Raindrop: A Uniform and Layered Algebraic Framework for
XQueries on XML Streams

Hong su”

Jinhui Jian

Elke A. Rundensteiner

Worcester Polytechnic Institute Worcester Polytechnic Institute Worcester Polytechnic Institute

Worcester, MA 01609
suhong@cs.wpi.edu

ABSTRACT
XML stream applications bring the challenge of efficiently

processing queries on sequentially accessible token-based data.

While the automata model is naturally suited for pattern
matching on tokenized XML streams, the algebraic model in
contrast is a well-established technique for set-oriented pro-
cessing of self-contained tuples. However, neither automata
nor algebraic models are well-equipped to handle both com-
putation paradigms. The goal of the Raindrop project is
to accommodate these two paradigms within one algebraic
framework to take advantage of both. In our query model,
both tokenized data and self-contained tuples are supported
in a uniform manner. Query plans can be flexibly rewritten
using equivalence rules to change what computation is done
using tokenized data versus tuples. This paper highlights
the four abstraction levels in Raindrop, namely, semantics-
focused plan, stream logical plan, stream physical plan and
execution plan. Various optimization techniques are pro-
vided at each level. The necessity of such a uniform and
layered plan is shown by experimental study.

Categories and Subject Descriptors
H.2.4 [Database Manager]: Query Processing

General Terms

Management

Keywords
XML Stream, XQuery Algebra, Query Processing

1. MOTIVATION

There is a growing interest in data stream applications
such as monitoring systems for stock, traffic and network
[2]. These applications process continuously arriving data

*Supported by IBM PhD Corporative Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CIKