfokenNavg, 53¢ in Figures 3.14 (a) and (b)
cause respectively are the same. We can reuse the estinthgoofst change

from the last time.

2). In contrast, for T'okenNavg, ,3$c, moveScope(TokenN avgy, ,48d) N
moveScope(TokenN avgy, ,38¢) = {Structural Joing } N { Structural Joing,
Structural Joing, } = {Structural Joing,} # (). The two cost changes that
the pull-out of"oken N avgy, ,33c in Figures 3.14 (a) and (b) cause respec-
tively are different. We cannot reuse the estimate of casbhgh from last

time.

Summary

When we get a new plan, we first apply the technique of “dedrabf same cost

change”. If we find out that the cost change is not the sametimsated last time,

3.6. GREEDY SEARCH FOR ONE-TIME OPTIMIZATION 128

StructuralJoira
StructuralJoirsb

(ExtractUnnesth $c) (ExtractNestsh $d)

(TokenNavsb, p3$c) (TokenNavsb, p4$d) (ExtractNestsa $e)

TokenNavs$a, p2$b TokenNavs$a, p5$e
TokenNavss, p1$a
StreamSourcés

(a) Original Plan

StructuralJoin $a

StructuralJoirgb

—

Sel$d="..."

(ExtractUnnestsh $c) (NavNests$b, p4$d)

(TokenNavsb, p3$c) (ExtractUnnes$a$b) (ExtractNestsa $e)

TokenNavsa, p5$e
TokenNavss, p1$a

StreamSource $s

(b) Moving out TokenNavgy, ,, $d from (a)

TokenNavsa, p2$b

Figure 3.14: Reuse Cost Estimate for Mode Changes of Patiefigure 3.14 (a)

we then apply the technique of “incremental cost estimate”.

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 1129

3.7 Greedy Search with Pruning for Continuous Optimiza-
tion

If the environment fluctuates, we have to optimize more feedly than in the one-
time optimization scenario (see Section 1.3.2 in SectiorChrrespondingly, we
need to find a good plan even more quickly. The plan searchitirdecided by
two factors, i.e., number of alternative plans explored tuadtime spent on each
alternative plan. The GreedyOpt algorithm has reduced ke gearch time of
the ExhaustOpt algorithm by reducing the two factors, using a Greedy search
strategy and expediting costing of a plan respectively. hiwithe current search
space that is delimited by the three rewrite rules, it is Haréurther reduce the
two factors in the GreedyOpt. We therefore consider drappizme rewrite rules
to shrink the search space.

Among the three types of rewrite rules introduced in Sec8dh token-or-
node mode change and operator-commuting rules are molg tikeaffect the
plan performance than the input-subplan-reordering ruleken-or-node mode
change rules enable the plans to benefit from pulling oup(rggishing in) pat-
tern retrieval with high (resp. low) selectivity. Operatmmmuting rules enable
the plans to benefit from executing operators with high $elgc after others.
In contrast, plans benefit from input subplan reordering dnén input subplan
of a StructuralJoing, does not generate output within a binding %f, i.e.,
Pg(subplan) = 0. This is a rather strict requirement. Therefore, we dip t
input-subplan-reordering rule.

Dropping the input-subplan-reordering rule simply meaasiaynot change the

left to right order of the input subplans ofStructuralJoin The execution manner

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 180

of StrucutralJoin given in Algorithm 5 remains unchangedtructural Join
still first checks whether all entry operators have gendratéput; if yes, it then
evaluates the input subplan from left to right and termigaft@ny input subplan
does not generate output. Therefore, the cost model of isydyplans does not
change.

Among the three heuristics for operator commuting, oneibktciis proposed
in order to provide optimization opportunities for inputoglan reordering. The
heuristic says that we should plaBelecbr NodeNawperators above$tructural Joing,
that is not a topmos$tructuralJoinand does not output tuples with duplicate bind-
ings of $v. Even though we drop the input-subplan-reordering optition, we
still keep the heuristics for two reasons.

First, aSelecior NodeNawperator is still less likely to be evaluated after being
commuted with its parenBtructuralJoinoperator. Dropping the input-subplan-
reordering optimization only means the benefit we get from dommuting is
not maximal. Second, the side effect of placiBglector NodeNavaboveStruc-
turalJoin is small so that it would not offset the benefit of an even spiiral
input subplan order. When we commuteSalector NodeNavwith its parent
Structural Joing,, the cost ofStructural Joing, increases since th®elector
NodeNavcould otherwise filter out the input t8tructuralJoing, without the
commuting. However, we only placeszlecor NodeNawabove aStructural Joing,
that does not output duplicate bindings$ef This means, no operator in the plan
is in the format of ExtractUnnestg,$w or NavNestg, ,$w. As a result, each
time when an end tag of a binding 86 is encounteredStructural Joing, has
at most one tuple from each input operator (egructuralJoing, consumes at

most one tuple fromtiztract Nestgy, / /r0ri1e fOr €ach binding ofsb). Therefore

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 181

there is not much space to further reduce the cost ofShisictural Joing,. In
summary, dropping the input-subplan-reordering optititzadoes not affect the
operator-commuting optimization.

For the greedy algorithm, we only need to make a slight changeder for it to
apply to our new scenario. We remove the input-subplanforg@ptimization on
aplan, i.e., remove line 5 in Algorithm 8. For the new greeldpathm, we further
propose a technique for pruning the alternative plans, fieglucing the number
of alternative plans to explore. The greedy algorithm wiith pruning technique

guarantees to find the same plan as the greedy algorithmuwtiginoning.

3.7.1 Basic ldeas of Pruning

Suppose we can estimate a lower bound of the cost changeghfeomode changes
of navOp in any plans that containavOp and have been optimized by operator-
commuting rule, where cost change is defined as (cost of the after mode
change - cost of the plan). If this lower bound is larger thait theans that for
any plan, (cost of the plan after the mode changewiOp - cost of the plan)> 0.

In other words, mode change of thigvOp in any plans always leads to a worse
plan. We can then safely exclude the mode changei0©p in any plans.

The challenge is then how to compute the lower bound. We wwantdmputa-
tion to satisfy two properties. First, it should be quickhentwise the computation
overhead may offset the benefits of saving time in explormggdlternative plans.
Second, the lower bound computed should be “tight”. For gplapan extremely
relaxed lower bound “negative infinite” (cost of new plan stof current plan
must always be greater than negative infinite) will not edelanything. Only a

lower bound that is greater than 0 can help pruning altaratians. These two

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 182

properties usually have a negative correlation, i.e., waallsneed to spend more
time to compute a tighter lower bound. We have to strike arfea@detween the

time spent on computing the lower bound and the quality ofdathwer bound.

3.7.2 Pruning Plans Derived from Mode Change of TokenNav Ope

ators

We first consider the case in whicluvOp is a TokenNavg, ,3v whose$v is
not selected by anyelect or navigated into by anwodeNav. When we pull
out such dl'okenNavg, ,$v in a current planf.,,,.,: and get a new plaw,,c.,,
then no other operator would have to be moved so that theytilinglaced above

TokenNavg, ,$v. This leads to Equation 9.

Equation 9 Cost change of changing mode of TokenN avg,, ,$v with $v not be-
ing consumed by other operators.

COS(Pnew) - COS(Pcurrent):

= automaton cost inP,.,, — automaton cost itP..;rent ()
-+ automaton-outside cost ifl,.,, — automaton-outside cost iB..;.rent (2)
= Cost(Extractg$u) * isIntroduced — Cost(T'okenN avg, ,$v) (3)
+ Cost(NodeN avg,, ,$v) 4)
— Cost(Structural Joing, IN Peyprent) * isEliminated (5)

+ cost of rest automaton-outside operators i).,, — cost of rest automaton-

outside operators itP.,;rent (6)

Expressions (1), (2) and (3) are the same as Equation 7. &ipre(1) is ex-
panded into Expression (3). Expression (2) is expandedBrpyessions (4) and

(5). For Expression (4), depending dvodeNavg, ,$v's descendent operators,

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 183

Cost(NodeNavg, ,$v) can vary in different current plan€lost(Node N avg,, ,$v)

is minimal whenN odeN avg,, ,$v is executed as late as possible. In such cases it
consumes the least input and thus costs the least. We dé&imtaibimal cost as
min(Cost(NodeN avg, ,$v)). Therefore Expression (4) min(Cost(NodeN avg, ,$v)).

We now analyze the lower bound of Expression (5) in EquatioBanging
the mode ofl'okenNavg, ,$v can lead to the elimination dtructuralJoing,.

This can happen in only one case. That is, wRéructural Joing, in the current
plan has only two input subplans according to thede change with introduc-
ing/eliminating StructuralJoimewrite rule in Figure 2.6. Therefore Expression (5)
> — Cost(StructuralJoing,).

Except the possibly eliminateftructuralJoing,, all the other automaton-
outside operators iR, cn: Femainink,,.,,. Also, the rank of each such automaton-
outside operatowp, i.e., #o);(l@)’ is completely decided by the itself. It is
not changed by the newly creatédodeN avg,, ,$v. Therefore commuting these
automaton-outside operators with each other is not neetidvever, rewriting
TokenNavg, ,$v to NodeNavg, ,$v can increase the cost of those automaton-
outside operators which are executed affekenNavg, ,$v iN Peyprens bUt are
executed befor&Vode N avg,, ,$v in P,.,,. Therefore, Expression (6) 0.

Based on the above discussion, we have Equatien-7Cost(TokenN avg,, ,$v)

+ min(Cost(NodeN avg, ,3v)) — Cost(Structural Joing,). Correspondingly,

we have Pruning Rule 1.

Pruning Rule 1 Given a patterrfv = $u/p where$v is not further selected by
Select operators or navigated into by ode N av operators, ifmin(Cost(NodeN avg,, ,$v))

— Cost(TokenNavg,, ,3v) — Cost(StructuralJoing,) > 0, we do not consider

3.7. GREEDY SEARCH WITH PRUNING FOR CONTINUOUS OPTIMIZATIO 144

to change the mode @fokenNavg,, ,, in any alternative plan.

3.7.3 Discussion on Pruning Other Pattern Retrieval Operatrs

We now discus§ okenNavg,, ,$v operators whose bindings &b are further se-
lected on or navigated into. To get the lower bound of (cosEgf, - cost of
Peurrent) for TokenNavg, ,$v, we have to estimate the lower bound of those op-
erators that consunt® in P,.,, by assuming they are executed as late as possible;
and the upper bound of these operator®in.....: by assuming they are executed
as early as possible. Doing this can be quite time-consunwegtherefore do not
consider pruning by bounding the cost of the mode chand€odtn N avg,, ,$v
whose$w is further consumed.

The cost change that results from the mode changéwfe N avg,, ,$v whose

bindings of$v are not consumed by other operators is the reverse of Equatio

Equation 10 Cost change of changing mode of NodeN avg,, ,$v with $v not be-
ing consumed by other operators:

COS(Pnew) — COS(Pcurrent):

= Cost(T'okenNavg, ,3v) - Cost(Extractg$u) * isIntroduced 1)
— Cost(NodeNavg, ,5v) 2
+ Cost(Structural Joing,) iN Peyprent * isEliminated 3)

— cost of rest automaton-outside operatorsi.,, + cost of rest automaton-

outside operators itP..;rent (4)

Since Expressions (3) and (6) in Equation 9 both are grehter some con-
stants, Expressions (1) and (4) in Equation 10 are thenhessthese constants. It

is difficult to get a lower bound for this cost change. We tfaneedo not develop

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 35

a pruning rule for bounding the cost change caused by pushiaghode pattern

retrieval.

3.7.4 Summary

Algorithm 9, which is calledgreedy PruneOpt, shows the greedy search with
pruning for the continuous optimization scenario. Eachetwhen we start the
optimization, we callgreedy PruneOpt with three parametergur Plan which

is the currently running plamavsToBeTried which is a list of pattern retrieval
operators ircur Plan, and a boolean valuE RU F to indicate that this is the first
iteration of the optimization oour Plan. During the first iteration of the optimiza-
tion, we apply the technique of “pruning by bounding costrgje (lines 1 - 8 in
Algorithm 9). We bound the cost change for ed&hken N av whose pattern is not
further consumed in the plan. Those operators whose lowardis greater than 0
are excluded from mode changes. With the rest patternvatigerators, we then

apply greedy search as before (lines 9 - 16 in Algorithm 9).

3.8 Embedding Statistics Collection into Plan Execution

We now analyze what statistics need to be collected to etsithe@ costs of the
plans. Tables 3.1 and 3.2 in Section 3.2.3 contain the paeasneeeded for cost-
ing the automaton. Some of the parameters, suahi,8Semp, Cemp, Cuisit aNd
Chicartesian’ @re constants. We can determine their values off-line,efore the
data comes in. The other parameters, nam@ly;,qc:(q), nactive (q)s Nstart, i)

andw,; vary in different data and need to be collected on-line, ae.the data

3The paramete€y.cktrack iN Table 3.2 is only used for analysis, but not needed in Eqoa
which computes the cost of BokenNav operator. We therefore do not collect it.

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 36

Algorithm 9 Greedy Search with Pruning in a Continuous Optimizatiom8tde
GreedyPruneOpt{ir Plan, navsToBeTried, isInitial)
Input: cur Plan - a current plan, will be set to the initial plan when the aitjon
is first called,

navsToBeTried - a list of pattern retrieval operators eligible for mode
changes;

isInitial - a boolean indicating whethet.r Plan is the initial plan;
Output: the best plan among the plans explored

1: if islnitial then
2. for each operatoravOp in navsToBeTried that satisfies: (1pavOp is a
TokenNav and (2) the pattern retrieved y:vOp is not further consumed
do
doublelower Bound = estimate lower bound of the cost cut of mode
change onoken N avOp;
if lower Bound > 0then
removetoken N avOp from navsToBeT ried
end if
end for
end if
... (same as lines 1 - 7 in Algorithm 8)
10: if best NewPlan costs less thaour Plan then
11: letnavOp; denote the operator whose mode change lealtsstdV ew Plan;
12: navsToBeTried = navsToBeTried — navOp; — all operators that have
pattern dependency relationship withuvOp;;
13: returnGreedy PruneOpt(best New Plan, navsToBeTried, FALSE);,
14: else
15: returncurPlan.
16: end if

w

© 0N a A

3.8. EMBEDDING STATISTICS COLLECTION INTO PLAN EXECUTION 1 37

comes in. Alsog(op), P,pxp andUnitCost(op) are required in Equation 3 in
Section 3.2.1 for costing the automaton-outside operators

Some parameters can be derived from the others. For exampleandw,,;
are used to estimate the cost aNadeN avg,, ,$v While n,.tive(q) is used to esti-
mate the cost of &okenNavg, ,8v. n,(; X wyy;) gives the number of children of
the bindings of[i] (i.e., thei*” navigation step op) in a binding of$u. Suppose

states; andq’ in the automaton are activated by bindinggpf and binding offu

respectivelynq..ive(q) is the number of children of bindings pﬁ] in a bottom in-

ava Nactive(q)
put element (See Table 32) - We then h”h"u‘mber of bindings of $itL in a bottom input element
= oy X wyp- Therefore we need only collect eithehcrive(q) When$u/p is

retrieved in the automaton; or,;; andw

pli) When8u/p is retrieved out of the

automaton.

We now briefly introduce how we collect each required paramet

1. Nactive(Q): Nactive(q) IS the number of times that stack top contains a state
when a start tag arrives. For each stata the automaton, we maintain a counter
denoted asctiveCounter(q). Each time when a start tag arrives, this counter of
each state at the top of the stack is incremented by 1. Als@ $bate that corre-
sponds to the start of a path (e jn the automaton in Figure 3.2), we associate it
with a second counter denotedrasichCounter(q). reachCounter(q) is incre-
mented by 1 each time wheris pushed into the stack. For example, in Figure 3.2,
when a start tag of a descendantbadder elements arrives, the stack top always
contains ays so thatuctiveCount(gs) is incremented. Whenaauction> arrives,
it activatesg, andreachCount(gz) is incrementednciive (gs), i-€., the number of
descendants dfidder in anauction, is then equivalent t@munt(%)).

TeachCount(g2

2. Certract(q): Tofind out the cost of storing elements whose start tagsadeti

3.9. RUN-TIME PLAN MIGRATION 138

stateq, we maintain a storing cost counter denotedsiageCount(q). Also, the
storage manager maintains a list. We can add a storing costeranto the list or
remove one from the list. Each time whers activated, we addtoreCount(q)
into the list. Whenever the storage manager stores a tokénaverses this list.
For each storing cost counter in the list, the storage marageements it by the
length of the token. Later, whapis popped off the stack, we remove its storing
cost counter from the list. At this time, the value sbreCount(q) is the length
of the element that activates

3. Pypsp: AssumeStructural Joing, is op's nearest ancestottructural Join.
not EmptyCount(op) is the probability ofop generating some output within a
binding of $v. We associatep with a counter, denoted ast EmptyCount(op).
Each time wherStructural Joing, invokesop as an end tag of a binding b
arrives, not EmptyCount(op) is incremented by 1 ibp generates some output.

Suppose bindings d¢fv activate automaton state then at any time when a bind-

ing of $v has been finished processi@i?ﬂiygofﬂ%”) gives Pppsp.
The collection ofo(op) (selectivity of an operator)/nitCost(op) (cost of
processing one input tuple) amg:.,+ (number of start tags in a bottom input ele-

ment) is rather straightforward. We skip the discussior her

3.9 Run-time Plan Migration

In the compile time optimizatiorplan migrationis not needed. We optimize, get
a plan and simply run it. In the run time optimization in ouesario, we optimize
a currently running plan, get a new plan (if any), and theneht@avmigrate the

current plan to this new plan. Two problems arise. First, tkmshange the current

3.9. RUN-TIME PLAN MIGRATION 139

place to the new plan. This process must be efficient, edpeiridhe continuous
optimization scenario since plan change happens from tintente. Second, we
need to determine when to change the current plan to the raaw phe migration
should take place as soon as possible so that we can benefittfeonew plan as
early as possible. We now address these two aspects in 8eai®.1 and 3.9.2

respectively.

3.9.1 Incremental Change of Automaton

The search algorithm returns a new query plan. However thisip not ready for
execution. We must traverse tfiekenNawperators in the new plan and construct
an automaton out of it. For example, the plan search algorittay return the top
query plan in Figure 3.2 as the new plan found. We then neednstruct the
bottom automaton in Figure 3.2 before the plan can be exgcute

We actually do not have to reconstruct the automaton fromatcer We can
modify the automaton for the currently running plan and esitifor the new plan.
Besides a new plan, the search algorithm returns a listloafeNavand TokenNav
operators in the current plan whose modes have been chaRgedach operator
in the list, if the operator is &oken N avg,, ,$v, we remove the states that encode
p in the current automaton,; if ¥ode N avg,, ,$v has been pushed in, we add states
to the current automaton to encogle

For example, suppose we want to migrate the currently rgnplan in Fig-
ure 3.2 to the new plan in Figure 3.6. The modelafken N avg, jpiader$c in
the current plan is changed. Correspondingly, as showngar€i3.15, we re-
move the transition from, to ¢4 in the automaton in Figure 3.2. We still maintain

the disconnected sub-automaton composed of siates andgg which encodes

3.9. RUN-TIME PLAN MIGRATION 140

TokenNavg, scier3b. Next time, if the mode ofVode N avg,, /geier$0 in Figure
3.6 is changed, we can simply add the sub-automaton encdditgn N avg,, /seijer$b

in, namely, we add the transition froga to ¢4 without creating any new states.

(Tag gekauction>$ b,$c </auctiorB
L)

________--——-r(StructuralJoirsa)

P

-

//

/ Selectsf = “01609”
/
/
7
/
!
i
]

(ExtractNestsa$d)(Select:Be contains “frequea" (StructuralJoirsc)‘"---—"""“‘~\
’
/

! \,
] N\,
I 7

by NavNestsh, /iprofile $e ExtractNestsc $f J&y \
1 \
1 1
] 1
1

1

1

\ N —

1

1

1

4
)
1
{
!
\
\
!
1

~—_ A

TokenNavsa, /reservebd (ExtractUnnestss$a) (TokenNavSSa, /bidder$c) // 4

1Rt - 7 \

VA e \

1A g L \

VA (I'OkenNaws,/auctionslauctiorﬂ; L !

\\‘ ‘\\ L) /,,/ I||
4

\ \\\ (StreamSOurceopen_auction'$§ i !

\ e 1

\\ .=

i

1

1

|

i

I

|

Figure 3.15: Incremental Change of Automaton for Migrafirggm Plan in Figure
3.2to Plan in Figure 3.6

We now have the automaton for the new plan. The next thing tis tteen to
associate the automaton with the operators in the new plainer@ise, after the
migration, when a state is activated, the operators in theecuplan, instead of
the operators in the new plan, will be executed. Therefareah automaton state
that is associated with operators in the current plan, wieetdt to be associated

with the matching operators in the new plan. An operafoin the current plan is

3.9. RUN-TIME PLAN MIGRATION 141

matched with another operatap’ in the new plan ifop’ is a copy ofop. In Figure
3.15, four states in the automaton, i®., g3, g7 andqg, are redirected to be asso-
ciated with the operators in the new plan. For example, thec@ation between,
andStructuralJoing, means once, is popped off the stackytructural Joing,
will be invoked.

Note that recording the matching relationship, i.e., reinenmg an operator in
the new plan is copied from a certain operator in the curréan,ps not an extra
burden in the plan search algorithm. Even if we do not incretally change the
automaton, the plan search algorithm still has to recordrtheehing relationship.
Otherwise, after we copy the current plan and rewrite the/,cae have no way
to cost the rewritten plan since the statistics are coltetbe the operators in the

current plan.

3.9.2 Choosing Right Moment to Migrate

A challenge in plan migration is that the migration canngt jstart at a random
time, as this may corrupt the running system. The examplabiustrates how

corruption may arise.

Example 15 Suppose we are running a plan in Figure 3.2. Figure 3.11 irtiSec
3.2.3 shows the snapshots of the stack content as the tolepsaessed. Assume
we now pause this plan right after we have processetséler> token and start
to migrate to the new plan in Figure 3.6. The last stack in FégB8L11 is the current
stack at this moment. Since in the new plin= $a/seller is retrieved out of the
automaton, the corresponding automaton of the new plannetilhave statesg,,

g5 andgg as the current automaton in Figure 3.2 does. After the migratfor the

3.9. RUN-TIME PLAN MIGRATION 142

next incoming start tag, the transition entry of the statéhatstack top, i.eq4 and
g5, would be looked up. Howevex and g5 are no longer in the automaton. This

makes the system corrupt.

We now characterize the safe moment to start the migratiapp&e a new
plan is derived from the current plan by mode changes of afqettern retrieval
operators denoted & We define a sel’ as: T' = {Confining Structural Join
of navOp | navOp € S}, where confiningStructuralJJoin of navOp is the
Strucutral Join beyond whichnavOp cannot be moved as defined in Section
3.6.2. We calll’ boundary StructuralJoinbecause only the subplans underneath
theseStructuralJoinsare changed. We call the time that the tokens under process-
ing are not components of any binding $f that is joined on by any boundary
Structural Join (i.e., $v satisfies: there exists®ructural Joing, in T') the mi-

gration window The migration can start within thaigration window

Example 16 In Example 15, the plan in Figure 3.6 is rewritten from therpla
Figure 3.2 withS = {T'okenN avg, /seijer }-Correspondinly, T={Structural Joing, }.
The migration can start whenever the current query plan isindhe middle of
processing any component tokens of a bindingjaafi.e., anauctionelement). For

example, the migration can start right afte<dauction> has been processed.

We cannot start the migration any time earlier than the ntigmavindow. Oth-
erwise we can lose data. For example, suppose we start thatioigin the middle
of processing component tokens of anction element, say, right after we have
processed &/seller>. Atthis moment, the output buffer &ftructural Joing, in
Figure 3.2 contains tuples each of which has two cells, onthéobinding of$b and

one for the binding o$e. However after the migratior§tructural Joing, is gone.

3.9. RUN-TIME PLAN MIGRATION 143

Note that we cannot move the tuples in the output buffe$tfuctural Joing, to
the output buffer ofNavNests, /o fiteBe in Figure 3.6, because semantically,
each output tuple oNavNestg, /0 iS¢ Should contain three cells, for bind-
ings of $a, $b and $e respectively. If we simply discard the tuples in the output
buffer of Structural JJoing,, we then lose data.

Allowing the migration to start anytime in the migration wiow has impact on
our migration strategy. Because the subplans that are detroeath any boundary
confining StructuralJoinoperators may have tuples in their output buffers, dur-
ing the migration, we must redirect these output bufferse¢@$sociated with the
operators in the new plan. This redirecting process is ch&dp simply set the
output buffers of these operators in the current plan to bethput buffers of the
matching operators in the new plan.

Why migrating within the migration window ensures the comess is twofold.
First, no intermediate result that is not consumed yet whemtigration starts will
be consumed by a different set of ancestor operators aftieniyration compared
to before the migration. Within the migration window, theegy plan is not pro-
cessing any bindings dfv that a boundanStructural Join joins on. The sub-
plans underneath a boundayructuralJoin in the format ofStructural Joing,
can generate output only when the token under processingdngonent of a
binding of$v. Since the migration window excludes the time wheneverdkerts
under processing are components of bindings of $aclthere must be no uncon-
sumed result in the subplans underneath these bourtlantural JJoins when
the migration starts. In other words, any intermediateltesmnconsumed when the
plan migration starts must only stay in the output bufferghose subplans which

remain unchanged in the new plan. All unconsumed resultrgtae: before the

3.10. EXPERIMENTAL EVALUATION 144

plan migration will be consumed in the same manner as it isrbehe migration.
Second, suppose the mode of'akenNavg,,; ,$v2, whose confiningStruc-
turalJoin is StructuralJoing,, is changed. We should only remove the sub-
automaton encoding the pathwhen the states in the sub-automaton are not in
the stack. These states can only be in the stack when a biafling is being pro-
cessed. A binding dfv1 must be part of a binding &v. For example, in Example
16, Structural Joing, is the confiningStructuralJoinof T'oken N avgy, //pro fiteSe
andTokenNavs. ; /.ipcode$ f- Bindings of$b and$c are both child elements of a
binding of$a. If we pause the automaton when the element under processiog
a binding of$v, the element under processing cannot be a bindirky dfeither.
Therefore we can safely modify the automaton without waigyabout whether
some states have been removed from the automaton duringigietion would
still remain in the stack after the migration. The situatitascribed in Example 15

thus will not arise.

3.10 Experimental Evaluation

We have incorporated the run-time optimization techniqustheRaindropframe-
work. We run the experiments on two Pentium Il 800 Mhz maekiwith 512MB
memory each. One machine sends XML token streams via sozk#éte second
machine which would then process the received data. We dbenprocessing
time of a token from the arrival time of the token on the secomathine to the
time the processing on the token has been finished. The éxedumhe of a plan

on the stream is the summation of the time spent on each takie istream.

3.10. EXPERIMENTAL EVALUATION 145

3.10.1 Getting Constant Values

As we have mentioned in Section 3.8, we need to get the valudm dour con-
stantsCyon Emps Cempr Chacktrack ANAChicartesian- CrnonEmp ANACey,, are used to
evaluate the cost of Boken N av operator (see Equation &).;s;: andCl;cartesian
are used to evaluate the cost oNade Nav and aStructuralJoin operator re-
spectively (see Equations 1 and 2 Section 3.2.1).

In the first experiment, we design an XML document whose rt@nent has
a tag name “root”. The root element contaimshildren with tag named”. Each
elementa does not have any child elements. This stream thus containg start
tokens, i..e, one<root> andn <a>’s. We also design a query “/root/a”. We
construct a plan for this query which retrieves the pattéroct/a” on the tokens.
During the processing of the stream, when th&ot> is encountered, the stack
top must contain an initial state of the automaten:oot> matches the first nav-
igation step “/root” and pushes a state into the stack. Nekenever a<a> is
encountered, the stack top must be non-empty. Thereforeteae when a start
token is encountered, the stack top is always not empty.rhatedivide the exe-
cution time spent on start tokens in the streamby 1 and getC,, Emp-

In the second experiment, we use the same XML stream and sane ¢low-
ever, we construct a different plan which first extracts tineasn into an XML el-
ement tree and then evaluate®vade N av operator on the tree. Thi¥odeNav
operator visits every node in the tree to retrieve the patfeoot/a”. We divide the
execution time by, + 1 and getC;;;.

We also issue a query “/b” on the XML stream used in the first exper-

iments. During the processing of the streafiroot> does not match “/b” and

3.10. EXPERIMENTAL EVALUATION 146

Notation Explanation Value

CronEmp average time of processing a start token when stack361 *10~ 2 ms
top is not empty

Cemp average time of processing a start token when stadk779 *107° ms
top is empty

Clisit average time of visiting one node in an XML element1.622 *10~2 ms

tree
Chicartesian average time of performing a binary cartesian prad3.012 *10~2 ms
uct on one input tuple from either side to generate|an

output tuple

Table 3.3: Values of Constant Parameters in Cost Model

correspondingly an empty set is pushed onto the stack. Méenever any of the
n <a> tokens is encountered, the stack top is empty. We dividextheution time
spent on the start tokens in the streamignd getC.,,,,,.

To evaluateCy;cartesian, WE Simply run a query that involves a bina®yruc-
turalJoin operator. We divide the time spent on tlgucturalJoinby the number
of the cartesian product of its input tuples to &l ..tcsian- Table 3.3 gives these

constant values.

3.10.2 Experiment Design for Comparing ExhaustOpt and Gredy-
Opt Search Strategies

Sections 3.5 and 3.6 propose an exhaustive and a greedi ségodthm, namely,
ExhaustOptand GreedyOpt We now compare them in two aspects. First, we
compare the optimization time, i.e., the time the algordtspend on finding plans.
Second, we compare the quality of the plans found by the ihgos, i.e., the
execution time of the plans.

We test various queries conforming to three classes ofrpatitees shown in
Figure 3.16. Previous work on XQuery optimization has expented with queries

of similar structures [36, 58, 82]. In our pattern tree, amoepresents an XML

3.10. EXPERIMENTAL EVALUATION 147

N [y "

@) (b)

(© (d)

Figure 3.16: Pattern Tree Templates: (a) wide and simp)ewidbe and complex;
(c) deep and simple; (d) deep and complex

3.10. EXPERIMENTAL EVALUATION 148

element. The top node in the pattern tree represents thentbotput element. The

label on the edge between a parent nadged a child node denotes an XPath,

indicating there must exist descendent elements that aessible vigp from the

element represented hy We now describe the characteristics of each pattern tree.

1).

2).

3).

4),

Figure 3.16 (a) depicts a wide pattern tree. The bottgpatielement in
the pattern tree contains paths po, ..., p,. Each path is in the format of
ny1/nael...Iny;[filter?] wherenqy, ni2, ..., ny; are element node tests and
[filter?] denotes an optional filter such as “/text{)100". We also say this
tree is simple because only one node has more than one clikel Ha a
plan that retrieves all patterns in the automaton, to negrén element node
that has multiple child nodes, & ructural JJoin will be performed to check
whether an element contains all the required child elemenkerefore, a

plan for the query in Figure 3.16 (a) contains at most 8tveuctural Join.

Retrieving an XML element that has more than one chilchedautomaton
requires oneStructuralJoin. In contrast the wide pattern tree in Figure
3.16 (a) that requires only ot ructural Join, the wide pattern tree in Fig-
ure 3.16 (b) is more complex in the sense that it involves morectural Join

operators.

Figure 3.16 (c) depicts a deep tree. Small linear pattara chained together
into one larger linear patterbtructuralJoin, which glues linear patterns

into tree patterns, is not needed here. We therefore sajréieiss simple.

In contrast to Figure 3.16 (c), Figure 3.16 (d) depicteapdand complex

pattern treen nodes in the tree have multiple children and thus maximally

3.10. EXPERIMENTAL EVALUATION 149

there can bey StructuralJoins in a Raindrop plan.

3.10.3 Comparing ExhaustOpt and GreedyOpt on Wide-and-Sirple

Pattern Trees

A pattern tree represents a class of queries. These quecats lthe same patterns
but return different subsets of retrieved patterns as tleeyoesults. For example,
Figure 3.17 shows two query templates that both conformedontille and simple
pattern tree in Figure 3.16 (a). Query template (1) asksttomehe bottom input
element, i.e.$v. All alternative plans of this query, no matter what patteane
retrieved in or out of the automaton, have to extract the sameunt of data, i.e.,
bindings of$v. Query template (2) asks to retusml ($v1 = $v/py). Different
plans can extract different amount of data. For examplean tiat retrievep,
out of the automaton still has to extract the bindings$ofinto element nodes.
In contrast, a plan that retrieves all the patterns in theraaton only needs to
extract the bindings dfv1. For easy reference, we call Figures 3.17 (1) and (2) the
extract-sameandextract-differentgueries respectively.

When comparing the alternative plans for extract-sameiegighe accuracy of
costing of Extract operators is not important. This is because all alterngias
extract the same amount of data and thus cost the same dithact operators
no matter how inaccuratBxtract operators are costed. In contrast, the accuracy
of costing of Extract operators is important for comparing the alternative plans
for extract-different queries. In order to test the accymiccosting of every kind
of operator, we studyzhasutOpt and GreedyOpt on both extract-same and

extract-different queries.

3.10. EXPERIMENTAL EVALUATION 150

for $v in p,[p,J[p,J--.[p,] for $v in po [p,] [P, -..[p,]
return $v let $v1 := $v/pl
return $vi

(1))

Figure 3.17: Extract-Same and Extract-Different Queriearl®g Wide and Simple
Pattern Tree in Figure 3.16 (a)

Testing Extract-Same Queries

Query Sets:We generate three queries that conform to the templatei(aFlgure
3.17. These three queries differ in the number of patterrthénguery, i.e., the
value ofn in Figure 3.17 (a). The values ofin the three queries are 5, 10 and 20
respectively.

Data Sets:We modify the DTD provided by the XML benchmark XMark [7]. We
add more child elements to some elements in the XMark DTDatonk are able to
issue queries that contain 20 patterns. We use ToXGened2ygrterate two XML
streams conforming to the modified DTD. The size of each strigsaaround 52M.
In XML stream 1, for any of the three queries, 4/5 of the patdrave a selectivity
of 10% while 1/5 of the patterns have a selectivity of 90%. MIXstream 2, 1/5
of the patterns have a selectivity of 10% while 4/5 of thegratt have a selectivity
of 90%.

The purpose of designing these two streams is to tesE#ie@ustOptand
GreedyOptin the extreme cases. In XML stream 1, most pattern retriepat-
ators have a low selectivity. Pattern retrieval operatorhe automaton are exe-
cuted before those out of the automaton. The pattern ratrgperators that have

low selectivities are favored to be retrieved in the aut@amaif herefore, in stream

3.10. EXPERIMENTAL EVALUATION 151

1, the initial plan which retrieves all patterns in the ausom is close to the op-
timal plan. In contrast, in XML stream 2, most pattern retieoperators have a
high selectivity so that they are more favorable to be putkgidrom the automaton
in the initial plan. A lot of changes need to be made to theahjfilan to get the

final plan.

We now useExhaustOpandGreedyOpto generate plans for the three queries
on both streams 1 and 2. We run an initial plan that retriellgsadterns in the
automaton on the stream, collect statistics from the straathapply the search
algorithm to get a new plan. We then run the new plan on the stream again
and measure its execution time. Table 3.4 reports the result

The patterny, ...,p, in Figure 3.17 (a.1) are all siblings. Therefore any com-
binations among, ..., p,, are valid (combinations of ancestor-descendant patterns
are invalid according to Lemma 2 in Section 3.5). The numbeaiternative plans
explored inExhaustOpts then2™. We can see that when= 10, the optimization
time already far exceeds the execution time on both XML sted and 2 (Rows
2 and 5 in Table 3.4). When = 20, the number of alternative plans explored by
ExhaustOpexplodes and makdsxhaustOpbbviously impractical. Hence we do
not report it here.

The number of plans explored lgxhaustOpfis fixed given a query. That is
why ExhaustOpexplores 32 and 1024 plans on both XML streams 1 and 2 when
n =5 and 10 respectively. In contrast, the number of plansoeggdlbyGreedyOpt
can vary with different streams. For the same quéngedyOpibn XML stream 1
explores less plans than on XML stream 2. This is bec&@rsedyOpterminates
when no mode change of a pattern retrieval in the currentyitdds a better plan.

Although GreedyOptexplores much less plans th&xhaustOptit generates

ExhaustOpt GreedyOpt Initial Plan | Search Time of| Search Time of
n ExhaustOpt + | GreedyOpt +
Exec. Time of| Exec. Time of
Opt. Plan/ Opt. Plan/
of plans| Opt. Time | Plan Exec.| # of plans| Opt. Time | Exec. Time | Exec. Time| Exec. Time of| Exec. Time of
explored (ms.) Time (ms.) | explored (ms.) (ms) (ms) Initial Plan Initial Plan
5 32 592 1543 9 225 1543 1821 117% 96%
Stream 1 10 1024 15921 5439 27 532 5439 6349 336% 94%
20 0o 0o N/A 144 2072 9402 12468 N/A 92%
5 32 508 3987 15 245 3987 5340 84% 79%
Stream 2 10 1024 14982 9283 54 821 9283 14611 166% 69%
20 0o 0o N/A 204 2978 22271 36841 N/A 68%

Table 3.4:ExhaustOptndGreedyOpfor Extra-Same Queries in Figure 3.17 (1)

NOILVYNTVAT TVLININIGIAX3 '0T°€E

[A°))

3.10. EXPERIMENTAL EVALUATION 153

the same plan aExhaustOpt(compare the columns of “Plan Exec. Time” in
EzhaustOpt with that in GreedyOpt. GreedyOpsucceeds to final optimal plans
in all cases in this experiment setting.

The last two columns in Table 3.4 summary the “effectivehe$doth Ex-
haustOptand GreedyOpt We define “effectiveness” of a search strategy as (the
time spent on finding a plan + the time spent on executing the fdund)/(the
time spent on executing the initial plan). The less the nunidé.e., spent less
time on finding a plan that runs faster), the more effectivesbarch algorithm is.
GreedyOpis more effective in stream 2 than in stream 1. This is becausieeam
1, the initial plan is close to the optimal plan while in stre@, the initial plan is

significantly worse than the optimal plan.

Testing Extract-Different Queries

We now evaluate the extract-different queries conformmght template (2) in
Figure 3.17 on the two XML streams. Alternative plans of atrast-different
query extract different amount of data. Table 3.5 shows #saillt. Again, for
the three queries on both strearf®eedyOpftfinds the same plan d&xhaustOpt
but in much less time thaBxhaustOpt In Stream 1, the initial plan itself is the
optimal plan. The plan search is a pure overhead. Howevemwk 10 or 20, the
overhead is ignorable, taking 4% or 3% of the overall executime respectively.
In stream 2, the plan found b@reedyOptcuts down the execution time of the

initial plan by 20% to 40%.

ExhaustOpt GreedyOpt Initial Plan | Search Time of| Search Time of
n ExhaustOpt + | GreedyOpt +
Exec. Time of| Exec. Time of
Opt. Plan/ Opt. Plan/
of plans| Opt. Time | Plan Exec.| # of plans| Opt. Time | Plan Exec.| Exec. Time| Exec. Time of| Exec. Time of
explored (ms.) Time (ms.) | explored (ms.) Time (ms.) | (ms.) Initial Plan Initial Plan
5 32 502 1248 5 152 1248 1248 140% 112%
Stream 1 10 1024 15306 5042 10 225 5042 5042 403% 104%
20 0o 0o N/A 20 302 9021 9021 N/A 103%
5 32 516 3902 15 206 3907 5165 86% 79%
Stream 2 10 1024 14120 9123 54 811 9315 15059 154% 67%
20 0o 0o N/A 204 3104 22197 35981 N/A 62%

Table 3.5:ExhaustOpandGreedyOpbn Extract-Different Queries in Figure 3.17 (a.2)

NOILVYNTVAT TVLININIGIAX3 '0T°€E

121’

3.10. EXPERIMENTAL EVALUATION 155

3.10.4 Comparing ExhaustOpt and GreedyOpt on Wide-and-Corplex

Pattern Trees

We now compare th&xhaustOptand GreedyOptfor wide-and-complex queries
conforming to the template in Figure 3.16 (b). Our experitsezonsist of two
parts. In the first part, we test on a set of data streams withingadata character-
istics. The purpose is to observe h@weedyOptehaves on relatively “random”
data sets. In the second part, we focus on studying v@reedyOpffails to find
the optimal plans.

We generate XML streams conforming to the DTD describingy&bauction
data from University of Washington’s XML repository [60]h& root element con-
tains a sequence 6&fsting child elements. The DTD of &sting element is as fol-
lows: <!ELEMENT listing (seller_info, payment_types, shipping_info,
buyer_protection_in fo, auction_in fo, bid_history, item_in fo)>. Among the
seven child elements dfsting, four of them (e.g.seller iin fo andauction_in fo)
have nested structures, i.e., they can have children agé&inlesign a query, shown
in Figure 3.18, which navigates into each nested elememnedah nested element,
we pose a filter on each of its child elements. More specificdll, $¢c, $d and$e
have 2, 2, 12 and 5 child elements and thus 2, 2, 12 and 5 fikepectively.

Table 3.6 shows the data characteristics of four XML streaardorming to
the DTD. “Sel.” in the table denotes the abbreviation we wseélectivity.

The query in Figure 3.18 contains 25 patterns whose modebeahanged
(i.e.,$b, $¢, $d, $e and their 21 filters). The number of alternatives that wilee
plored byExhaustOpts so large thaExhaustOpts clearly impractical. Therefore

we terminateExhaustOpafter it has explored 1000 plans and return the best plan

3.10. EXPERIMENTAL EVALUATION 156

for $a in /listing

let $b :=$a/seller in fo[seller _rating > 4][seller name contains “SF"];
$c :=$%a/bid_history[...]...[...];

$d :=$a/auction_infol...]...[...];

$e 1= $a/item_infol...]...[...]

where$b and$c and$d and$e

return$a

Figure 3.18: Wide-and-Complex Query on Ebay Data: reqgitinreturn disting
whoseS$a/seller_info, $a/bid_history, $a/auction_info, and$a/item_in fo
satisfy 2, 2, 12,and 5 Filters Respectively

Stream Sel. of$b Sel. of$c Sel. of$d Sel. of$e
1 10% 50% 70% 90%
2 90% 10% 50% 70%
3 70% 90% 10% 50%
4 50% 70% 90% 10%

Table 3.6: Random Data Sets Conforming to Ebay’s DTD: EackaBt around
Size 55M

among these 1000 plans. Table 3.7 compandsaustOptand GreedyOpffor the

guery in Figure 3.18 on the streams in Table 3.6.

ExhaustOpt GreedyOpt Initial Plan
Plan Exec.| Opt. Time | # of plans| Opt. Time | Plan Exec.| Exec. Time
Time (ms.) | (ms) explored (ms.) Time (ms.) | (ms)
Stream 1 30072 15043 57 852 23088 30072
Stream 2 25087 14893 59 825 22209 38690
Stream 3 24508 16012 76 1118 21924 25828
Stream 4 42301 15567 37 545 18590 42301

Table 3.7: ExhaustOpt and GreedyOpt for Query in Figure 8il&ML Streams
in Figure 3.6 (ExhaustOpt Limited to Explore 1000 Plans)

In Streams 1 and 4£xhaustOpffails to find any plan better than the initial
plan in the first 1000 plans it has explored. This is becauleetaty of $b is

rather low so that the optimal plan retrievfsin the automaton. When we call

3.10. EXPERIMENTAL EVALUATION 157

EzhaustOpt, we pass it a parametenvsToBeTried (see Algorithm 7), which

is a list of pattern retrieval operators whose modes wouldhanged. The first
operator appearing in theavsToBeTried list happens to b&b. ExhaustOpt
thus explores all alternative plans withretrieved out of the automaton first. These
plans are all worse than the initial plan so tli&étumSearch explores the first
1000 alternative plans to no availzreedyOpt instead makes steady progress to
finding a better plan during each iteration. On all four stiegGreedyOpexplores

a limited number of alternative plans yet in all cases it findsan that cuts the

initial execution time by 15% to 56%.

3.10.5 Comparing ExhaustOpt and GreedyOpt on Deep-and-Sipie

Pattern Trees

We now compare thExhaustOpandGreedyOpfor deep-and-simple queries con-
forming to the template in Figure 3.19. According to a DTDveyr[16], the depth
of an XML document is usually less than 8. Therefore we limé humbem in
Figure 3.20 to be less than 8. We generate a XML stream in wdligiatterns in
the queries have the same selectivity of 70%. Table 3.8 ceeapxhaustOptand

GreedyOpfor the queries in Figure 3.19 on this stream.
for $vin py, $v, in $v/p,,, $v, in $v,/p,,, ..., v, inv ,/p

return

<result> $v, $v,, ... $v, </result>

Figure 3.19: Queries Conforming to Wide-and-Deep Patteee Th Figure 3.16
(©)

We observe two phenomena in Table 3.8 as follow.

3.10. EXPERIMENTAL EVALUATION 158

n ExhaustOpt GreedyOpt Initial Plan
of plans| Opt. Time | Plan Exec.| # of plans| Opt. Time | Plan Exec.| Exec. Time
explored (ms.) Time (ms.) | explored (ms.) Time (ms.) | (ms)

3 3 125 3790 3 125 3790 3790

4 4 123 3892 4 123 3892 3892

5 5 150 4012 5 150 4012 4012

6 6 145 3991 6 145 3991 3991

Table 3.8: ExhaustOpt and GreedyOpt for Deep-and-SimptefAd rees on XML
Stream with Size of 51M

1).

2).

ExhaustOpandGreedyOpexplore exactly the same set of alternative plans.
This is because every pair of pattern retrieval in the plangetern depen-
dency relationship. As long as one pattern retrieval has bs&ved out in
the initial plan, no other pattern retrieval can be furthesved out in the
newly derived plan. Therefore after explorimgalternative plans each of
which corresponds to moving out one pattern retrieval initligal plan,

both ExhaustOpandGreedyOpterminate.

No matter what the value of is, the best plan is always the one which re-
trieves all patterns in the automaton. Due to the patterremidgncy,ps;
must be retrieved after,1; ps; must be retrieved afters; and so on. Re-
gardless of whether these patterns are retrieved in orfmugxecution order
is always serialized. Retrieving these patterns out of titeraaton does not
provide any extra benefit. The plan in which all pattern estal is pushed

into the automaton ensures that the least amount of datdfesdnl

3.10. EXPERIMENTAL EVALUATION 159

3.10.6 Comparing ExhaustOpt and GreedyOpt on Deep-and-Copiex

Pattern Trees

It is interesting to observe that for queries conforminghe teep-and-complex
pattern tree in Figure 3.16 (d)reedyOpt terminates very quickly. According to
Lemma 2 in Section 3.5, two operators that have pattern digpey relationship
cannot both undergo mode changes. Suppose from a currentiamode change
onp;e (1 < i < n)in Figure 3.16 is chosen, then the mode changes on its ancest
and descendant patterns, including, p21, --., p(i—1)1, Will no longer be consid-
ered. Suppose the mode changepgnis chosen, then even more mode changes
are disqualified for consideration, including mode charayepattern®;1, po1, ..,
andp,.

To illustrate the property of quick termination @freedyOpt, we test the
queries conforming to the template in Figure 3.20. We thenthese queries on

the same XML stream used in Section 3.10.5. Table 3.9 reffwteesults.

for$vinp,

let $v,, = $vip,,,
$v,, = $vip,,,
$v,, = $v,/p,,,
$v,, = $v,/p,,,

$an = $vn-llpnl'
Vo = 8V,a/P,
where $v,, and $v,, and ... $v,and $v ,

return $v

Figure 3.20: Queries Conforming to Wide-and-Complex Patiree in Figure
3.16 (d)

3.10. EXPERIMENTAL EVALUATION 160

n ExhaustOpt GreedyOpt Initial Plan
of plans| Opt. Time | Plan Exec.| # of plans| Opt. Time | Plan Exec.| Exec. Time
explored (ms.) Time (ms.) | explored (ms.) Time (ms.) | (ms)

3 147 2296 7356 10 205 8059 9122

4 595 8674 10086 14 364 11202 13569

5 2387 38500 12176 17 487 12176 17045

6 9555 180078 13408 20 647 14280 20055

Table 3.9: ExhaustOpt and GreedyOpt for Deep-and-Compérary Pattern
Trees on XML Stream with Size of 51M

Even for the queries involving a large number of pattetiscedyOpt termi-
nates rather quickly. Let us use the last row in Table 3.9 axample. Whem =
6, i.e., the depth of the pattern tree in Figure 3.16 (c) ister® are 18 patterns in
total in the tree.ExzhaustOpt explores 9555 alternatives whitéreedyOpt only
explores 20 alternatives. Even thou@heedyOpt fails to find the optimal plan,

the plan it finds still cuts down the execution time of theiatiplan by 29%.

3.10.7 Study on when GreedyOpt Fails to Find Optimal Plan

We now investigate when GreedyOpt may fail to find the optiplahs. We study
extract-same and extract-different queries, shown inrei§21, conforming to the
wide-and-complex pattern tree in Figure 3.16 (b) with 5. Since each; (1< i
< n) has two child patterng;; andp;2, there are 15 patterns in the query in total.
For each query, we perform extensive experiments on diftafata sets. We
also test with different initial plans. Note that in the diree optimization sce-
nario, we always use an initial plan that retrieves all patten the automaton.
However, in the continuous optimization scenario, theiahiplan of each opti-
mization is the plan found in the last optimization. Therefthe initial plan can

be any kind of plans. We find that in two cases GreedyOpt faifstd the optimal

3.10. EXPERIMENTAL EVALUATION 161

for $vin p,, for $vin p,,
where $v/p,[p,,] [P;,] let $v, := $vip,
and ... where $v/p,[p,,] [P,]
and $v/p [p,,l[P,.] and ...
return $v and $v/p [p, I[Pl
return $v,

1) @)

Figure 3.21: Extract-Same and Extract-Different Queriemf@rming to Wide-
and-Complex Pattern Tree in Figure 3.16 (b)

plans.

Case 1: Missing Synergy Benefits

In the first case(GreedyOpt fails to find the optimal plan of the extract-different
query in Figure 3.21 (b). The characteristics of this caseaarbelow. The initial
plan retrieves all the patterns huit; andp,» in the automaton. The optimal plan
found byExhaustOptetrieves all patterns in the automatafireedyOpt fails to
find the optimal plan. In the first iteratiodyreedyOpt changes the mode of one
pattern retrieval at a time. No single mode change leads tettarbplan in this
iteration. GreedyOpt then terminates.

HoweverFExhaustOpt finds that if it pushes botp;; andp,5 into the automa-
ton, $v does not need to be extracted. Instead, Snlyneeds to be extracted. This
way we cut the extraction cost by (cost of extractihg- cost of extractingbv,).

If the cost cut is large enough, then pushingin andp;5 can yield a better plan
than the initial plan. However this better plan is not coestdl by GreedyOpt.

GreedyOpt only considers a mode change on one single padiieval at each

3.10. EXPERIMENTAL EVALUATION 162

time. When all single mode changes fail, GreedyOpt wouldumdher explore the

synergy that may result from the combination of two mode glean

To experimentally illustrate this case, we design two XMieatns as below.

1).

2).

In XML stream 1, children of bindings d&fv; in Figure 3.16 (b) are bound
to either$vy; or $v19. Therefore extracting the bindings $f, costs almost

the same as extracting the bindings$of; and$v».

In XML stream 2, bindings dfv; contain many children other than bindings
of $v1; and$v12. Therefore extracting bindings &f; costs significantly

more than extracting only bindings 8%, and$v1».

For each stream, we design two queries as below.

1).

2).

In query 1,p11 andpi2 have low costs and low selectivity. There is also a
costly filter in the format of $v,,1/text() contains ...". Thereforg,; andp;2
are favored to be retrieved in the automaton. Doing so regdtie cost of

the costly filter.

In query 2,p11 andpio have high costs and high selectivity. All the other
patterns however have low costs and low selectivity. Tloeeaf;; andpio

are favored to be retrieved out of the automaton.

Combining the above two XML streams and two queries, we gefdbr set-

tings in Figure 3.10. For each setting, we test both the etxt@ame and extract-

different queries in Figure 3.21. Therefore there are esgtitngs in total. For each

setting, we applyrzhaustOpt andGreedyOpt on an initial plan that retrieves all

patterns bup;; andp;s in the automaton. The results are reported in Figure 3.22.

3.10. EXPERIMENTAL EVALUATION 163
setting Data Characteristics Query Characteristics
Data size of | selectivity] selectivity] complexity of | complexity filters
Size (M) | $vi/(size of | of of other | p11 andpis of other
$v11 + size | pii/pi2 patterns patterns
of $U12)
1 52 100% 90% 10% complex (involv- a complex filter
ing “/I")) (i.e., involving a
2 52 100% 10% 10% simple (not in- simple costly “Itext()
volving “Ir, contains ..") is
length = 1) posed on $v,1
and
3 58 300% 90% 10% complex has a selectivity
of 90%
4 58 300% 10% 10% simple

Table 3.10: Environment Settings for Testing Case of “Migssynergy Benefits”

We see thatGreedyOpt works well in most of these 8 cases. It only fails

to find the optimal plan in the setting 4 (see the highlighted m Figure 3.22).

Note thatGreedyOpt for the extract-same query with the same setting (the row in

italics font) however yields the optimal result. The “exiynergy benefits” save

the extraction cost dfv; when all children offv; are retrieved in the automaton.

However if$v; has to be extracted anyway, then this cost cannot be savedttgerm

whether the patterns are retrieved in or out of the automaton

Case 2: Accounting of Cost Cut from Secondary Effect

In the second casé&jreedyOpt fails to find the optimal plans for both queries in

Figure 3.21. The characteristics of this case are as belavihd first iteration,

GreedyOpt finds that pulling oufp;; alone and pulling oup,, alone generates

two better plans respectively. However pulling pytalso causeg;; andpi, to be

pulled out. This is calledecondary effeavhen a pattern with descendant patterns

is pulled out (see Section 2.4.3). Pulling gytcan yield a plan that is even better

than the two previous ones=reedyOpt then chooses to pull oyt;. This new

3.10. EXPERIMENTAL EVALUATION 164
Setting ExhaustOpt GreedyOpt
Used| # of plans | Plan Chosen | Plan # of plans| Plan Chosen | Plan
explored Exec. explored Exec.
Time Time
(ms.) (ms.)
1 3124 no change on| 15502 15 no change on| 15502
initial plan initial plan
Buffer- | 2 3124 r11 & piz2 | 12309 40 r11 & pi2 | 12309
pushed in pushed in
Same 3 3124 no change on| 18028 15 no change on| 18028
initial plan initial plan
Query 4 3124 p11 & pi2 | 15127 40 p11 & pi2 | 15127
pushed in pushed in
1 3124 no change on| 15578 15 no change on| 15778
initial plan initial plan
Buffer- | 2 3124 r11 & piz2 | 10321 40 r11 & pi2 | 10321
pushed in pushed in
Different| 3 3124 no change on| 19211 15 no change on| 19211
initial plan initial plan
Query 4 3124 p11 & pi2 | 12695 15 no change on| 17644
pushed in initial plan

Figure 3.22: ExhaustOpt and GreedyOpt for Environmentii@gttin Figure 3.10
lllustrating “Missing Synergy Benefits”. Initial Plan Useflll Patterns bup;; and
p12 Retrieved in Automaton.

3.10. EXPERIMENTAL EVALUATION 165

plan can actually lose to a plan resulted from pulling outhbet; and p;5 but
not p;. The cost cut of pulling oup; may come from its secondary effect. In
short,GreedyOpt accounts the cut cost to a mode change while the creditsdéhoul
actually be given to the secondary effect.

We design three settings in Figure 3.11. In all settipgsandp,- are inclined

to be retrieved out of the automaton because of their higécteities and high

costs.
setting Data Characteristics Query Characteristics
size of | selectivity| selectivity| selectivity] complexity complexity complexity filters
$uv/size of p1 of py1 | of other | of p1; and | of py of other
of $v1 andpi2 patterns | pi2 patterns
1 100% 50% a costly
2 150% 50% . . filt
2 > 90% 10% complex simple simple ter
3 150% 20% ONvyp1

Table 3.11: Environment Settings for Testing Case of “Wréiegounting of Cost
Cut”; Size of XML Stream 1, 2 and 3 is 42, 62, 59M Respectively

XML streams 1 and 2 differ in the ratio of the size of bindings$o to the
size of bindings ofv;. The first two rows in Figure 3.23 show the results of
applying ExhaustOpt and GreedyOpt for the extract-differguery. The initial
plan retrieves all patterns in the automaton. For XML streignthe difference
between the non-optimal plan chosen by GreedyOpt and thmaipblan chosen
by ExhaustOpt is not significant because the cost of buffehie bindings offv is
close to that of buffering the bindings 8%1. In contrast, for XML stream 2, the
cost difference of the two plans is more significant due tatlkesased difference
in their buffering costs.

The XML streams 2 and 3 differ in the selectivity 8. The last two rows

in Figure 3.23 show the results of applyifgehaustOpt andGreedyOpt for the

3.10. EXPERIMENTAL EVALUATION 166

extract-same query. The initial plan retrieves all pateimthe automaton. In
XML stream 3, selectivity op; is rather low. Pulling oup; is thus not chosen.
ThereforeGreedyOpt still finds the optimal plan. In XML stream 2, selectivity of
po is higher than in XML stream 1. This time pulling qutis chosen while actually

pulling outp;; andp;o only is even betterGreedyOpt fails to find optimal plan.

In summaryGreedyOpt on both buffer-different and buffer-same queries can fail

to find the optimal plans because of a wrong accounting of dise aut.

Setting ExhaustOpt GreedyOpt Initial
Plan
Used # of plans| Plan Chosen | Plan # of plans| Plan Chosen | Plan Exec.
explored Exec. explored Exec. Time
Time Time (ms.)
(ms.) (ms.)
Buffer- | 1 3124 p11 & pi2 | 15502 27 p1 pulled out | 16013 19036
Different pulled out
Query | 2 3124 p11 & piz2 | 18045 27 p1 pulled out | 20549 21202
pulled out
Buffer- | 2 3124 p11 & pi2 | 18507 40 p11 & pi2 | 18507 21155
Same pulled out pulled out
Query | 3 3124 pi1 & pi2 | 16021 27 p1 pulled out | 16972 18598
pulled out

Figure 3.23: ExhaustOpt and GreedyOpt Comparison for Settings in Figure
3.10 illustrating “Wrong Accounting of Cost Cut”. Initiall&h Used: All Patterns
Retrieved in Automaton.

Conclusion

The case study in Section 3.10.7 sheds some lights on howmfeither improve
GreedyOpt. In case 1, in order not to missing synergy benefits, we camawnep
the termination criterion in th&reedyOptalgorithm. Currently,GreedyOptter-

minates when no single mode change leads to a better plarihtbaiurrent plan.

Instead, we can further check whether multiple mode changedead to a bet-

3.10. EXPERIMENTAL EVALUATION 167

ter plan. In case 2, in order to correctly account the costwatcan improve the
criterion of which plan to adopt as the current plan in GeeedyOptalgorithm.
Suppose a best plan in a search iteration results from a ni@deye that has sec-
ondary effects. Currently, we adopt this best plan, denasdg, as the current plan.
Instead, we can also cost a plRhresulted from only the secondary mode changes.

If P’is better thanP, we then adopf”’ as the current plan.

3.10.8 Comparison of GreedyOpt and GreedyPruneOpt

In continuous optimization scenarios, we now drop the ogttion dimension of
reordering input subplans t&¢ructural Join. Correspondingly, greedy algorithm
can now be made more efficiently with pruning rules. In thevimgs sections, the
size of XML streams we use various between 40M - 60M. To sthdycontinuous
optimization scenario, we now assume the statistics cheorgavery 20M - 30M
of XML stream. We then compare Greedy and Greedy with prunimgn XML
document about 20M - 30M. We repeat the same queries with khle streams of
the same data characteristics as in Fig2#eThe only difference is that the size of

the XML stream is now 25M instead of 52M used in Fig@f&

Setting n Greedy Greedy with Pruning Initial Plan
of plans| Opt. Time | Plan Exec.| # of plans| Opt. Time | Plan Exec.| Exec. Time
explored (ms.) Time (ms.) | explored (ms.) Time (ms.) | (ms.)

5 9 232 782 1 64 782 901

Stream 1 10 27 475 2865 3 106 2865 3165

20 144 2271 4821 10 242 4821 6821
5 15 381 2032 10 142 2032 2632
Stream 2 10 54 823 4742 36 294 4742 7353
20 204 3126 11405 136 1053 11405 18210

Figure 3.24: Greedy and Greedy with Pruning for Buffer-Sa@pueries in Figure
3.17 (a.1)

3.10. EXPERIMENTAL EVALUATION 168

From Figure 3.24 we can see that Greedy with pruning cuts dbesmumber
of plans explored in all six experiments. For wide and sintpleries, no patterns
have descendant patterns. Therefore the technique ofiffgrioy bounding cost
cut” described in Section 3.7 takes effect. This technigxeueles the pull-out
of thoseTokenNav with selectivity of 10%. Moreover, it also cuts down the
unit time spent on processing each alternative plan sincaoMenger apply the
optimization using the input-subplan-reordering rule. &g all six experiments,
the pruning technigue improves the optimization time magtiScantly for row
3 in Figure 3.24 since the initial plan has mdreken N av operators that have a

selectivity of 10% than any of the other five initial plans.

3.10.9 Overhead of One-time Optimization: From StatisticsCollec-

tion to Plan Migration

The overhead of run-time optimization is composed of threemonents, i.e.,
statistics collection, plan search and plan migration ifif)a We study the over-
head of each of the three components in the one-time optilmizacenario. Since
we have already studied the overhead of the plan search tine@ womparing
ExhaustOpt and GreedyOpt in Section 3.10.2, we now focushieroverhead of
statistics collection and plan migration.

Query Sets: We design two queries both of which conform to the template in
Figure 3.21 (a) but differ in the number of patterns in thergue in Figure 3.21
is 5 and 10 respectively; each node has exactly two childi&e)can compare the
overhead of statistics collection in the execution of thesequeries, since a query
involving more patterns spends more time in statisticsectithn.

Data Sets: We also design two streams (the design principle is simdathat

3.10. EXPERIMENTAL EVALUATION 169

for XML streams used in Section 3.10.3). In XML stream 1, fgher queries
mentioned above, 4/5 ¢f, ..., andp,, have a selectivity of 10% while the rest 1/5
have a selectivity of 90%. In XML stream 2, only 1/5 pf, ..., andp,, have a
selectivity of 10% while the rest 4/5 have a selectivity o#®0n both streams, all
child patterns o4, ..., andp,, have the same selectivity as their parent patterns.
For a query runs on XML stream 1, the optimal plan is only glighifferent from
the initial plan which retrieves all patterns in the autoomatin contrast, when the
same query is run on XML stream 2, its optimal plan undergoeserdramatic
changes from the initial plan. We therefore can compare teehead of a simple
plan migration with a more complicated plan migration psse

Given the above two queries and two queries, we have fourriexest settings.
Figure 3.25 reports the result in the four experiments. Bohejuery, we illustrate
the four cost ingredients of query processing with run-topémization, i.e., (1)
the plan execution time, i.e., the execution time of inigi@n + the execution time
of the optimized plan, (2) the plan search time®yeedyOpt algorithm, (3) the
time for statistics collection and (4) the plan migratianéi. The costs of the latter
three is the overhead of the run-time optimization. We canthat in all four
experiments, the plan search time dominates the overheagl tiffie of statistics
collection ranges from 10ms - 20ms while that of plan migmatianges from Oms
- 40ms (the statistics collection time and the plan seartie tire so small that
they are almost unrecognizable in Figure 3.25). Table utthdér compares the
guery processing time without the run-time optimizatiorthwthat with the run-
time optimization. In all four experiments, the query presiag with run-time

optimization has better performance than that withouttimne optimization.

3.10. EXPERIMENTAL EVALUATION 170

Run-time Plan Optimization Overhead (One-time Optimization
Scenario)

20000

18000 —

16000 —

O Plan Execution (excluding

14000 overhead)

12000 —— [OPlan Migration

10000 —

mPlan Search

Time (ms)

8000 —

6000 +— @ Statistics Collection

4000 +—— —

2000 +4——
S BN

Figure 3.25: Cost Ingredients of Query Processing in Ome-tDptimization

Setting Query Processing Time without Run-time Query Processing Time with Run-time Optj-
Optimization (ms) mization (ms)

1 8690 7982

2 18828 16506

3 17331 9635

4 28415 18135

Table 3.12: Comparison of Query Processing Time with anthauit Run-time
Optimization

3.10. EXPERIMENTAL EVALUATION 171

3.10.10 Performance of Continuous Optimization

We have studied the plan search performance in the consnoptimization sce-
nario by comparing Greedy and Greedy with pruning in Sec3d®.8. We have
also shown in Section 3.10.9 that both statistics collaecéind plan migration are
very cheap. In this section, we focus on the effect of comtirsuoptimization on the
query processing rate, i.e., number of bottom input elesgicessed per second.

We use the buffer-same query that is also used for experimeiigure 3.22.
We generate four XML fragments each of which contains 25@@i@ns. The data
characteristics of these XML fragments are shown in Figut®.3We concatenate
these four XML fragments into one stream. If we denote a phat tetrieves all
the patterns in the automaton &g, and a plan that pulls oyt;; andp, as Ps.
According to Figure 3.22 (first four rows), the run-time optzation will lead to
the following plan changesi{ — P, denotesP; is changed td>): P, — P, —
P, — P, — P;. We start optimization every 500 auctions.

We compare the two plan execution processes, one with thimgnoptimiza-
tion and one without run-time optimization. Figure 3.26whdhe processing rate
over time. For plan execution without run-optimizationerth are four periods in
each of which the processing rate is rather consistent. FBor gxecution with
run-time optimization, there are two small time windowso(ard 18s and 28s)
in which the processing rates are significantly lower tharsé¢hin its neighboring
time windows. These two windows indicate the time when ojzi@ton for XML
stream fragments 3 and 4 happens. Since the query engindssiee (0.2s and
0.6s respectively) on plan search without processing gmnytjithe processing rates

decrease. The optimization for XML fragment 1 happens atdte 3rd second

3.10. EXPERIMENTAL EVALUATION 172

so that we can see the processing rate starts to increasdhiopoint. The opti-
mization for XML fragment 2 happens around 8s. There is h@avawot an obvious
processing rate decrease as that for XML fragments 3 and i.i§ because the
plan chosen for XML fragment 2 is faster than any plans chdsenther XML
fragments. The plan search for XML fragment 2 takes 0.6sirbtlte rest of 1.6s
the processing rate is rather high. So on average the pmgesse is not signifi-

cantly lower than before.

900
800 | e DS

AR .

700 thout Run-

N e T TR

000 / / \-)T \ Optimization
e L - \
- \

300 | —=— vith Run-time

00 \ Optimization
100]
0 T T T T T T T T T T T T T T T T T T

L N N R

of Auctions
Processed/Second

Time (s)

Figure 3.26: Processing Rate of Wide and Complex Query intiQaoous Opti-
mization Scenario

173

Chapter 4

Schema-based Optimization in

Automaton Processing Style

4.1 Introduction

Using schema knowledge to optimize queries, known as sérrgurry optimiza-
tion (SQO), has generated promising results in deductidg félational [66] and
object databases [44]. Naturally, it is also expected to me@timization di-
rection for XML stream query processing. In contrast, pattetrieval is spe-
cific to the XML data model. Therefore, recent work on XML SQ&ghniques
[11, 26, 30, 35, 53] focuses on pattern retrieval optimarati Most of them fall
into two categories: techniques applicable to both pensisind streaming XML,
or techniques only applicable to persistent XML. We howdgeus on SQO spe-
cific to XML stream processing.

In Section 1.3.3, we have listed a few drawbacks of the @atark in XML

Stream SQO field. First, most of the work [17, 35] addressigaewxith limited

4.1. INTRODUCTION 174

expressive power, i.e., boolean XPath matching that ortlyrme boolean values
indicating whether an XPath is matched by the XML stream. radsing a more
powerful query language such as XQuery will bring more caxities to issues
such as how to decide whether a schema constraint is useftilcanto execute the
optimized query. Second, most of current work overlooksesyy of general and
stream specific optimizations. For example, type inferemdech infers the types
of the nondeterministic navigation steps such as “*” or,"¢&n be combined with
the stream specific XML SQO to enable more optimization oppaties. Third,
there lacks strategies for applying possibly overlappiptnoization techniques.
[17, 35] both consider a single optimization technique ggine type of schema
constraint. Their proposed technique can be independapihjied on different
parts of the query. If more types of constraints are explonadltiple techniques
must be considered. We have observed that when applying thifierent tech-
niques or even one complex technique on different parts efgtrery, they may
“overlap”, i.e., unnecessarily optimizing the same parthef query which causes
additional overhead.

To overcome the above drawbacks, we propose an optimizptmress con-
sisting of the following steps. First, we use query treesaptare the structural
pattern retrieval in the given XQuery. Second, type infeeeis applied on the
query trees. The nondeterministic “*” or “//” navigationegls are replaced with
deterministic ones so that more SQO can be applied on theopsly schema-less
patterns. Third, SQO rules are applied on the query treesllfithe query tree is
translated back into a query plan executable in our XQuerggssing engine. Our

contributions include:

4.2. TYPE INFERENCE ON QUERY TREES 175

e We utilize type inference to aid with the stream-specific S@@ handle
the complexities caused by type inference in SQO, namelgnsn(e.g.,
$a/(b|c) resolved from$a/*) and recursions (e.g§a/b™ resolved from

$a//b whenb is recursive).

e We assume a widely-adopted automata execution model for Xivikam
pattern retrieval. Based on the analysis of this model, wivel¢he criteria

regarding what constraints are useful for a given query.

e We design a set of optimization rules that utilizes the aaists satisfying
the “usefulness” criteria. We derive a rule applicationesrthat ensures:
no beneficial optimization is missed (completeness); anc:dondant opti-

mization is introduced (minimality).

e We incorporate these SQO techniques into an algebraic frarkdor XML
stream processing. We propose strategies for correctlyffiotently evalu-

ating the query plans optimized with SQO.

e We perform a set of experiments on both real and syntheta \dhich il-
lustrates that our SQO techniques can significantly imptioggerformance

with little overhead.

4.2 Type Inference on Query Trees

We first propose a query tree representation to capture tierpaetrieval in an
XQuery. We then describe how to apply existing type infeestechniques [53, 72]

on the query trees when an XML Schema is given.

4.2. TYPE INFERENCE ON QUERY TREES 176

CoreExpr ::= ForClause WhereClause? ReturnClause
| PathExpr
PathExpr ::= PathExpr “["//” TagNameg" «”
| varName
| streamName
ForClause ::=“for” “$"varName “in” PathExpr
(“” “$"varName “in” PathExpr)*
WhereClause :: = “where” BooleanExpr
BooleanExpr ::= PathExpr CompareExpr Constant
| BooleanExpr and BooleanExpr
| PathExpr
CompareExpr ;1= >« ="/ |« <[« <="]“ >/« >="
ReturnClause = “return” CoreExpr
|<tagName-CoreExpr (“,” CoreExpr) </tagName>

Figure 4.1: Grammar of Supported XQuery Subset

4.2.1 Query Tree

We support a subset of XQuery as shown in Figure 4.1. Bagicedl allow “for...
where... return...” expressions (referred to as FWR) wttexéreturn” clause can
further contain FWR expressions; and conjunctive predgaach of which is a
comparison between a variable and a constant. A large rdrogperonon XQueries
can be rewritten into this subset [56]. For example, a quetly Yet” clauses can
be rewritten into an XQuery without “let” clauses (by Rule NR [56]). A query
with FWR expressions nested within a “for” clause can alsadweritten to our
supported subset format (by RuleR, in [56]). The filter expression in an XPath
can be moved into the “where” clause (e.g., Figure 4.2 (a) beagewritten from
“for $a in /auctiongauction $b in $a/sellefsameAddr...”). In short, syntax in
Figure 4.1 cover a large portion of commonly used XQuery esgons.

We proposaguery treedo represent the structural patterns in an XQuery. Fig-
ure 4.2 (b) shows such a tree for the XQuery in Figure 4.2 (@chEhavigation

step in an XPath is mapped to a tree node. The descendans algs iexpressed as

4.2. TYPE INFERENCE ON QUERY TREES 177

a tree node labeled “//". The blank node models the relatignsetween the inner
FWR and the outer FWR. We say the node mapped from the firgt. (fast) step
on an XPath is theontext(resp. destination node of any node mapped from the
same XPath. For example, in Figure 4.2 (b), #uetionnode representsz and is
the context node adeller. Thesellernode again represen$é and is the context
node of * andphone We also sayauctionis an ancestor context node of * and
phone

for $a in /auctions/auction, $b in $a/seller[billTo]
where $b/*/phone="508-123-4567"
return
<auction>
for $c in $alitem
where $c//keyword="auto”
return
<iteminfo>
$a/category, $c
</iteminfo>
</auction>

(a) Example Query (b) Query Tree

Figure 4.2: XQuery and Query Tree

There are two kinds of patterns in an XQuery. XPaths in “fdguses describe
required patterns, e.g., in Figure 4.2 (a), b&thand $b in the outer “for” clause
must not evaluate to empty for the FWR expression to retuynresult. In con-
trast, XPaths in “return” clauses describe optional pastee.g., even $a/category
evaluates to empty, dteminfoelement will still be constructed. In the query tree,
a solid (resp. dashed) line indicates the child is requiredp(optional) in its
parent. For example, a dashed line connects the blank ndtdtsvparent, indi-
cating $a/category $a/item and $c//keywordappear in the “return” clause of the

outer FWR. A solid line connects thmand the blank node, indicatirfgp/item

4.2. TYPE INFERENCE ON QUERY TREES 178

appears in the “for” clause in the inner FWR.

4.2.2 Type Inference

We assume that an XML schema is given for each stream sourcEMA. schema
is modeled as a directed graph with ordered edges. A node stliema graphep-
resents an element type, a sequence group (labeled with")S&@ choice group
(labeled with “CHQ”). Each edge from nodeto nodev is labeled by hinOccug
maxOccuy, indicating the minimal and maximal occurrencevafithin . The de-
fault edge labelis (1, 1). Figures 4.3 (a) and (b) show themmeh(for compactness,
we use an equivalent DTD) and its graph representation.

Figure 4.4 shows the query tree from Figure 4.2 (b) after ipference [53,
72]. Each query tree node is now associated with a set of tgdesa Each type
node identifies one possible deterministic navigation gtapthe query tree node
represents. Type nodes are connected to capture the sedjuelationship among
navigation steps. The blank node shares the type nodestwilaient. In the rest
of this paper, we refer to a type node by the name of the typedifferentiate
between the two type nodes that both represegtvordtype in Figure 4.4, we
refer to them a&eyword; andkeywords respectively.

A “*"is resolved to a union of types. In Figure 4.4, “*” is assated with type
nodes primary and secondary indicating $b/*/phone = $b/(primary|
secondary/phone A “/I" node is resolved to a union of sequences of types, e.g.
$c//keyword is resolved t&c/desd(d|(empht /keyword)t | (keyword /emph)*)/keyword
wherep* (resp.p™) indicates repeating a pathzero or more times (resp. one or
more times){) represents an empty navigation step. The nondetermimistitber

of navigation steps in the expression (iz&.,0r p™) results from the recursivieey-

4.2. TYPE INFERENCE ON QUERY TREES 179

<IELEMENT auctions (auction+)>

<IELEMENT auction (seller, item*, category+)>

<IELEMENT seller (primary, secondary, sameAddr|(shipTo, billTo), profile)>
<IELEMENT primary (phone)>

<IELEMENT secondary (phone)>

<IELEMENT item (desc, payment)>

<IELEMENT desc((emph|keyword)*, providedBy +)>

<IELEMENT emph (#PCDATA|emph|keyword)*>

<IELEMENT keyword (# PCDATA|emph|keyword)*>

(@) Schema

Quetions

(1,00
auction 1, 00)

a

(b) Schema Graph

Figure 4.3: XML Schema and Schema Graph

4.3. GUIDELINES FOR STREAM XML SQO 180

word or emphelements (refer to Figure 4.3). The “//" node in Figure 4.Rigmow

expanded to descnode and a “//” node in Figure 4.4.

aucyons

\\J
keyword

Figure 4.4: Query Tree after Type Inference

4.3 Guidelines for Stream XML SQO

SQO in essence is a heuristics-based optimization. It hemsgill has to be based
on some common beliefs in the characteristics of the phhisigdementations. For
example, the classical “selection pushdown under join'risdas-based rewriting
rule is built on the assumption that a selection is usualgager than a join. We
therefore have to understand the processing style of pattgrieval, in particu-

lar what contributes to its costs, to ensure the SQO techsiglesigned indeed
improve the performance. Therefore, we first review a wigelgpted automata

processing model and then generalize the guidelines fagrdag SQO techniques.

4.3. GUIDELINES FOR STREAM XML SQO 181

4.3.1 Automata-based Implementation

Automata are widely used [30, 34, 35, 42, 52, 65] for pattetriaval over XML
token streams. We describe one basic automata model [3thadf general and
serves as the core of most other automata [34, 35, 65]. Tkerpaetrieval in the
automaton consists of three tasks as below.

Locating Tokens. Figure 4.5 shows the automaton for retrieving the pattemns i
Figure 4.4. Each tree node is mapped to transition edge(sh@rstates. Thea
transition between states 2 and 3 is mapped from the blank ridds \ transition

is necessary for executing the optimized plan as we will simo8ection 4.5.

emph keyword

secondary
1<auctions> 3<annotation> 5</reserve> 7<seller> 9<phone> 11</phone>
—0 O O O O o—>
2<auction> 4 <reserve> 6</annotation> 8< primary> 10 "508-123-4567"
[12] [12]
[11 |[11] |[1] |[[11]

[2,3] {2] 3] {2] 3] [2],3] 2,3] Ez,s] 23] [[231 [123] |[23]
S 1 € VR 0 R €5 €S I VR
o |0 o | [©@ [@ o [0 |© |[© |0

Figure 4.5: Automaton Implementation

A stack is used to store the history of state transitions. uféigt.5 shows

the snapshot of the stack after each token is processed. cbming start tag

4.3. GUIDELINES FOR STREAM XML SQO 182

is looked up in the transition entries of every state at tlaglstop. The states
that are transitioned to are activated and pushed ontodbk. gtor example, when
<auction> IS encounteredy; is transitioned to frong, and pushed onto the stack.

If no states are transitioned to, an empty set is pushed betstack, e.g., when
<annotation> is processed. When an end tag is encountered, the states at th
stack top are popped out. The stack is therefore restorduetstatus before the
matching start tag had been processed. For a PCDATA tokecharoge is made

to the stack.

Buffering Tokens. Tokens are buffered if they need to be either further filtened
returned by the query. A state can be associated with ancéigmaoperator. For
example, in Figure 4.5, state 4 is associated with an eidraoperator. Once state

4 is activated, the extraction operator raises a flag. As &mtlpe flag is raised, the
incoming tokens will be buffered. When a state 4 is poppedobthe stack by a
<[category>, its extraction operator revokes the flag to terminate thebog of

the categoryelement.

Manipulating Buffered Data. The buffered data are consumed by the data ma-
nipulation operators that perform selections or struttimias. More details are

discussed in Section 2.5.

4.3.2 Necessity of Physical Implementation Analysis

Without close analysis of the physical implementation, ppaaently useful SQO
technique can be actually useless. In Figure 4.5, dakemand$a/categoryneed

to be located. We know from the schema in Figure 4.3 thaéégoryonly occurs
afteritemin anauction We might expect to save some time by postponing the

locating ofcategorytill item has been located, i.e., removing the transition from

4.3. GUIDELINES FOR STREAM XML SQO 183

state 3 to state 4 and only recovering it when state 5 is aetlva his is similar to
the SQO technique in XSM [52] which removes transitions wi#itnot happen.
Transition entries are usually implemented as a hash t&8dle42, 34] for
performance reasons. A transition lookup, i.e., a hasle falokup, costs constant
time [34]. Therefore cutting down the number of transitiomthe entries of state 3
does not affect the lookup cost. Therefore in the above elgriiie new automaton
does not save any cost. In XSM [52] however, the transitiaklp at states is
implemented as a linear search on all possible transitibrs Ib is worthwhile to

cut down the number of transitions in XSM.

4.3.3 Design Guidelines for XML Stream SQO

There are two major optimization opportunities. First, Wwewdd avoid transitions
whenever possible. This obviously reduces the cost ofilugabkens. It may also
reduce the cost of buffering tokens when those transitidnst avoided, could

otherwise activate states associated with extractionabq@es. It may even save
manipulation cost on the buffered data.

The second opportunity is that an extraction operator shbal prompted to
revoke the buffering flag once the data it is extracting isvkmado be irrelevant to
the final results. This saves buffering cost.

We now describe how to take advantage of the two opportgnitée pattern
$v/p may “fail” if its p may not occur withir§v, or it is involved in a selection,
or its required descendant patterns may fail. The failura fquiredsv /p filters
out $v. If within a $v, no result of XPatlp can occur after any result of XPath
p’, we say a result of’ is anending mark of p. When an ending mark aqf is

encountered, we can test whethefails. This test is arearly filtering because

4.4. STREAM-SPECIFIC XML SQO 184

without the ending mark, we could have only concluded whegtfails when the
end tag offv is encountered. If fails, any transitions or active buffering flags can
be avoided or deactivated within tHs.

In some cases, even if early filtering @floes not save withifiv, it may save
within the ancestor context variables$of. For example, in Figure 4.6, early detec-
tion of the absence dfillTo within a sellerwould not save any computation within
this seller. However, since aauctionhas only oneseller, the filtering out of this
sellerleads to the filtering out of its pareatictionelement. The schema in Figure
4.3 indicatestemoccurs aftesellerwithin anauction The locating and buffering

$alitemis saved. Figure 4.7 summarizes the guidelines of desigtivig SQO.

for $a in /auctions/auction,
$b in $a/seller[billTo]
return
<auction>
$b/@id, $a/item
</auction>

(a) Example Query (b) Query Tree

Figure 4.6: Filtering Propagation

4.4 Stream-Specific XML SQO

We now introduce three SQO rules (each utilizing a diffetgpe of constraint).
Note that our rule set is open-ended. New rules utilizing newnstraints could be

similarly developed following the guidelines and addea ittte rule set.

4.4. STREAM-SPECIFIC XML SQO 185

D

A SQO technique should find ending marks for a patfarfp that satisfies th
following criteria:

1). early filtering is possible
(@) p is a required pattern ifi.
(b) p may possibly fail in a binding dfv.
2). early filtering is beneficial after the ending marks within a binding 6

or $u ($u is an ancestor context variable$f), there exist raised bufferirig
flags or states that may be activated.

Figure 4.7: SQO Design Guidelines

4.4.1 SQO Rules

Each rule is defined with respect to a patten/p. A rule has a pre-condition, a
rule body and a post-condition. The precondition ensur@tbatisfies criterion 1
in Figure 4.7. When the precondition holds, the rule bodyésifio find the ending
marks ofp. The post-condition keeps only those ending marks thatfgatiiterion
2. The pre-condition and post-condition checking is simaleross the rules. We

here only describe their different parts, the rule bodies.

Occurrence Rule.

This rule utilizes occurrence constraints. We userOccur(t1, t2) to repre-
sent the maximal occurrence of type nagevithin type nodet,. For each type
of $v, we derive the maximal cardinality of the resultspofvithin a binding of$v
of typet. If the maximal cardinality is a bounded integethen the end tag of the

it" result ofp is an ending mark igv of typet.

Example 17 In Figure 4.4, maxOccur(phone, seller) = 2. The end tag of the

274 phone is an ending mark ofx /phone within a seller.

4.4. STREAM-SPECIFIC XML SQO 186

Exclusive Rule.

This rule utilizes the the “CHO” node in the schema graph. dawh type: of
$v, we find whether there is a paphthat never coexists with within a binding of
$v of typet. If yes, the start tag of the result pfis the ending mark of in $v of
typet. This rule may introduce new nodes fgrinto the query tree whep is not

specified in the query.

Example 18 From Figure 4.3 we knowsameAddr is exclusive tq/billTo in a

seller element.<sameAddr> is the ending mark ofbillT o within a seller.

Order Rule.

This rule utilizes the order constraints. For each tiypé $v, we find whether
there exists a pathl that must occur aftes within a binding of$v of typet. If yes,
the start tag of the first result of is an ending mark of in $v of typet. Similar

to Exclusive Rule, this rule may also introduce new nodestime query tree.

Example 19 In Figure 4.4,keyword either occurs as a child element @&sc, or
occurs within a child elememrtnph or keyword of desc. Withindesc, provided By
occurs after botlemph and keyword. Also,maxOccur(desc,item) = 1. There-
fore the start tag of the first result gilesc/provided By within $c is an ending

mark for / /keyword.

In the rest of the paper, instead of saying the start tag diitstaresult (Exclu-
sive and Order Rules) or the end tag of iHeresult (Occurrence Rule) of a path
is an ending mark, we simply say the path or iffeoccurrence of a path is the

ending mark.

4.4. STREAM-SPECIFIC XML SQO 187

4.4.2 Desired Properties of Rule Application

We now consider the order of applying the rules on the pattera., on the desti-
nation nodes in the query tree (each destination node faEné pattern). The ap-
plication order should ensure two propertiesmpletenesandminimality. Com-
pletenessneans that no beneficial ending mark is missed whileémality means

no redundant ending mark is introduced.

Completeness

We now define théndependencef two rules, which is an important property for

ensuring the completeness of our rule application algworith

Definition 7 We usedest(Q) to denote the destination nodes in a query tée
We denote a new query tree after the application of rubm a destination node
in Q asapply(r, Q,n). dest(Q) - dest(Q’) denotes the destination nodes in query
tree Q but not inQ’. em(Q) denotes the set of ending marks already found for the
patterns inQ. Rulesr; andr;y are independent of each other if:
em(apply(ra, apply(r1, Q,n),n')) = em(apply(r1, apply(r2, Q,n'),n)), Vn,n’ € dest(Q)

@

em(apply(rz, apply(r1, Q,n),n’)) = em(apply(ri, Q,n)),
VYn € Q,n’ € dest(apply(ri, Q,n)) — dest(Q) @)

em(apply(r1, apply(rz, Q,n),n")) = em(apply(rz, Q,n)),

vn € Q,n’ € dest(apply(ra, Q,n)) — dest(Q) (3)

Equation (1) says; andry can be applied on the destination nodes in any
order and still find the same set of ending marks. Equatiopar{@ (3) (they are

symmetric) say that if the application of one rule introduicew destination nodes

4.4. STREAM-SPECIFIC XML SQO 188

into the query tree, the application of the other rule onehemwy nodes would not

result in new ending marks.

Lemma 4 If rules in a rule set are all independent of each other, thericang as
each SQO rule is applied on each destination node in the gtregyonce, this

application process ensures completeness.

Lemma 5 All possible pairs of rules;-ro in our current rule set are independent

of each other.

We briefly explain Lemma 5. First, when a rule in Section 5.2pplied on a
node, it is not affected by the ending marks previously fouldjuation (1) in
Definition 7 holds. Second, any newly introduced node reprissan XPath that is
not specified in the query. Such a path is optional and noifepdato have ending
marks. Equations (2) and (3) in Definition 7 also hold. Lemrhasd 5 will be

combined later to show our rule application algorithm agksecompleteness.

Minimality

A plain node-by-node rule-by-rule application, thoughweimsy completeness (Lemma

4), may not ensureninimality. It may introduce redundant ending marks.

Example 20 (RulesApplied on SameNode) Exclusive and Order Rules, if applied
on nodebillTo in Figure 4.4, introduce/sameAddr and /profile respectively.
However the latter ending mark is redundantbifi’T o does not appear, its absence
will be caught by ending marksameAddr first; if billTo does appear, ending
mark /profile then leads to unnecessary checking. In either cAse file does

not help.

4.4. STREAM-SPECIFIC XML SQO 189

Example 21 (Rules Applied on Ancestor and Descendant Nodes) Suppose the
schema forauction in Figure 4.3 is changed te<! ELEM ENT auction (...,
item, ...)>. The Order Rule on nodeyword finds an ending mark/desc/provided By
(see Example 19) in attemn. Also, Order Rule on nodgem finds an ending mark
/category in an auction sinceitem must occur beforeategory. The latter end-

ing mark is meant to detect whether a$y(item) that satisfiessc//keyword =
“Auto” exists in a $a (auction). This is equivalent to detecting whether the only
$c in $a satisfies the predicate @ has exactly on&c). However this will always

be first detected by ending mafHesc/provided By in a $a. Therefore the ending

mark /category is redundant.

An ending mark ofv/p is said to besurely-workingf it is able to catch all fail-
ure of /p in a binding of$v. Not all ending marks are surely-working. For exam-
ple, if the DTD in Figure 4.3 is instead! ELEMENT item (desc?, payment)>,
/desc/provided By does not necessarily occur iniéem The failure of/ / keyword
in $¢ thus is not ensured to be caught by this ending mark. Thersvarkinds of

surely-working ending marks, as illustrated below.

e If an ending mark that is found by Occurrence or Order Rulé gurely-
working if it is guaranteed to appear in the stream. For exampe ending
mark /payment for $c//keyword (see Example 19) is not surely-working
since even thoughminOccur(payment,item)>0, minOccur(item,
auction)> 0. In contrast, the ending maykategory for $a /item is surely-

working sinceminOccur(category,auction) > 0 andminOccur(auction,auctions)>0.

e If an ending mark is found by Exclusive Rule, it is surely wiakif (1) it

is “alternative” top, i.e., eitherB or p must appear (this is stronger than

4.4. STREAM-SPECIFIC XML SQO 190

“exclusive” which only requires the ending mark amdo not coexist); and
(2)p cannot involve in a selection predicate because the abs#nBeonly

ensure® appears but cannot ensyrsatisfies the predicate.

Based on thesurely-workingconcept, we have Observations 1 and 2 which

generalize the cases illustrated in Examples 20 and 21atagy.

Observation 1 For a $v/p, any ending marks after a surely-working one are re-

dundant.

Observation 2 Any ending marks dfv/p are redundant if (1) withirfv’ where
$v’ = $v/p, any pattern$v’ /p’ satisfying Criterion 1 (a) and (b) in Figure 4.7 has

a surely-working ending mark, and (2)’ occurs within$v exactly once.

4.4.3 Rule Application Algorithm

The rule application algorithm has two main components: ttheerserand the
rule applier. The traversertraverses the query tree and direoide applier to
operate on every destination node. From Lemmas 4 and 5, we tkreoalgorithm
achievescompleteness The rule applier outputs a set of event-condition-action
constructs in the form of (an ending mark, a pattern, a typieraf an ancestor
context node). When an ending mark is encountered (evepeha, if the pattern
fails (condition holds), all computations within the anoescontext node will be
suspended (actions are taken). Thke applierfollows Observations 1 and 2 and
thus achieveminimality.

The traverser algorithm (Algorithm 4.4.3) takes two inpditke first input is a

type node of a context nodi. The traverser picks qualifying destination nodes

4.4. STREAM-SPECIFIC XML SQO 191

Algorithm 10 traverser{n, atn)
-Input: tn - a type node of a context node
atn - a type node of$v’s farthest ancestor context node that has
maxQOccur(tn, atn) = 1.
-Output: a set of event-condition-actions

1. Setecas;

2: for each destination noda’ of $v do

3: ecas =ecas U applyRule§v’, tn, atn);

4. for each type noden’ of $v’ do

5 if maxOccur(tn’, tn)=1 and$v’ has only one type node that is a descen-
dant oftn then

6 ecas = ecas U traverser{n’, atn);
7 else
8: ecas = ecas U traverser{n’, tn).
9 end if

10: end for

11: end for

12: returnecas.

of $v for the rule applier. The second input is a type node of anstaceontext
node. This type node will appear as the action part of thetes@mdition-action
output of the rule applier.

Initially, the traverser is called wittn andatn both set to the only type node of
the query tree root (the root must have only one type nodedaatifies the type of
the root element in the stream). Starting from the root, the applier operates on
each destination nod’ (lines 2-3). Next, the subtree rooted$at is recursively
traversed (lines 4-8). The filtering out of a binding$af leads to the filtering out
of the binding of an ancestor context variable(see Algorithm 4.6), if the binding
of $v” is the only one occurring in the binding &b (line 5). We now walk through
an example to show how this works, especially when a conteaté thas multiple

type nodes.

4.4. STREAM-SPECIFIC XML SQO 192

Example 22 Figures 4.8 (a) and (b) show a query and a schema. The trawverse
starts from the root node in Figure 4.8 (c) and finds its degton node$v. The
rule applier operates orfa/*, namely,/a/(c|d) according to the type inference.
An ending marl/a/e is found. Next, the traverser navigates into the subtre&ebo

at $v which has two type nodesandd. With respect t&v of typec (resp. of type

d), an ending mark, i.e., the second occurrencégtofresp. the first occurrence of
/b), is found for$v /b. Filtering of any binding ofv will not be propagated up to
the root. This is because even a bindingsofof typec does not contain element

b that satisfiegext() = “001”, another binding of $v of typed may still contain

suchb.

a
for $v in /a/*, <IELEMENT a (c?, d?, e)> s AN
Where Sulbltext() = “001" <IELEMENT ¢ (b, b, ..)>» (_* > G d
return $v <IELEMENTd (b, ...)> o b»’
(a) Original query (b) Schema (c) Query Tree

Figure 4.8: Traverser on Context Node with Multiple Types

In Figure 4.4.3applyRulealgorithm operates on a destination node with re-
spect to its context node of typa. Following Observation 2, it first checks
whether ending marks for the pattern identifieddayt will always be redundant
(lines 2 - 9). If not,localApplyRulealgorithm is applied orlest. localApplyRule
follows Observation 1, that is, if a surely-working endingnkis found, we termi-
nate the rule application.

In localApplyRulen Figure 4.4.3, the Occurrence, Exclusive and Order Rules

are applied in turn odest. The ending marks will then be found in the order they

4.4. STREAM-SPECIFIC XML SQO

193

Algorithm 11 applyRuleflest, tn, atn)

Input: dest - a destination node;

tn - a type node of the context node dst;
atn - a type node of an ancestor nodedekt

Output: a set of event-condition-actions

Setecas;

2: T =type nodes oflest that are descendants #of

11:
12:
13:

© 0N O

find ¢’ where
(i) t'€T andt’ occurs after all other types ifi
(i) maxOccur(t',tn) =1
if ¢’ existsthen
for each destination nodé:st’ of dest do
applyRulefest’, t', atn);
end for
if everydest’ has a surely-working ending maitken
return an empty set;
end if
end if
ecas = ecas U localApplyRulefest, tn, atn).
returnecas.

Algorithm 12 localApplyRule(est, tn, atn)

Input and Output: same as applyRule algorithm

Setecas;
ecas = ecas U localApplyOneRuleQccurrenceRule, dest, tn, atn);
if there is no surely-working ending maitken

ecas = ecas U localApplyOneRulefzclusive Rule, dest, tn, atn);
end if
if there is no surely-working ending mattken

ecas = ecas U localApplyOneRuleQrder Rule, dest, tn, atn).

07 returnecas.
end if

4.5. EXECUTION OF OPTIMIZED QUERIES 194

Algorithm 13 localApplyOneRulef, dest, tn, atn)
Input: » - an SQO Rulegest, tn, atn - same as those in applyRule
Output: a set of event-condition-actions

1: Setecas;
2: if precondition check odest passeshen
3: while more ending mark is foundo

4: find the next earliest ending markfor dest within dest’s context node
of typetn;
5: if postcondition check odest passeshen
6: ecas = ecas U (4, n, atn).
7 end if
8: if A is surely-workingthen
9 break;
10: end if
11: end while
12: end if

13: return ecas.

appear in the stream. Following Observation 1, if a suretykimg ending mark is

found, we terminate the rule application.

4.5 Execution of Optimized Queries

We have incorporated the proposed SQO techniquesRatndrop We describe
(1) how to encode the event-condition-actions derived ictiSe 4.4 in the query
plans and (2) how to execute such query plans. The descrisbdigues for opti-
mized execution are general to any system that wants to dipplgtream-specific

XML SQO in Section 4.4.

4.5. EXECUTION OF OPTIMIZED QUERIES 195

4.5.1 Encoding Event-Condition-Actions

We use our running example to illustrate how the event-cmdactions derived
by the rule application algorithm are encoded in an Rainghiep. The top part
in Figure 4.9 shows the plan for the XQuery in Figure 4.2 (ar €ase of illus-
tration, each operator is annotated with an identifier. karmgle, the inner FWR
expression in Figure 4.2 (a) is modeled as the subplan witlerbox in Figure
4.9. The patternsdBitern and $c//keyword are located byTokenNavoperators
4 and 8 respectivelyitermn and keyword elements are extracted by operators 7
and 11. Finally, antemis coupled with th&keywordelements located within it by
Structural Joing,.

The bottom of Figure 4.9 also depicts the automaton for logahe patterns.
The automaton has encoded three event-condition-actieriged in Section 5.3.
Compared to the original automaton in Figure 4.5, new stadge been added for
the newly introduced patterns, e.g., state 13%fofsameAddr (see Example 18).
The property below must hold in the automata in order for thenecondition-

actions to work correctly.

Property 3 Supposén andtn’ are type nodes dfv and$v’ ($v' = $v/p) respec-
tively. A set of automata stateswill be activated by bindings dfv’ of typetn’
within a binding of$v of typetn. We say the pairt(:, tn’) is mapped taS. In the
query tree, if for any two pairs of type nodes which are magpesi andS’, S N

S’ = (), the “conflict-free” property holds in the automaton.

Figure 4.10 shows two alternative automata constructedhfoiquery tree in
Figure 4.8. Both the type node paiks §) and ¢, b) in Figure 4.8 are mapped to
state 4 in Figure 4.10 (a). The automaton in Figure 4.10 (a¥ dwt satisfy the

4.5. EXECUTION OF OPTIMIZED QUERIES 196

“conflict-free” property and is incorrect. This is becaudeenw state 4 is activated,
we cannot infer whether the binding 8t is type c or d. We however need to
know this to decide which ending mark to use for/b. Figure 4.8 (b) shows a
correct automaton where the above type node pairs are mapptates 4 and 5
respectively.

To encode the event-condition-actions, i.e., (ending nfarkp, type nodeutn
of an ancestor context node. of $v), we first find a set of stateS that will be
activated or deactivated by the ending mark. For each staieS, we associate
a construct 4, tagType, checkOp, p) with it, wherei is the occurrence number
for the ending mark found by the Occurrence RulgjT'ype is eitherstartTagor
endTag checkOp is the operator which holds the results$ef/p; p is a state that
will be activated by bindings dfu of typeatn.

For example, in Figure 4.9, state 4 is associated witls{d;tTag, Operator
15, state 3). It indicates when a start tagcategory is encountered, operator
15 is checked. If operator 15 does not have any output, ice$crthat satisfies
$cllkeyword = “auto” exists, computations that would occur after state &cti-
vated are all suspended. The locatingsefler within the auctionis not affected
due to the separation of state 2 from state 3. This captussgubry semantics in
Figure 4.2. A binding offa may still appear in the final results even if it does not

contain any qualifying bindings dfc.

4.5.2 Execution Strategy

We now present how a plan encoding event-condition-actioesecuted. A con-
struct ¢, tagType, checkOp, p) associated with state indicates wherp is ac-

tivated (whentagType is start tag) or deactivated (whengType is end tag):

4.5. EXECUTION OF OPTIMIZED QUERIES 197

times, ifcheckOp does not have any output, we suspend any computationsdelate
to the states aftes. p andq are activated by bindings & and $v respectively
where$u is an ancestor context variable%f. Due to space limitations, we do not
discuss the event detection and condition checking. Wesfacutaking actions.
This process consists of three steps, nanm@ynputation suspensiptemporary
data cleanupandrecovery preparation

In the first step, all computations within the current birdof $« identified by
p are suspended. In a naive implementation, we suspend stelieding (1)p, (2)
any states reachable viatransitions fromp, and (3) intermediate states between
p andg. For example, to take action for the construct éadTag operator 12,
state 2) associated with state 12 in Figure 4.9, we need tovene transitions
from ¢2, ¢3 as well agg9, ¢11 andq12. We need not suspend states 4 to 8 since
suspension of state 3 has ensured no transition would esdrfiim them. In
contrast, the intermediate states betwg®andq12 such ag9, even thougly2 has
been suspended, still need to be suspended. Otherwisesegsint token after
the ending mark (i.e., a/phone>) such as<biliT o> still triggers the transition
from state 9 to state 10.

We actually can reduce the number of states to be suspendesiteaeduce
the suspension overhead. For example, in an optimized mgsi@ation,g11 and
¢12 do not have to be suspended. No transition would ever start them after
the ending mark anyway.

In the second step, the temporary results originating fieencurrent binding
of $u are cleaned. For example, in a naive implementation, wendlea output
buffers of operators 10 and 15 in casaegoryand qualifieditem (i.e., satisfy-

ing $c/keyword= “auto”) have been located within the curreniction However,

4.6. EXPERIMENTATION 198

similar to the optimization in the first step, we actually yomieed to clean the
buffers which may have contained outputs generated wiltisr$t, before the end-
ing mark. Therefore in the above example, we need not clegroatiput buffers,
sinceitem andcategoryelements occur only after the ending mark withinzare-
tion (refer to Figure 4.3).

Third, since the suspended states need to be resumed latprepare for the
recovery. For example, when states 2, 3 and 9 are suspengletrainsitions from
them are removed, we set a “suspended” flag for these statebaskup their
transitions. Later, when a start tagaiction(resp.sellen activates states 2 and 3
(resp.seller), the “suspended” flag triggers the backup transitions teebevered.

Computations start again.

4.6 Experimentation

We implemented the SQO techniquesRaindrop[39, 38] using Java 1.4. Exper-
iments are run on two Pentium Il 800 Mhz machines with 768Mmagy. One
machine sends the XML stream to the second machine, i.equitiy engine. We
implemented an XML parser which, assuming the incoming aateell-formed,
does not check the well-formedness. The parsing time in Heeatl execution
time thus is negligible. Also, we do not include the time gpem reading the
stream from the sockets in the query evaluation time so asotate the network

cost.

4.6. EXPERIMENTATION 199

4.6.1 Practicability of SQO Techniques

We now report the performance of our SQO techniques on a etaset from the
Protein Sequence Database (PSD) [1]. From its DTD, we canhs¢dhe data
can be highly irregular. This dataset contains a sequeneestéinEntryelements.
A ProteinEntryelement has 13 subelements: 8 of them can be optional; and 4 of
the remaining 5 required subelements can again have opfiohalements. Many
real-life queries access the optional subelements, aicgptd a biologist we have
consulted.

We design a set of queries in the format in Figure 4.11. Thatmoisp,1, ...,
D21, -1 P31, ... StANd for XPath expressions ands;, valss, ... stand for constant

strings. Table 4.1 shows the features of each query.

Query | # of Filters in | # of Paths in “re-| # of Selection
“for” clause turn” clause Predicates
Q1 1 1 0
Q2 1 5 0
Q3 6 5 0
Q4 1 8 0
Qs 1 8 0
Qs 0 8 10

Table 4.1: Query Characteristics

Figure 4.12 shows 5 bars for each query: one for the origitzad; ghe other
three for plans applied on by the Occurrence, Exclusive deORule respectively;
and the fifth for the plan applied on by all three rules.

Q1, Q2 and@3 are common in that no ending marks can be found by the Oc-
currence or Exclusive Rule. Therefore, the plans after theu@ence or Exclusive
Rule is applied are the same as the original plan. The ondy filtQ); has a selec-

tivity of 23%. Order Rule reduces the original executiondiby 13%.Q, has more

4.6. EXPERIMENTATION 200

paths within the “return” clause so that more savings candbeegl with early fil-
tering. Order Rule reduces the original execution time I3 363 has more filters
than@; and@-. Order Rule reduces the execution time by 40%. The perfoceman
gain difference betwee, and (s is not major because the additional filters in
Q3 are not very selective.

Both Q4 and@Qs have a pattern for which Exclusive rule can find ending marks.
The selectivities of the patterns are 78% and 2% respegtier both queries, the
plan optimized with the Exclusive Rule is better than thenmatimized with the
Order Rule because Exclusive Rule detects the failure opdtiern before Order
Rule. The performance gain {5 is more obvious due to the low selectivity of the
pattern.

Qs contains 10 predicates. The Occurrence Rule is most uséfeshthe oc-
currence number of elements is deterministic (i.e., mihimsaurrence = maximal
occurrence). If an element occurs less than the maximalmawe, the Order Rule
helps to catch the failure of the predicates. When thesetulgs are combined, the

performance is the best.

4.6.2 Synergic Effect of Combining Type Inference and Strea SQO

Figure 4.13 shows the synergic effect of combining typergriee and stream SQO.
We useQ)s, @5 andQg, each benefiting most from Order, Exclusive and Occur-
rence Rule respectively, for the study. For each qdgrwe pick a path expression
$vini/nsl...In; that has the lowest selectivity. In the first testing, we rhothe
expression t&v/*/*/...In; and get a query)’. In the second testing, we modify the
expression t&uv//n; and get a query)”’. We then run@’ and Q" without SQO,

Q' and@” with SQO,Q with type inference and) with both type inference and

4.6. EXPERIMENTATION 201

SQO.

In QQ2, the path before modification has a length of 2. The plan withidkes
22% more time to finish than the plan with “*” because the prasiplan has to
perform automata transitions for every element at any deftte plans after SQO
is applied on all the path expressions except the modifiediang)’ andQ’ with
SQO) show obvious improvement while the plan combining ligge inference
and SQO boosts even more performance gain.

In @5, the path modified has a length of 5. Since the average deRISDfis
5.1, almost every element leads to automata transitionstefdre the plan with “*”
costs almost the same as the plan with “//”. Only one pathesgion inQ5 offers
SQO opportunity. Therefore after we modify the expressmn$SQO optimization
is possible ’ andQ” are the same ag). The plan with both type inference and
SQO cuts down 50% of the execution time of the plan with tyferance.

Finally, in g, the expression that has the lowest selectivity occurerd#ter
in its context node. Early filtering leads to minor improvermeThe plan com-
bining both type inference and SQO has performance sinuléindse with SQO

applied on the other path expressions.

4.6.3 Necessity of “Usefulness” Criteria

The data sets used in the rest of the paper are generated bihrg&herator
ToXGene [24]. They conform to the schema used in XMark [7]. e illustrate
the necessity of introducing only ending marks that satik#y criteria in Figure
4.7.

For the query in Figure 4.2 (a), we turn off the criteria chegkand adopt all

ending marks found for the required patterns (we do not adioding marks for op-

4.6. EXPERIMENTATION 202

tional patterns since they lead to incorrect results). Agn®d ending marks, only
one ending mark for the patte$ir/billTo satisfies the criteria. The result is shown
in Figure 4.14. When the selectivity g¢biliTo is low, the only necessary ending
mark of /biliT o often suspends transitions, including those activatiegitimeces-
sary ending marks. However, as the selectivity@iiTo reaches above 30%, the
overhead of unnecessary ending marks makes the plan pegl@mworse than

the original plan.

4.6.4 Factors on Performance Gains

How useful an ending mark of a pattepris depends on two factors: how oftgn
occurs within its context node, i.e., the selectivityppind how much computation
can be saved when an eatrly filtering occurs, i.e., the unit. gdle now study the
influence of these factors on the effectiveness of the SQanigaes.

We design three sets of queries. Each query set is meant theeffectiveness
of SQO on saving certain types of computations, i.e., pathtion, data buffering,
or selection evaluation. Each query set is composed of thueees that differ
in the unit saving. For example, in the query set for testimg ¢aving on path
recognition, the evaluation of 1, 9 and 18 path expressiansbe saved when an
early filtering occurs in queries 1, 2 and 3 respectively. tmeo words, minor,
medium and major gains can happen in the three queries taghec

Figures 16, 17 and 18 report the results on the three quesy beteach such
figure, (), (b) and (c) correspond to queries with minor, inm&dand major gains
respectively while (d) gives a summary of the ratio of theceti®n time of the
plan without SQO to that of the plan with SQO. The higher th®rns, the more

effective the SQO is. We can see that the lower the selectifithe pattern with

4.6. EXPERIMENTATION 203

ending marks, or the bigger the unit saving is, the more @ffethe SQO is. In the
best case of three types of queries (i.e., selectivity is @#umit gain is major),
plans optimized with SQO reduce the execution time of oabglan by 79%,
44% and 86% respectively. The optimization percentage reavbn larger when
SQO is applied on a query with larger unit gain, say, SQO halmsding the

computation of buffering, path recognition and selectieal@ation all together.

4.6.5 Overhead of SQO

We now test the overhead of our SQO techniques. For a SQOiteehwe design
a query and a schema so that the SQO technique can be appledatternp in
the query. This query is run on a data set in which the selgctdf p is 100%.
In other words, none of the ending marksyoWvill ever lead to any computation
savings. The performance difference between such a plathamatiginal plan is
then the overhead of SQO in worst case.

For testing the overhead of the SQO technique using Ocaereme, we
run the query on three data sets. Each data set is composedenfuance of
openauctionelement. The ending mark will occur in eabldder subelement of
anopenauctionelement. The three datasets differ in the average numbmdaoér
subelements, i.e., 1, 10 and 20, ingpenauction Therefore, ending marks occur
least frequently in data set 1 and most frequently in dat&.seigure 4.18 reports
the results on these data sets. The ratio of the optimizedvath the original plan
is 114%, 103% and 112% respectively.

The overhead of SQO technique using Exclusive Rule is regdrt Figure
4.19. Note when the Occurrence Rule is applied on a pattéempst derive one

ending mark since the maximal occurrence of a pattern isugni¢ynlike the Oc-

4.6. EXPERIMENTATION 204

currence Rule, the Exclusive Rule, when applied a patteay, lead to multiple
ending marks (refer to Example 18). We design three schentenWised to opti-
mize a patterm in the query, they lead to 1, 10, 20 ending marksgfoespectively.
As explained in Example 18, different number of ending mdickshe same pat-
tern should not make much difference in the performancejnaisg a hash table
lookup time is assumed not to be affected by the number ofesnim the hash
table. Figure 18 confirms that plan with 1, 10, or 20 endingk®aerform very
similarly on all three data sets. Overall, the ratio of thanpbptimized with SQO
with the original plan is around 113%, 101% and 105% on thede dgets.

Order Rule may introduce multiple ending marks for one jpatie the query.
For example, if we have a DTEa (b7, ¢?, d?)>, bothc andd can serve as the
ending mark ob within a. If all b, c andd always appear within am, the existence
of b will be checked twice (equvalent to the number of its endirgrks). The
overhead of the plan with a different number of ending markditierent data sets
is reported in Figure 4.20. We can see that when ending mas drequently
(refer to the third group of bars), the more ending marks atreduced, the more
expensive the query is to evaluate. However when endingsyfegluently occur,
the ratio of the execution time of the plan with 20 ending rsatik that of the

original plan is 108%, which indicates the overhead is stilall.

4.6.6 Summary of Experiments

Our experiments on real data reveal that our SQO is pradtidalo senses. First,
the constraints the techniques rely on do occur frequerlgcond, the savings
brought by the techniques can be significant.

Our experiments on synthetic data focus on three aspeatst, We show the

4.6. EXPERIMENTATION 205

necessity to follow the SQO design guidelines. Second, wdysthe impact of
various factors on the effectiveness of our techniques.sd i@ctors include the
kind of computation (i.e., pattern location, buffering,sgiection evaluation), the
unit gain, and the frequency of the occurrence of optimiratiThird, we test the

overhead of the SQO techniques which turns out to be rather lo

4.6. EXPERIMENTATION 206

Tagger
“auction”’, $f, $c
16
Structural-LeftOuterJoin
14 /$a L
StructuralJoin Structuraldoin - 42
$b $c
2 / T
Sel Sel
$d="508-123-4567" $g="quto”
10 i
9 ExtraétNest = ExtractNest ExtractNest
$b, $d $a, $f $c, $g
5 6 z 8
TokenNav TokenNav 3 ExtractUnnest TokenNav
$b, /*/phone $b, billTo 1o KenNay $a, $c $c, /lkeyword
->$d ->$e > $g
$a, /category
2 'T\oken av > $f 4 'I"%nNav
$a, /seller \ $a, /item
-> $b 1 ->$c
1\ <+ /
TokenNav
$s, /auctions/auction
->%$a
StreamSource
$s
(1, startTag, Op15, g3) emph

1, startTag, null .q2

keyword

(2, endTag, Op12, g2)

(a) Incorrect Automaton (b) Correct Automaton

Figure 4.10: “Conflict-free” Property of Automata

4.6. EXPERIMENTATION 207

for $a in /ProteinDatabaséProteinEntnfp11][pi2]...
where$a/p21 = valz1 and$alpae = valas ...
return

<result> $alps1, $alpsz, ..., </result>

Figure 4.11: Query Template

180000
/g 160000 Boriginal Plan
p 140000 B 2pplying
o 120000 Occurrence Rule
g 100000 Oapplying Exclusive
' 80000+ Rule
é 60000+ OApplying Order Rul
& 40000
20000+ B 2pplying All Three
0 Rules

Q1 Q2

Figure 4.12: Effect of SQO on Queries Using a 800M PSD Dataset

PI ith "*"
200000 mpien
180000 -
g 160000 | W Plan with "//
o 140000 + OPlan with "*" and SQO
E 120000 -
s 100000 - OPlan with "//" and SQO
£ 80000
§ 60000 W Plan with Type Inference
w 40000 -
20000 - mEPlan with Type Inference
0 and SQO

Figure 4.13: Effect of Combining Type Inference and SQO o6@GMPSD Dataset

4.6. EXPERIMENTATION

208

25000 —— —* Plan without Order SQO
—_ —=— Plan with order SQO
1)
3 20000 T 4 pianwith Arbitrary SQO (Criteria not
[} Considered)
£ 15000 —
= /
S — —y—"
< 10000
: T
2
4 5000 p——
0 t t t t
0% 25% 50% 75% 100%
Pattern Selectivity

Figure 4.14: Comparing Plans Only Adopting Necessary Enarks Satisfying
with Plans Adopting All Ending Marks

4000
3000
2000
1000

Execution Time (ms)

10000
8000
6000
4000
2000

Execution Time (ms)

Query with Minor Gain

——Plan

without

SQO

—a—Plan with

SQO

25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

@

Query with Major Gain

_u —*—Plan withot

SQO

—s—Plan with

Execution Time Ratio:

SQO

Selectivity of the Pattern with Ending Marks

©

Execution Time (ms)

without SQO / with SQO

8000
6000
4000
2000

Query with Medium Gain

. —— . — o
~— ——
r/./.,

! ! ! !
T T T T
0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

—e—Plan
without
SQO

—s—Plan with
SQO

@ Minor Unit
Gain

@ Medium

Unit Gain

Gain

(b)
5
. [
3
2 -
14
OMajor Unit
0 - T T T T
0% 25% 50% 75% 100%
Selectivity of the Pattern with Ending Marks

()

Figure 4.15: Effect of Pattern Selectivity/Unit Gain on BavPath Location Cost

4.6. EXPERIMENTATION

209

(ms)

Execution Time

(ms)

Execution Time

2500
2000
1500
1000

500

5000
4000
3000
2000
1000

Query with Minor Gain

—e—Plan without

- . ——— — SQO

—s—Plan with

| | ! ! SQO
t t t
0% 25% 50% 75% 100%
Selectivity of the Pattern with Ending Marks

Query with Major Gain

—e—Plan
without
e . — 3 SQ0
L —s—Plan with
SQO
1 1 1 1
T T T T
0 0.25 0.5 0.75 1

Selectivity of the Pattern with Ending Marks

©

(ms)

Execution Time

Execution Time Ratio:
without SQO / with SQO

4000
3000
2000
1000

Query with Medium Gain

——Plan withot

[
—
—s—Plan with
: : : : S00
0% 25% 50% 753 100%

Selectivity of the Pattern with Ending Marks

(b)
2
EMinor Unit

.5 Gain

1 B Medium
Unit Gain

5

0 OMajor Unit
Gain

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

(d)

Figure 4.16: Effect of Pattern Selectivity/Unit Gain on BavBuffering Cost

4.6. EXPERIMENTATION

210

Query with Minor Gain

9
£
5000
] - o N
= 4000 ‘7=l—
3000
5 /./
. 2000
N Bt
8 1000
y y y y
ﬁﬁ 0 t t t T
0% 25% 50% 75% 100%
Selectivity of the Pattern with Ending Marks
G
= Query with Major Gain
E
20000
o
E 15000
P - + —
£ 10000 _—
i "
5000
3 —
2 0 ' ' ' '
% t t t

0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

©

—e—Plan
without
SQO

—sa—Plan with
SQO

——Plan
without
SQO

—a—Plan with
SQ0

(ms)

Execution Time

Plan without SQO/Plan with

Query with Medium Gain

10000
o——*— @ —*+— o —e—Plan
8000 .
/ without
6000 /./ SQO
4000
/ —s—Plan with
2000 - 500
0 + + + +
0% 25% 50% 75% 100%
Selectivity of the Pattern with Ending Marks
(b)
8 .
EMinor Unit
6 r Gain
8 4 B Medium
@ Unit Gain
2 -
OMajor Unit
0 Gain
0% 25% 50% 75% 100%

Selectivity of the Pattern with Ending Marks

(d)

Figure 4.17: Effect of Pattern Selectivity/Unit Gain on BayvSelection Evaluation

Cost

5000

£ 4000

Qo
£ 3000

=N
o o
S o
S o

Execution Ti

=)
L

least

medium

Frequency of Mattern with Ending Mark

most

M Plan without
SQO

W Plan with 1
Pattern/1
Ending Mark

Figure 4.18: Overhead of Applying Occurrence Rule

4.6. EXPERIMENTATION

211

7000
6000
2
ésooo
i 4000
o
23000
3
o
22000
w

1000

@ Plan without
SQO

— W Plan with 1
Pattern/1Endin
g Mark

[OPlanwith 1
Pattern/10
Ending Marks
| OPlanwith 1
Pattern/20

least medium most

Frequency of Pattern with Ending Marks

i Ending Marks

Figure 4.19: Overhead of Applying Exclusive Rule

| T ‘

least
Frequency of Pattern with Ending Marks

medium most

M Plan without
SQO

W Plan with 1
Pattern/1 Ending
Mark

OPlan with 1
Pattern/10
Ending Marks

OPlan with 1
Pattern/20
Ending Marks

Figure 4.20: Overhead of Applying Order Rule in Worst Case

212

Chapter 5

Related Work

5.1 Related Work on XML Query Processing Paradigms

Stream processing has attracted a great deal of attentitime inetworking and
mobile-computing communities. Typical stream appligagianclude networking
traffic monitoring, sensor network management and web iimgcnd personal-
ization. Most projects likd-jord [55], Aurora [20], Cougar[28], CAPE[67] and

STREAM14] address general issues of querying data streams, ampantuple-

like data model.

Research is also active in the field of querying XML streamagliraCQ [43],
while using XML query syntax, mainly addresses on SQL-likefing on tuple-
based inputs. It does not address pattern retrieval reissegs. Moreover, Nia-
garaCQ [43] focuses on the optimization of multiple XML gesrby sharing their
common expressions, rather than the optimization of orgdesiuery.

Several XML gquery engines [18, 25, 30, 42, 52, 65] focus olintiping the
pattern retrieval in XML queries. XSM [52] and XSQ [65] useettransducer

5.1. RELATED WORK ON XML QUERY PROCESSING PARADIGMS 213

models for pattern retrieval. XSM and XSQ support XQuery Xfthth respec-
tively. Basically, they define a template for each compomeiQuery or XPath,

and then compile the query into a network of such instardisgenplates. Though
XSM supports queries with more expressive power than XSQ@,d8Q provides
more efficient memory management than XSM by promptly cleguip interme-

diate buffers when they are no longer needed.

Lazy PDA [34] and XPush [35] are based on deterministic aatam They
handle a limited subset of XML query language features. Bbthem only return
a boolean value indicating whether an XPath expressioruated to non-empty
results. Lazy PDA stands fdazy deterministic pushdown automat is called
“lazy” because it computes the automata states at run-torieat only the states
that would actually be transitioned to are computed. Thidgcceffectively reduce
the exponential blow-up of the number of states comparedhenwhe “eager”
PDA would be computed at compile time. Lazy PDA supports ofihath expres-
sions without filters (i.e., linear patterns) while XPustoak XPath expressions
to have filters (i.e., tree patterns). XPush extends Lazy BipAaving additional
constructs for supporting tree patterns and predicateiatrah.

The above pure automaton approaches [52, 65, 34, 35] usestttkeoughout
the query processing. They do not support converting toke#insXML element
nodes. Therefore they are only able to express a Raindray plan that retrieves
all patterns on tokens in their constructs, but unable toesgpa Raindrop query
plan that retrieves some patterns on the XML element nodes.

YFilter [80, 30] and Tukwila [42] are closest to our work. Thmodel the
whole automaton processing as one operator with fixed aterénd coarse gran-

ularity. As mentioned in Section 1.2.2, we call their apptus doosely-coupled

5.1. RELATED WORK ON XML QUERY PROCESSING PARADIGMS 214

automaton and algebra paradigmOur work instead uniformly integrates the
token-based and tuple-based computations and thus ratoifaks query rewrite
optimization opportunities. Meanwhile, our physical agiers are efficiently im-
plemented by taking advantage of the automata properties.

Another camp of research [32, 33] builds systems using SAXless. They
define a set of handlers, each for handling certain computasuch as evaluating
a navigation step, performing a selection and constru@imglement. These han-
dlers are nested so that one handler can pass an eventve®teanother handler.
Again, this is a new methodology not in synch with well-knoalgebraic opti-
mization techniques. Existing algebra optimization téghes cannot be directly
adopted.

The loosely-coupled automaton and algebra paradigm an&Ah€ handler
based paradigm support both tokens and XML element nodd®induery pro-
cessing. Therefore they are able to express a Raindrop [pdndtrieves some
patterns on the XML element nodes in their constructs. Heweahe way they
model a query plan is not suitable for exploring the automdeor-out optimiza-
tion opportunities. The loosely-coupled paradigm doegpnotide rewrite rules to
pull out pattern retrieval from the operator that modelsahtomaton processing.
As for the SAX handler based paradigm, it is not clear how fayapost estimate
and search algorithm for optimization.

BEA/XQRL [25] bears some resemblance to an XQuery streamessing
system. However, BEA/XQRL actually processes stored XMladdhe data are
stored as a sequence of tokens. XQuery is compiled into sonet expressions.
An expression is equivalent in functionality with an alggbroperator. There are

two major differences between BEA/XQRL and Raindrop. FirsBEA/XQRL,

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 215

all the internal data passed among expressions are alwiggs streams, in con-
trast to both tokens and tuples Raindrop Second, the tokens in BEA/XQRL
and the tokens in Raindrop are not equivalent concepts msterf their accessi-
bility. In BEA/XQRL, the token stream is stored (either orsldior in memory)
so that the same data can be accessed by expressions ntirttgge In Raindrop,
tokens arrive on-the-fly. They cannot be accessed more thee unless they are
buffered, as explicitly specified by tHextract operators. The pull-based model
in BEA/XQRL, which assumes a look back on previous tokensossible, does
not work here. It has to work with other execution models itr@ssn context. As
illustrated in Section 2.6, a data driven model (i.e., thetpbased model) is a must

for buffering some data before a pull-based model can opembuffered data.

5.2 Related Work on Run-time Plan Optimization

5.2.1 Cost-based Optimization

System R [63] first introduced cost-based optimization fdational databases.
Choosing a good join order [70] is the major focus of earlyt-d@sed optimization.
Later, cost-based optimization is extended to cover aleetspof a query plan,
including ordering expensive selection predicates [45%, pflacement of group by
[70] etc.

Cost-based optimization has also been actively studiedtadirc XML pro-
cessing. Lorel [57], a static XML database engine, adopgtlcased optimization
techniques. Lorel proposes a set of indexes on XML. For el@ngabel in-
dexsupports finding all element nodes with a certain name, fingling all seller

elements. Lorel physical operators provide different waydinding a path in a

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 216

bottom-up, top-down or hybrid manner in the XML tree. Forraxde, given a path
seller [phone /primary, either we find allseller elements first using the label in-
dexes (top-down), or apprimary element first (bottom-up) or alhone element
first (hybrid). Lorel provides a cost model and a plan enutimraalgorithm to
choose among different path navigation alternatives. Ta@mnsearch space prun-
ing techniques Lorel uses are heuristics. For example,csgpihere are two path
expressions starting from the same context variable, ®:gn1 and$u/p2, Lorel
does not attempt to reorder them.

Cost-based optimization in Timber [82], another static XbHtabase engine,
focuses on choosing an optimal order for structural joingnbEr's search algo-
rithm is based on the traditional dynamic programming atgor for join ordering
[63, 27]. The basic idea of dynamic programming for join og is as follows.
First, all access paths to every table involved in the josngenerated. Second, all
partial plans with two-way joins are generated. Partiahplavith three-way joins
are next generated from the two-way joins and so on. Suppdbe itwo-way join
generating phase, we have found out that join order of (tAblable B) (i.e., A
is at the left of the join while B is at the right of the join) igtber than the join
order of (table B, table A), a three-way join in the order aib{e B, table A, any
other table) will not be generated since it must be worse tharjoin in the order
of (table A, table B, any other table).

The contribution of Timber's search algorithm is that ie#rito eliminate those
partial query plans that are guaranteed to lead to subojivhaions. Timber calls
it dynamic programming with partial plan pruning@imber can start constructing
n + 1-way structural joins before it finishes constructingrallvay structural joins.

It ranks all partial plans. It then constructs the next plaom the partial plans

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 217

in the order of their ranks. The purpose of ranking is to eeatmplete plans
that are possibly optimal as early as possible. Therefone partial plan that has
already costed more than a best complete plan found so fdsecarcluded. This
is essentially a classical A* search strategy [61]. An int@atr property that has
to hold for this pruning work is that the cost of a partial plarindependent of
how it is joined with the rest of the relations (we say a pagian has independent
cost). In other words, when a partial plan is expanded to apeatial plan, i.e,
(i-way structural joins expanded ia- 1-way structural joins), the new partial plan
must cost more than the old partial plan. This is caltibonomously increasing
costproperty in A* search. If this property does not hold, therng can exclude
partial plans that will lead to optimum.

The above idea may seem to bear some resemblance to ourmrdbieartial
plan in our problem can be one in which the token-or-nodeesgtl modes of
a subset of pattern retrieval have been determined. Cansmeeatlude certain
partial plans if they cost worse than a known complete plah® dnswer is no.
This is because the pattern retrieval in the partial plan matybe independent
from the pattern retrieval whose modes have not been detedjet. That is to
say, the cost of the partial plan may still decrease. Thezefopartial plan that is
worse than a currently best complete plan is still be posdiblbe expanded to a
new better complete plan.

In summary, dynamic programming with partial plan pruniagot very suit-
able in our scenario for two reasons. First, it is enumegatmich takes too long
for run-time optimization. Second, the property of autooaosly increasing cost
does not necessarily hold here so that partial plan pruniag mot always be ap-

plicable.

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 218

5.2.2 XML Statistics Collection

Statistics are indispensable information for cost-bagatdhnization. Many stud-
ies for XML statistics focus on XML'’s nested structures. Ezgample, Lorel [57]
maintains statistics of all paths of length uprtowherem is a tunable parameter.
They use these statistics to infer selectivity of longehpatAboulnaga [2] pro-
poses techniques that can more aggressively summarizathe lpy pruning and
aggregation to reduce the size of statistics. Their teclmsglo not maintain cor-
relations between paths. Such limitations are addressg#]rwhich maintains
statistics for tree pattern query. These techniques alliregcanning the whole
data.

Another kind of solution for XML statistics collection is tse query feedback
[51, 50]. The idea is to issue a query workload on the XML dathlaarn informa-
tion about the XML structure and PCDATA values from the quiergdback (i.e.,
query results). Such solution is especially suited for tenario where XML data
is either inaccessible or too large to be completely scanned

As we have mentioned in Section 3.2.5, these techniquesesteshitable in
two scenarios. The first scenario is that the stream queryners to process a
large number of queries so that it cannot afford to colleet#r statistics for each
guery. Summary techniques are needed for the requiremestatdbility. The
second scenario is that user queries can be added aftere¢aesstarts to arrive.
We should be able to summarize the statistics as the streasnsauthat once a
new query is added, we can immediately estimate its plan bogtis way we can

better achieve quick response time for the newly added query

5.2. RELATED WORK ON RUN-TIME PLAN OPTIMIZATION 219

5.2.3 Run-time Re-optimization

Due to the hardware and workload complexity, data complexiid user interface
complexity [13], a new query paradignadaptive query processingmerges to
tackle these problems. Most of the work is in the relatiormadtext. Eddy[13] is
a representative work of this query paradigm. In this pamadithe query plan is
no longer fixed. Instead, each tuple, driven by the procgssost/selectivity of
the operators and tuple arrival rate, can go through opmratoa flexible order,
controlled by a special scheduling operator cabeldy In other words, the query
plan is reformulated on a tuple-by-tuple basis. The refdatn is based oiot-
tery scheduling Each time an operator is given an input tuple, it is credded
“ticket”. The eddyoperator holds a lottery for each tuple. An operator's ckanc
of winning the lottery (i.e., being assigned the tuple tojresponds to the count
of ticket the operator holds. This lottery scheduling schemables a lightweight
plan formulation compared to other work on runtime plan mafiglation [48].
Eddy’s plan reformulation is limited to changing the ordéoperators, such
as changing to execute a join operatbbefore another join operatd? if A turns
out to have less selectivity thab. It is not clear how it handles the other aspects
of plan re-optimization. For example, suppose there areatieonative plans 1 and
2, composed of operator sgipl, op2, op5} and{op3, op4, op5} respectively. The
corresponding Eddy module is shown in Figure 5.1. The twaiggoof operators
within the dashed lines are exclusive, that is, if a tupleoiged to one group, it
cannot be routed to the other group later on. Now none of Eddyiting schemes
is applicable in this situation. When the plan re-optimatis limited to plan

reordering, a simple greedy algorithm can be used, i.einfyitie “best-behaving”

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 220

Figure 5.1: Operator Re-ordering irddy

operator and routing tuples to it as many as possible. Hawexeen two plans
share different set of operators, an overall plan perfonmaaneasurement must be
adopted rather than a local operator performance comparisw example, even if
opl is the most efficient among the operators, the overall plarag still perform

better than plan 1.

5.3 Related Work on Schema-based Optimization

Semantic query optimization has been long studied in dedufi4], relational
[66] and object databases [68, 44]. Due to the flat data madelsductive and
relational databases, their SQO techniques are usuallyplimizing the filtering
on flat values. The major techniques inclyden elimination join introduction
predicate elimination predicate introductionand detection of the empty answer
set These techniques can be similarly applied to the XML donagitong as the
XML counterpart of such schema knowledge is offered. Formgxte, if a key and
foreign key constraint between two tables is provided inXML schema, a semi-
join on the two tables (projecting on the table with the fgrekey constraint) can

be eliminated using thpin eliminationtechnique.

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 221

Object data model, though nested, has a rigid structureritrast to the irreg-
ular structures in XML data model. Therefore SQO researabbject databases
has not been motivated to optimize the detection of missattems. The SQO
on nested structure navigation in object databases, suatcass scope reduction
[44], is oriented mainly to the OO-specific class/subclassstraints.

SQO for persistent XML may have some resemblance to thenstspecific
SQO. XQRL [26] stores the XML data as a sequence of tokens. ntiochildren
of a certain type within a context element, the scan on tokansstop early if the
schema tells that no more children are relevant once a chadparticular type is
found. Since the token sequence can be repeatedly acce<3Bd, retrieves the
patterns one by one. The earlier one pattern retrieval stbpsmaller the overall
cost is. However, in the stream context, as shown in SectidrB,lnot all early
detections of failed patterns lead to cost savings. It regumore discretion to
decide whether such detections are worthwhile. MoreoreX@RL, when a pat-
tern is found to fail, the retrieval can simply terminate amdther pattern retrieval
can start. In the stream context, this process is more coaipti. In Example 1,
when asourceis found not to exist, we cannot simply jump to the namttionto
skip the remaining computations in the curraniction We have to suspend the
computations, clean up the intermediate results and reagrappropriate.

YFilter [30] and XSM [52] discuss SQO in the XML stream coritekhey use
schema knowledge to decide whether results of a patterneatgsion-free and
what types of child elements can be encountered respsactidlese in essence
type inference techniques belong to general XML SQO.

In the automata model XSM adopts, the transition lookupedests not imple-

mented as a hash table lookup but as a linear search on abledsansitions of.

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 222

XSM uses schema knowledge to reduce the possible trarssiticorder to reduce
the transition lookup time.For example, to find a path'a, an XSM transducer
state corresponding % will have two transitions with conditions “next token =
<a>" and “next token# <a>" respectively. If it is known from the schema that
a binding of$v can have only: subelements, then the second transition can be
eliminated. Such an optimization is not applicable to oupmaton, since a hash
table lookup cost is not related to the number of entries, (p@ssible transitions)
in the table.

Both AT&T’'s XML stream engine [17] and XPush [35] support been XPath
matching. Their SQO techniques are less complicated tlasttfor supporting
XQueries. The reason has been illustrated in Section 1.8 &dahem consider
one case of using the order constraints, which is a subsatrd8@O techniques,
i.e., the order rule in Section .

The goal of FluXQuery [18] is to minimize the buffer size whiurs is to re-
duce unnecessary computations. These two goals sometomestiand-in-hand:
when we reduce the buffering computation (like we do with patation (1) in
Example 1), we naturally reduce the buffer size. But in matheiocases, our
techniques are complementary. Let us consider a quengéan /news[source]
return <news> {$a/source, $allkeyword} </news>". If given the constraint
that sourcemust occur befor&eyword Flux will immediately output any located
keyword elements, instead of buffering them until the end of tiesvsto en-
sure they are output after aspurce However Flux is unable to detect the non-
existence ofkource and skip the retrieval da//keyword as our techniques do.
A combination of their work and ours can boost the performeasfdboth systems.

Finally, there is another class of XML stream query optirtiaa which as-

5.3. RELATED WORK ON SCHEMA-BASED OPTIMIZATION 223

sumes indices are interleaved with XML streams [34, 5]. Ttheasn index SIX
[34] gives the positions of the beginning and end of each etgnif an element is
found to be irrelevant, the processor can move to its endowitparsing anything
in the middle. XHints [5] extends SIX by supporting more nakti@ information.
How to combine such indices that arrive at run-time and thees@ constraints

available at compile-time is an interesting direction tplexe in the future.

224

Chapter 6

Conclusions and Future

Directions

6.1 Conclusion

Architecture: Raindropaccommodates a token-based automaton paradigm and a
tuple-based algebraic paradigm within one framework. This novel approach
compared to the other approaches in the literature [42, Bdjwtypically model
the two processing paradigms separately and thus optifmere separately as well.
Our approach instead allows the query optimization to béopmed in a uniform
manner over all computations. With all the computationsenrttie same um-
brella of an algebraic framework, we can apply existing lalgie optimization
techniques, such as separation of logical and physicakplgurery rewriting and
costing etc.

Our algebraic framework consists of three abstractionldeviehe highest level

is semantics-focused plan level. General optimizatiohrtepies that are neither

6.1. CONCLUSION 225

specific to stream nor specific to stored data can be applied.n&xt level is the
stream logical plan level. On this level, a set of rewritindes are developed to
switch pattern retrieval into or out of the automaton. Thedst level is the stream
physical plan level. We offer efficient implementations pkcators that take full
advantage of automata properties at the stream physicall |&Ve also provide
multiple models to synchronize the execution of the opesato

Run-time Automaton-in-out Plan Optimization: We provide a unique optimiza-
tion opportunity that is not explored before. Previougétare considers only the
plans in which all pattern retrieval is pushed down into théomaton. Our ex-
perimentations in Section 2.7 however demonstrate thdt plams do not ensure
the optimality. With different queries and data charastars, different automaton
pushdown strategies are needed for generating optimad.plan

To explore this optimization opportunity, we use a costelaapproach. First,
we define a search space. Whether a pattern should be rdtireee out of the
automaton is the core issue in the search space. The sig@etiegicomes with the
core issue, namely, where to place the patterns that aexmulit, is also considered
by our techniques. Second, we develop a cost model for congptire alternative
plans in the search space. Third, we propose three algarifbrrsearching for a
good plan in the search space. These three algorithms meldgaustive search,
greedy search and greedy search with pruning rules.

Moreover, we assume the whole process takes place at ren-Tinerefore we
tackle two additional problems. First, we embed the stasistollection into the
operators so that we can collect statistics at the time of plkecution. Second,
we study how to correctly and efficiently migrate a curremtigning plan to a new

plan found by the plan search algorithms.

6.2. FUTURE WORK 226

Schema-based Optimization for Pattern Retrieval in Automaon: For the pat-
tern retrieval performed in the automaton, we provide saeased optimization.
Limited work has been done in SQO techniques on structuridénparetrievals
on XML streams. Moreover, these limited work [17, 35] onlypparts XPath or
XPath boolean matching, which is a less powerful query lagguhan XQuery.
Our work instead supports SQO on XQuery. We handle the codtiple brought
by this more powerful query language in the below three d@spec

First, we derive a set of criteria for deciding what schemast@ints are use-
ful for an XQuery. Correspondingly, we develop a set of SQEgthat are able
to utilize those useful constraints. Second, we proposdeaapplication order to
guarantee the quality of the optimized queries. Third, wesent how to incor-
porate these techniques into Raindrop query plans and heffi¢c@ntly evaluate
such plans enhanced with SQO. Our experiments show that 8@©s can im-
prove the performance significantly while at the same tinm®@ducing negligible

overhead in most cases.

6.2 Future Work

Current Raindrop system targets baseline scenarios for Xivkam processing.
We process XML stream in plain text, which is the physicairfat of most existing
XML data sources. We assume that system resources are efosugindling the
query processing. There are many interesting future dimestto look at if we
extend these baseline scenarios or break some assumptiersst here a few of

them which all remain as open problems in the literature.

6.2. FUTURE WORK 227

6.2.1 Supporting XQueries with Window Joins/Aggregations

The XQueries we support in Raindrop system cover two comynaséd func-
tionalities, pattern retrieval and simple predicates i@ thrmat ofvariable op
constant. We can enhance the Raindrop system to support other commsadl
functionalities such as joins and aggregations. In pddicgince an stream can be
infinite, we need to support joins and aggregations with wimdemantics. That
is, only data that arrive in a certain window are joined [4B&ggregated [12].
There are two major challenges. First, we need to preciseling the se-
mantics of window joins and window aggregations in XQueri®¥gindow joins
and window aggregations are proposed for relational stsgdf 12] but not for
XML streams yet to the best of our knowledge. Second, witH defined query
semantics of window joins and window aggregations, we thastrdevelop new

techniques to efficiently evaluate them.

6.2.2 Query over Indexed XML Streams

The continuous nature of XML streams forces query enginasdess every token
in sequence. This is very different from the situation ofistdata sets. Static data
sets are usually equipped with index structures that altmvtHe direct access of
the desired subset. As an initial step towards this dirac{i®4, 5] has proposed
the notion of indexed XML streams. For example, an index igoted with a start
element tag, indicating the offset of the correspondingtagdrom the start tag.

In our schema-based optimization work, we use schema kdgele skip the
processing of certain chunks of XML streams that are irgaiéto the query result,

namely, we simply scan the chunks without performing angm@aton transitions.

6.2. FUTURE WORK 228

We actually can do better if the indices proposed by [34, &aamilable. If we can
derive from the indices where is the next relevant chunk, are directly access
this chunk without having to scan the irrelevant chunk befor
There are plenty of research issues in this field. First, vidrad of stream

indices can we provide? Second, how do we represent suates®liThird, how
do we send out these indices? Do we interleave it with theustrer do we send
out an index-only stream along with the data stream? Folaiv,do we combine
existing schema knowledge, such as DTD or XML schema, wéhkdmew indices?

All these are interesting problems to explore.

6.2.3 XML Load Shedding

We can relax the assumption that the available system res®ware sufficient
to cope with the volume of the incoming data streams and tkeeygworkload,

namely, we can consider scenarios when the incoming datavbeéms the avail-
able computing resources, such as CPU processing speedeamoiry{20]. When
the addition of new resources is not practical, an altersatetion to this prob-
lem is dropping input tuples to reduce the system load, @¢#dlad shedding Two

dropping strategies have been proposed sorfandom drop[73], where tuples
are dropped based on system performance,santantics drop4], where tuples
are dropped to minimize the impact on application semantggstem resource
limitations is a practical consideration in XML stream peesing context as well.
However, the main challenge with respect to XML stream pssitey is that a to-
ken, unlike a self-contained tuple, is hot meaningful bglftsand arbitrarily drop-
ping tokens might result in not well-formed XML streams. Téfere to extend

load shedding techniques to XML stream processing, spdomping strategies

6.2. FUTURE WORK 229

must be designed. This is an important open research prothlahrmeeds to be

investigated.

6.2.4 Adaptive Query Approximation

An alternative approach to handle system resources unddn & to rewrite the
query itself (instead of affecting the actual input tupldg)other words, the orig-
inal query can be rewritten into an approximate one with aabsed accuracy,
but requiring less system resources. For example, an XRatlession involving

a descendant relationship (such as), ¢an be rewritten into one involving a child
relationship (e.g., from &/to /c). The automata implementation for recognizing
deterministic child navigation steps is cheaper than thatdcognizing nondeter-
ministic descendant navigation steps. Moreover the lattkmost likely return

less results than the former, thus putting even a small@eouon system resources.

6.2.5 Query over Compressed XML Streams

XML data can be compressed for the purpose of exchange ahiviag: The
XMIill project [37] compresses the structure (XML tags) sepely from the PC-
DATA. The content is distributed to a set of semanticallyfommn “containers”.
For example, one container stores all text valuesetlier elements while another
container stores all text values @fider elements. Another camp of compressing
techniques are more “query-friendly”. XGrind [64] does separate PCDATA
from structure. An XGrind-compressed document is still anlxdocument: tags
are dictionary-encoded; PCDATA data are compressed ltigtalf at their original
place in the document. Query processing on compressed XN iddoth types

of compressed structures is an interesting direction folodileam processing.

230

Appendix A

Proof of Final State Duplicate

Free Property

Theorem 4 If the “exclusive-reach” property holds, a final state carveaat most
one instance in the stack (we say the automaton is “final stapticate free”) ex-
cept in two circumstances: (1) if there islawken N avg.q1 parn$col2 wherepath
contains a“//” and the data is recursive; and (2) if there iS@kenN avg.1 parnScol2

where a postfix gbath is a “/I” followed by zero or more “*".

Proof 4 We prove the theorem by induction.

Step 1. Given &okenNavg, ,5d where$s represents the root element, we
encodep in an automaton where the start statejisand the final state ig,,. Figure
A.1 shows the contents of a stack whgr@ppears twice. Whed, is pushed onto
the stack the first time, there must be anotifethat is pushed onto the stack at the
same time. Thig’ can finally transit tog,, so thatg, is pushed onto the stack the

second time. Singe# (n*)?//(n*)?/(x)?, i.e.,p cannot both have a “//” and a last

APPENDIX A. PROOF OF FINAL STATE DUPLICATE FREE PROPERTY 231

navigation step of “*". there can be only two below cases foWe will illustrate
that for neither case, the stack contents in Figure A.1 cpaissibly occur.

qn ..

qn, q’...

q0

Figure A.1: Stack Containing Duplicate Final States

1). Inthe first case, there is no navigation step “//"sn Correspondingly, there
is no self-transition in the automaton. Therefore from atacls top state
qa, It cannot transit to bothy, andgs. In other words, it cannot transit to
two states where one state is “closer” to the final state(if two states are
connected by transition, they are the same closegtg). Itis thus impossible
for a token to enable botl, and ¢’ to be pushed onto the stack. Therefore

g cannot appear twice in the stack.

2). In the second case, the navigation step “//” appear ibut the last navi-
gation step irp is a deterministic element type, sayinstead of a wildcard
navigation step %”. Only a token with tag name can enableg,, to be
pushed onto the stack. If the XML input does not have reauréor an el-
ement node of typein the input, none of its descendant element nodes has
typee. Therefore if one tokety has enabled;, to be pushed onto the stack,
there cannot be a component token of the element associdtedwhat

also enableg,, to be pushed onto the stack.

Step 2. Given d'okenNavgy ,»$d’” where$s’ represents a non-root element.

Supposey, andg], are the start and final states pf in the automaton respectively.

APPENDIX A. PROOF OF FINAL STATE DUPLICATE FREE PROPERTY 232

From a statey(, in the stack, similar to Step 1, as long pls# (n*)?//(n*)?/(x)?,
q(, will not transit to multipleg),. Since there will not be anothef, in the stack, no
otherg/, can be transit to. Therefore at any time there will not be ipldtg/, in the

stack. O

233

Appendix B

Computing P g(plan) for Cost
Model

P4q(plan) is used in cost model in Section 3.2.1.

1). If op is TokenNavg, ,3v, Psg(op) is the probability of a binding ofu

containing at least one bindings $i.

2). If op is Select or NodeNav, P4 ¢(op) is the probability of an operatarp

generating some output during the processing of one inple.tu

With knowing P (op) ando(op) for each opeator in a plan, we can com-
pute P ¢ (plan) using probability computation technique. We use an exaraple

illustrate this:

Example 23 In Figure 3.2, we comput&. ¢ (plan) whereplan is the one rooted

at the entry operatorStructural Joing, of StructuralJoing,. Pxg(plan) =

APPENDIX B. COMPUTING P,4(PLAN)FOR COST MODEL 234

probability of a binding of$a containing at least one binding &b that passes

all operators betweestructural Joing, andTokenN avg, /seijer$b
= 1 — probability of every bindings dfb failing to pass all operators
=1 — [1 - probability of a binding 0$b passing all operatofgumber of bindings of$b in a binding of $a
=1 — [1 - probability of a binding ofb passing all operatofg (7 okenNavs $0)

=1 — [1- P#(D(TOkenNav$b7/profile$e)]U(TOkenNavab)-

235

Appendix C

Proof of Optimality of Subplan

Evaluation Order

Proof 5 We assume the contrary of the theorem. That is, givetracturalJoin
that hasn input subplans, in an optimal ordering of input subplanseréhare
two subplanssubplan; and subplan;+1 (1 < i < k) that haverank(subplan;) >
rank(subplan;y1). We now compute the costssafplan; and subplan;,1 using
Equation 3 in Section 3.2.2. For simplicity, we useto denote Expression (&

Expression (8.a) in Equation 3. That &, =

Hop € operator set between bottommost TokenNav and TokenNav that retrieves $v J(Op) X

Pyo(entryr)Pyg(entryz)...Psg(entry,) .

Therefore, we have the below equations.

Equation 11 Cost(subplan;) = K x Pyg(subplany) x ... x Pxg(subplan; 1)

o(entryPlan(entry;)) UnitCost(subplan;)

APPENDIX C. PROOF OF OPTIMALITY OF SUBPLAN EVALUATION ORDER36

Equation 12 Cost(subplanii1) = K x Pgg(subplany) x ... x Pxg(subplan;)

o(entryPlan(entry;+1)) UnitCost(subplan;ii)

Suppose we switch the ordersafbplan; and subplan;. 1. We denote the costs
of evaluating asubplan in the new plan ag’ost’(subplan). We then have the

below equations.

Equation 13 Cost'(subplan;) = K x Pyg(subplani) x ... X Pg(subplan;_1)

o(entryPlan(entry;+1)) UnitCost(subplan;s)

Equation 14 Cost'(subplaniy1) = K X Pgg(subplany) x ... x Pyg(subplan;)

o(entryPlan(entry;)) UnitCost(subplan;)
We can then derive the below equation.

Equation 15 Cost(subplan;) + Cost(subplan;i1) — Cost’ (subplan;) — Cost’ (subplan; 1)
= K x (Pgg(subplany) ... Pxg(subplan; 1)[(1 — Pag(subplan;y 1) o(entryPlan(entry;))

UnitCost(subplan;) — [1 — Pgg(subplan;)] o(entryPlan(entry;y 1)) UnitCost(subplan;y1)])

Becauserank(subplan;) > rank(subplan;+1), namely,

o(entryPlan(entry;y1))UnitCost(subplan;i1)
1—P_4 ¢ (subplan;y1)

o(entryPlan(entry;))UnitCost(subplan;)
1—P_ ¢ (subplan;)

>

we haveCost(subplan;) + Cost(subplanit1) — Cost’ (subplan;) — Cost’ (subplan;y1)
>0. CorrespondinglyX}_, Cost(subplany) — X}_, Cost' (subplany) > 0. This
is contrary to the assumption thak!_, Cost(subplany) is the cost of subplans in

the optimal order.

237

Appendix D

Combination Containing
Operators with Pattern
Dependency Relationship being

Invalid

SupposenavOp; andnavOps retrieve two pattern$u/pl and $z/p2 that have
ancestor-descendant relationship (we say the two operatorepattern depen-
dencyrelationship). We want to prove that a combination contgjrbothnavOp,
andnavOps is either redundant, i.e., it produces a same alternatiave g another
combination that contains no operators with pattern degenyd relationship, or
semantics-disallowed, i.e., it produces an alternatiea hat is not supported in
Raindrop.

We distinguish between three cases: fitst/pl and$x/p2 are both retrieved

APPENDIX D. COMBINATION CONTAINING OPERATORS WITH PATTERN
DEPENDENCY RELATIONSHIP BEING INVALID 238

in the automaton; seconth./p1 and$z/p2 are both retrieved out of the automa-
ton; third, $u/p1 is retrieved in the automaton whig: /p2 is retrieved out of the
automaton. The fourth case, i.8y/pl is retrieved out of the automaton while
$x/p2 is retrieved in the automaton, is not supported by Raindiggbaa because
of the reasons presented in Section 2.4.3. The combinatidinei first case has
been proven to be redundant in Section 3.5. We now prove liteatdmbinations

in the second and third cases are either redundant or ungegpo Raindrop.
Second CaseSuppose the combination containdade N avg,, ,,; v and aNodeN avg,, ,2$y.
Changing the modes of both means we push in Batlp1 and$x/p2. However,
pushing in$x/p2 has implied tha$u/p1 has to be pushed in as well. For example,
in Figure 3.2, pulling oua/seller requires$b//profile to be also pulled out.
Therefore, this combination generates the same alteengltin as the combination

that containgVodeN avg,, 5%y but notNodeN avg,, ,, $v does.

Third Case: Suppose the combination containg@ken N avg,, ,, $v and aNodeN avg,, ,25y.
Changing the modes of both means we end up with a plan whidhioesraN ode N avg,, 1 $v

and al'okenN avg, ,»%v. Raindrop does not support such a plan.

239

Appendix E

Order Insensitive

SupposeravOp; andnavOpo retrieve two patterns that have no ancestor-descendant

relationship. We want to prove that regardless of the omlgrhich we change the

modes ofavOp; andnavOps, the two plans derived contain the same operators.
We distinguish between three cases: fitgtyOp,; andnavOps are bothHloken N av

operators; seconthavOp; and navOps are bothNodeNav operators; third,

navOp; is a TokenNav while navOp, is a NodeNav. We have proven that

the order in which we change the modes does not matter in gieéise in Proof 3

in Section 3.5. We now prove that order does matter in thersband third cases.

Proof 6 Second Case: Suppose we have twdode N av operators,N odeN avg,, ,1 $v
and NodeN avg,, ,2$y. Pushing in$u/pl can eliminate the operators or intro-
duce new operators into the plan in four ways. FistodeN avg,, 1 $v is rewrit-
ten into T'okenNavg, ,1$v and Extractg,$v. Second, if before the rewriting
NodeNavg, ,1$v is the only operator that consumés, then theExtract op-

erator that extractsu will be eliminated from the plan after the rewriting. Third,

APPENDIX E. ORDER INSENSITIVE 240

the ancestor patters &fu/p that are retrieved out of the automaton will be pushed
in. Fourth, if there exists another operator in the formatlafken N avg,, ,» $v" but
there does not exist$tructural Joing, before the rewriting, &étructural Joing,

is introduced after the rewriting.

Later, if we change the mode dfode Navs, we have the below observations:

1). Mode change aVodeN avg, ,,»$y can only eliminate thé&xtract operator
that extracts$z. It is impossible thatz = $v becauseNodeN avg,, ;1 $v
and NodeN avg, ,,»5y have no pattern dependency relationship. The mode
change ofNodeNavg, ,,»$y will not eliminate theExtract operator that
mode change dVodeN avg,, ,; $v has introduced, i.e., thEztract operator
that extracts$v. Hence it will not cancel out the first change resulted from

the mode change d¥odeNavg,, 1 $v.

2). Mode change aNodeN avg, ,,»$y can only introduce atxtract operator
that extracts$y. It is impossible thaBy = $u becauseNodeN avg,, ;1 $v
and NodeN avg, ,»$y have no pattern dependency relationship. The mode
change ofNodeN avg, ,»$y will not introduce theExtract operator that
mode change dVodeN avg,, ,,; $v has eliminated, i.e., thExtract operator
that extractssu. Hence it will not cancel out the second change resulted from

the mode change d¥odeNavg,, 1 $v.

3). SinceNodeN avg, ,$v and NodeN avg, ,0$y have no pattern dependency
relationship, mode change & ode N avg, 5%y Will not affect those opera-
tors whose modes have been changed as a secondary effestpofstinin of
$u/p. That is to say, it will not cancel out the third change resdifrom the

mode change aWVodeN avg,, ,; $v.

APPENDIX E. ORDER INSENSITIVE 241

4). Mode change aVodeN avg, ,2$y cannot eliminate &tructuralJoin op-
erator so that it will not cancel out the fourth change reedlfrom the mode

change ofl'okenN avg,, ,, $v.

In summary, a mode changeBbken N avs that occurs after the mode change
of TokenNav; does not cancel any change that has been made. Therefore the
order in which we change the modesitékenNav, and TokenNavs does not

matter.

Proof 7 Third Case: Suppose we haveloken N avg, ,$v and aN ode N avg,, 58y .
We first prove that a mode changebde N avg, ,2$y that occurs after the mode
change ofT'okenNauvg, ,;$v does not cancel any change that has been made.
Pulling out $u/p can eliminate the operators or introduce new operators thi
plan in four ways. FirstTokenNavg, ,,1$v and Extractg,$v are rewritten into
NodeNavg, ,,; $v. Second, if before the rewriting there exists Fiotract opera-
tor that extracts$u, then anExiract operator that extract$u will be introduced
to the plan after the rewriting. Third, the descendant pattef $u/p that are re-
trieved in the automaton will be pulled out. Fourth, if thesdsts no other operator
in the format ofl’okenNavg, ,1-$v" but there exists &tructural Joing, before
the rewriting, thisStructural Joing, is eliminated after the rewriting.

Later, if we change the mode dfode N avg,, .03y, we have the below observa-

tions:

1). Mode change aNodeN avg, ,2$y will not eliminate theN ode N avg,, ;1 $v
operator. Hence it will not cancel out the first change restdiffrom the mode

change ofl'okenNavg,, ,,1 $v.

APPENDIX E. ORDER INSENSITIVE 242

2). Mode change oNodeNavg, ,,23y can only eliminate theztract opera-
tor that extracts$x when there is no other operator that consurfies The
mode change df'okenNavg, ,; $v may introduce an operator that extracts
$u. Even though it is possible thét: = $u, the Extract operator that ex-
tracts $u cannot be eliminated since there exist&’ade N avg,, ,,1 $v opera-
tor that needs to consun$e.. Hence the mode change Biode N avg,, 25y
will not cancel out the second change resulted from the mbadmge of

TokenN avg,, 1 $v.

3). SinceTokenNavg, ,1$v and NodeNavg, 23y does not have a pattern
dependency relationship, mode changé\afde N avg, ,,»$y will not affect
those operators whose modes have been changed as a seceffféatyof
the pull-out of$u/p. That is to say, it will not cancel out the third change

resulted from the mode changedkenNav;.

4). If mode change dI'okenNauvg, ,1$v eliminates aStructural.Join, that
means there exists no other operator in the formaf@tenNavg,, ,1/$v'. If
$x = $u, mode change aVodeN avg, ,,»$y will notintroduce aStructural Joing,
operator since there exists no operator in the formaf'oken N avg,, 1 $v".
Therefore, the mode change dodeNavg, 5%y will not cancel out the

fourth change resulted from the mode changé&'etenNawv,.

Next, we prove that a mode changel@fken N avg, ,,»$y that occurs after the
mode change dVodeN avg, ,, $v does not cancel any change that has been made.
Pushing in$u/p1 can eliminate the operators or introduce new operators thi®
plan in four ways. First,NodeNavg, ,1 $v is rewritten intoTokenN avg,, 1 $v

and Extractg,$v. Second, if before the rewritingy ode N avg,, ,, $v is the only

APPENDIX E. ORDER INSENSITIVE 243

operator that consume$u, then theExtract operator that extract$u will be
eliminated from the plan after the rewriting. Third, the astor patters ofu/p
that are retrieved out of the automaton will be pushed in. rikguif there exists
another operator in the format dfokenNavg, ,»$v" but there does not exist a
Structural Joing, before the rewriting, &StructuralJJoing, is introduced after
the rewriting.

Later, if we change the mode ®bken N av$x,p2$y, we have the below obser-

vations:

1). Mode change dfokenNavg, ,»$y can eliminate neithel'oken N avg,, ,,1 $v
nor Eztractg, $v. Hence it will not cancel out the first change resulted from

the mode change d¥odeN av,, 1 $v.

2). Mode change df'okenNavg, 2%y can introduce an operator that extracts
$x. If $x # $u, then the mode change Bbken N avg, ,»$y does not cancel
out the second change resulted from the mode chang&déN avg,, 1 $v.

If $2 = $u, then the mode change Bbken N avg, 23y cancels out the sec-
ond change resulted from the mode changéVetle Navg, ,, $v. That is,
there is anFExtract operator that extract$z in the final plan. However,
suppose we switch the order of mode change, namely, we clizmgeode

of TokenNavg, ,,»$y first and that of NodeNavg, ,;$v next. The mode
change ofl'okenN avg, 5%y introduces anExtract operator that extracts
$x. This Extract operator will not be eliminated by the mode change of
NodeN avg,, ,,1 $v sinceNodeN avg,, 58y in the plan needs to consurfie.
Therefore theExtract operator that extract$z appears in both plans re-

gardless of the order in which we change the modes.

APPENDIX E. ORDER INSENSITIVE 244

3). SinceNodeN avg, , $v andTokenN avg, ,,»$y have no pattern dependency
relationship, mode change Gloken N avg, ,,»$y will not affect those opera-
tors whose modes have been changed as a secondary effegtpoistinin of
$u/p. That is to say, it will not cancel out the third change resdlfrom the

mode change aWVodeN avg,, 1 $v.

4). Mode change of'okenNavg, ,,»$y can eliminateStructural Joing,. If
$x # $u, then the mode change @bkenNavg, 2%y does not cancel out
the fourth change resulted from the mode chang&ofle N avg,, 1 $v. If
$2 = $u, then the mode change BbkenNavg, ,,»$y cancels out the fourth
change resulted from the mode chang&etle N avg,, ,,1 $v. Thatis,Structural Joing,
operator does not appear in the final plan. However, suppasswitch the
order of mode change, namely, we change the modébén N avg, 25y
firstand that ofVode N avg,, ,,; $v next. The mode changeBbken N avg,, 05y
eliminates Structural Joing,. This Extract operator will not be intro-
duced back by the mode change MbdeN avg, ,,$v since no other op-
erator exists in the format df'okenNavg, ,,1-$0" in the plan. Therefore
Structural Joing, operator appears in neither plan regardless of the order

in which we change the modes.

In summary, we prove that the order in which we change the mofle
NodeNav and aTokenNav has no impact on the set of operators appearing

in the final plan.

245

Appendix F

Proof of Same Cost Changes

In Figure F.1, given a pla#;, we get two plang’, and P; by changing the modes

of navOp; andnavOps in P; respectively. Suppose we now change the mode of
navOpy in P; and get a new plaR,. We want to prove that ifroveScope(navOp,)

N moveScope(navOps) = 0, Cost(Py) — Cost(P3) = Cost(P2) — Cost(P).

Pl P2
O change mode of NodeNa\{—)
T~ P3

change mode of TokenNa\T;‘C

change mode of TokenNav P4

Figure F.1:Cost(Py) — Cost(Ps) = Cost(Py) — Cost(Py)

Proof 8 For simplicity, we useéestSJ and Con fineSJ to represent the desti-
nation and confiningStructuralJJoin operators of anavOp. We now consider
the case whemavOp is in the format ofl'okenNavg, ,Sv. After the rewriting,
the input subplans of belowtructuralJoin operators can have changed costs.

First, the DestSJ of TokenNavg,, ,$v, i.e., Structural Joing,,, is eliminated so

APPENDIX F. PROOF OF SAME COST CHANGES 246

that the costs of input subplans of thizestSJ is now 0. For example, in Fig-
ure 3.2, theDestS.J of TokenNavg, jsciier$0, 1.€., StructuralJoing,, is elim-
inated in Figure 3.6 wher$a/seller is pulled out. Second, since tHeestS.J
was an entry operator of an input subplan 8tructural Joing,, its elimina-
tion changes the contents (and correspondingly the costhmit subplans of
Structural Joing,. Third, the costs of input subplans of th&n fineSJ are
changed as well since the neMode N avg,, ,,3v operator is added into an input
subplan of the”'on fineSJ. Fourth, for an intermediat&tructrual Join between
the DestSJ and Con fineSJ, although no operators are removed or added into
its input subplans, its costs are still changed. This is beed oken Nav before is
a descendant but now an ancestor of an entry operator of qmé subplan. The
selectivity of this entry operator may increase which affee overall cost of the
input subplans to thes&tructural Join operators. We therefore have,

Cost(P2) — Cost(Py) =)) (cost of input subplans to sj in Py

(a)

sj€moveScope(TokenNavy

— cost of input subplans to sjin Py) — cost of TokenNavy in P;.

(b) (o)
Similarly, Cost(Py) — Cost(Ps) =,

cost of input subplans to sj inPy

(d)

sjemoveScope(TokenNavy) (

— cost of input subplans to sj in P3) — cost of executing TokenNavy in Ps.

(e) (f)
P, can be derived by moving offiivkenN av, from the automata ir,. Since

moveScope(TokenNavy) N moveScope(TokenNave) =), DestSJ of TokenN av,
& moveScope(TokenNavy) in P, and the newN ode N av rewritten fromT oken N avs
& moveScope(TokenNavy) in Py. Therefore for angj € moveScope(TokenNawvy)
in Py, its input subplans are the same as the input subplasg of 7. Moreover,

since itis impossible th&oken N avy is an descendant of any € moveScope(TokenNavy)

APPENDIX F. PROOF OF SAME COST CHANGES 247

in P, but the rewrittenN ode N av is an ancestor ofj in P, (otherwisemoveScopt(TokenN avy)
N moveScope(TokenNavy) # 0), the input subplans ofj in both P, and P, pro-

cess the same amount of input data. Therefore, the costpwf$ubplans of any

sj in P, must equal to those ;. In short, item (d) = item (a). Similarly, we

have item (e) = item (b). Also, item (f) = item (c). Finally, WwaveCost(P») —

Cost(Py) = Cost(Py) — Cost(Ps).

248

Bibliography

[1] Protein Sequence Database. http://pir.georgetowt.ed

[2] A.Aboulnaga, A. R. Alameldeen and J. F. Naughton. Estiinggthe Selectiv-
ity of XML Path Expressions for Internet Scale Applicatioms Proceedings
of VLDB, 2001.

[3] A. Aboulnaga and J. F. Naughton. Building XML Statistiics the Hidden
Web. InCIKM, pages 358-365, 2003.

[4] A. Das, J. Gehrke, M. Riedewald. Approximate Join Preoeg Over Data
Streams. IrProceedings of VLDBpages 40-51, 2003.

[5] A. Gupta and S. Chawathe. Skipping Streams with XHinechHhical Report
CS-TR-4566, University of Maryland, College Park, 2004.

[6] A. Halverson and J. Burger and L. Galanis et al. Mixed ModdL Query
Processing. IfProceedings of VLDR2003.

[7] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, |. Manalesand R. Busse.
XMark: A Benchmark for XML Data Management. Rroc. of the Int. Conf.
on Very Large Data Bases (VLDR)ages 974-985, 2002.

[8] A. Snoeren, K. Conkey and D. Gifford. Mesh-based ConRatiting using
XML. In 18th ACM Symposium on Operating System Principles (SOSP)
2001.

[9] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Cenw S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A new maatad archi-
tecture for data stream managemevi. DB Journal 12(2):120-139, August
2003.

[10] M. Altinel and M. Franklin. Efficient Filtering of XML Dauments for Se-
lective Dissemination. liProceeding of VLDBpages 53—-64, 2000.

BIBLIOGRAPHY 249

[11] S. Amer-Yahia, S. Cho, L. V. Lakshmanan, and D. Srivastavlinimization
of Tree Pattern Queries. BIGMOD, pages 497-508, June 2001.

[12] A. Arasu and J. Widom. Resource sharing in continuoiging-window
aggregates. INLDB, pages 336-347, Aug/Sep 2004.

[13] R. Avnur and J. M. Hellerstein. Eddies: Continuoushaptive query pro-
cessing. IPACM SIGMOND pages 261-272, June 2000.

[14] B. Babcock, S. Babu, R. Motwani, and J. Widom. Models emsdes in data
streams. IPODS pages 1-16, June 2002.

[15] S. Babu and J. Widom. Continuous queries over dataraBeén ACM SIG-
MOD, Sep 2001.

[16] B.Choi. What are Real DTDs like, 2002.

[17] C. Chan, P. Felber and M. N. Garofalakis et al. EfficieitieFing of XML
Documents with XPath Expressions.\TbDB Journal 11(4)pages 354-379,
2002.

[18] C. Koch, S. Scherzinger, N. Scheweikardt and B. Stegma&iluxQuery: An
Optimizing XQuery Processor for Streaming XML Data. \ihDB, pages
228-239, 2004.

[19] C. L. Monma and J. B. Sidney. Sequencing with SerieglRdiPrecedence
Constraints. Inviathematics of Operations Researgages 4. 215 — 224,
1979.

[20] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, SelL&. Seidman,
M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring streama new class
of data management applications.MhDB, pages 215-226, August 2002.

[21] S. Chandrasekaran, O. Cooper, A. Deshpande, M. FrankliHellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss,Mn8hah.
TelegraphCQ: Continuous dataflow processing for an urioewtarld. In
CIDR, pages 269-280, 2003.

[22] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQcAlable continu-
ous query system for internet databasesAGM SIGMOD pages 379-390,
June 2002.

[23] D. Abadi and Y. Ahmad and M. Balazinska and et. al. Theigiesf the
borealis stream processing engine. Aroceedings CIDRpage to appear,
2005.

BIBLIOGRAPHY 250

[24] D. Barbosa, A. Mendelzon, and J. Keenleyside et al. ¢y a Template-
Based Data Generator for XML. IRroceedings of WEBDBages 49-54,
2002.

[25] D. Florescu, C. Hillery and D. Kossmann et al. The BEAatning XQuery
processor. IV/LDB Journal 13(3) pages 294-315, 2004.

[26] D. Florescu, C. Hillery, D. Kossmann et al. The BEA/XQFtreaming
XQuery Processor. INLDB, pages 997-1008, 2003.

[27] D. Kossmann and K. Stocker. Iterative Dynamic Prograngma New Class
of Query Optimization Algorithms. IACM Transaction on Database System
25 (1) pages 43 — 82, 2000.

[28] A. J. Demers, J. Gehrke, R. Rajaraman, A. Trigoni, andgrdao. The
Cougar Project: A Work-In-Progress Report.3igmod Record 32 (4jpages
53-59, 2003.

[29] Alin Deutsch, Yannis Papakonstantinou, and Yu Xu. THeXN Logical
Framework for XQuery. IfProc. of the Int. Conf. on Very Large Data Bases
(VLDB), pages 29-41, 2004.

[30] Y. Diao and M. Franklin. Query Processing for High-Viola XML Message
Brokering. InVLDB, pages 261-272, 2003.

[31] L. Fegaras and D. Maier. Towards an Effective Calculus@bject Query
Languages. IfProceedings of SIGMO[pages 47-58, 1995.

[32] Leonidas Fegaras. The Joy of SAX. Hirst International Workshop on
XQuery Implementation, Experience and Perspectives (XRYJ2004.

[33] George Russell, Mathias Neumuller and Richard Corfstvream-based XML
Processing with Tupe Filtering. 2003.

[34] T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. ProoagXML Streams
with Deterministic Automata. IhCDT, pages 173-189, 2003.

[35] A. Gupta and D. Suciu. Stream Processing of XPath Qs&rith Predicates.
In Proceedings of SIGMO[pages 419-430, 2003.

[36] H. Jiang, H. Lu and W. Wang. Holistic twig joins on index&XML docu-
ments. InVLDB, 2003.

[37] H. Liefke and D. Suciu. XMILL: An Efficient CompressorifiXML Data. In
SIGMOD, 2000.

BIBLIOGRAPHY 251

[38] H. Su, E. A. Rundensteiner and M. Mani. Raindrop: An X@ugengine over
XML Streams - on Semantic Query Optimization (demonstratiéon VLDB,
2004.

[39] H. Su, J. Jian and E. A. Rundensteiner. Raindrop: A Unifand Layered
Algebraic Framework for XQueries on XML Streams.QtKM, pages 279—
286, 2003.

[40] Hong Su and Elke A. Rundensteiner and Murali Mani. Ausdom Meets
Algebra: A Hybrid Paradigm for XML Stream Processing3KE Journal
2006.

[41] Hong Su, Elke A. Rundensteiner, Murali Mani. Semantie€y Optimization
for XQuery over XML Streams. IWVLDB Proceedings2005.

[42] Z.Ives, A. Halevy, and D. Weld. An XML Query Engine for theork-Bound
Data.VLDB Journa) 11 (4): 380—402, 2002.

[43] J. Chen, D. Dewitt, F. Tian et al. NiagaraCQ: A Scalab@ntihuous Query
System for Internet Databases.SHGMOD, 2000.

[44] J. Grant, J. Gryz and J. Minker et al. Semantic Query®igttion for Object
Databases. IICDE, pages 444-453, 1997.

[45] J. M. Hellerstein and M. Stonebraker. Predicate Migrat Optimizing
Queries with Expensive Predicates.3tGMOD, pages 267276, 1993.

[46] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapmanksa/. S. Laksh-
manan, Andrew Nierman, Stelios Paparizos, Jignesh M. Fatet¢sh Sri-
vastava, Nuwee Wiwatwattana, Y. Wu, and C. Yu. Timber: Aveatml
database. IWVLDB Journal Volume 11 Issue gages 274—-291, 2002.

[47] J. Jian, H. Su, and E. Rundensteiner. Automaton MeetyQAlgebra: To-
wards A Unified Model for XQuery Evaluation over XML Data Sres. In
Proceedings of ER2003.

[48] N. Kabra and D. Dewitt. Efficient Mid-Query Re-Optimizan of Sub-
Optimal Query Execution Plans. BIGMOD, 1998.

[49] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluatingdeim joins over
unbounded streams. IG@DE, pages 341-352, March 2003.

[50] L. Lim, M. Wang and J. Vitter. SASH: A Self-Adaptive Higgrams Set for
Dynamically Changing Workloads. MLDB, 2003.

BIBLIOGRAPHY 252

[51] L.Lim, M. Wang and S. Padmanabhan et. al. An On-line-Sealfing Markov
Histogram for XML Path Selectivity Estimation. MLDB, 2002.

[52] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstamtingd Transducer-
Based XML Query Processor. IRroceedings of VLDBpages 227-238
2002.

[53] M. F. Fernandez, D. Suciu. Optimizing Regular Path Esprons Using
Graph Schemas. IMCDE, pages 14-23, 1998.

[54] M. J. Carey, M. Blevins and P. Takacsi-Nagy. IntegnmatidVeb Services
Style. InlEEE Data Eng. Bull. 25 (4): 17-212002.

[55] S. Madden and M. Franklin. Fjording the stream: An atture for queries
over streaming sensor data. I{bDE, pages 555-566, Feb 2002.

[56] I. Manolescu, D. Florescu, and D. Kossmann. AnsweridgLQueries on

Heterogeneous Data Sources.Pimceedings of the 27th VLDB Conference,

Edinburgh, Scotlandpages 241-250, 2001.

[57] J. McHugh and J. Widom. Query Optimization for XML. Rroceedings of
the Twenty-Fifth International Conference on Very LarggdBases, Edin-
burgh, Scotlandpages 315-326, 1999.

[58] N. Bruno, N. Koudas, and D. Srivastava. Holistic twigng optimal XML
Pattern Matching. '8sIGMOD 2002.

[59] B. Nguyen, S. Abiteboul, G. Cobena, and M. Preda. Moimgp XML data

on the Web. IrProceedings of the ACM SIGMOD International Conference

on Management of Data, Santa Barbara, (@ages 437-448, May 2001.
[60] University of Washington. Xml data repository, 2002.
[61] P. Hart, N. Nilsson and B. Raphael. A Formal Bais for theuHstic Deter-

mination of Minimum Cost Paths. IMEEE Transactions on Systems Science

and Cybernetics SSC4 (3ages 100 — 107, 1968.

[62] P. Mukhopadhyay and Y. Papakonstantinou. Mixing quegnand navigation
in mix. In Proceedings of ICDE 2002002.

[63] P. Selinger, M. Astrahan and D. Chamberlin. Access Falection in a
Relational Database Management SystemEEBE COMPSAC1979.

[64] P. Tolani and J. Haritsa. XGRIND: A Query-Friendly XMLo@Gpressor. In
ICDE, pages 225 — 234, 2002.

BIBLIOGRAPHY 253

[65] F. Peng and S. Chawathe. XPath Queries on Streaming DePaoceedings
of SIGMOD pages 431-442, 2003.

[66] Q. Cheng, J. Gryz and F. Koo et al. Implementation of Tveon@ntic Query
Optimization Techniques in DB2 Universal Database MhDB, pages 687—
698, 1999.

[67] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, Beléch, and
N. Mehta. Cape: Continuous query engine with heterogengmised adap-
tivity. In VLDB Demg pages 1353-1356, 2004.

[68] S. C. Yoon, l.Y. Song and E. K. Park. Semantic Query Pssicg in Object-
Oriented Database Using Deductive AproachPtaceeding of CIKMpages
150-157, 1995.

[69] S. Chaudhuri. An Overview of Query Optimization in R&aal Systems. In
PODS 1998.

[70] S. Chaudhuri and K. Shim. Including Group-By in Queryti@mpzation. In
VLDB, 1994.

[71] S. Wang, E. A. Rundensteiner and M. Mani. Optimizatiémested xquery
expressions with orderby clauses. XML Schema and Data Management
(XSDM) Tokyo, Japan, April 2005.

[72] T. Milo and D. Suciu. Type Inference for Queries on Seémistured Data. In
PODS 1999.

[73] Nesime Tatbul, Ugur etintemel, Stanley B. Zdonik, Mit€herniack, and
Michael Stonebraker. Load shedding in a data stream manbgBroceed-
ings of 29th International Conference on Very Large Datad3agages 309—
320, 2003.

[74] U. S. Chakravarthy, J. Grant and J. Minker. Logic-Basggbroach to Se-
mantic Query Optimization. IACM TODS, Vol. 15, No.,2ages 162-207,
1990.

[75] W. Scheufele and G. Moerkotte. Efficient Dynamic Prognaing Algorithms
for Ordering Expensive Joins and SelectionsEDBT, 1998.

[76] W3C. XML Query Data Model. http://www.w3.0rg/TR/quedatamodel,
2000.

BIBLIOGRAPHY 254

[77] X.Zhang and E. A. Rundensteiner. XAT: XML Algebra foetRainbow Sys-
tem. Technical Report WPI-CS-TR-02-24, Worcester Polytéx Institute,
July 2002.

[78] X. Zhang, B. Pielech and E. A. Rundensteiner. Honey,ruBk the XQuery!
— An XML Algebra Optimization Approach. INVIDM, pages 15-22, Nov.
2002.

[79] X.Zhang, B. Pielech and E. A. Rundensteiner. XAT Opgtation. Technical
Report WPI-CS-TR-02-25, Worcester Polytechnic Instit@®02.

[80] Y. Diao, M. Altinel and M. J. Franklin, H. Zhang and P. Eleer. Path sharing
and predicate evaluation for high-performance xml filtgrilm TODS pages
467-516, 2003.

[81] Y. Diao, P. Fischer, M. J. Franklin, R. To. YFilter: Efiémt and scalable
filtering of XML documents. IrProc. of ICDE pages 341-344, 2002.

[82] Y. Wu, J. M. Patel and H. V. Jagadish. Structural Join &r8election for
XML Query Optimization. InNICDE, pages 443—-454, 2003.

[83] Z. Chen, H. Jagadish and L.V.S. Lakshmanan et al. Froee Ratterns to
Generalized Tree Patterns; On Efficient Evaluation of XQuein VLDB,
2003.

[84] Z. Chen, H.V. Jagadish and F. Korn et al. Counting Twigidhas in a Tree.
In Proceedings of ICDE2001.

[85] Yali Zhu, Elke A. Rundensteiner, and George T. HeinemBrynamic plan
migration for continuous queries over data stream&@M SIGMOD pages
431-442, June 2004.

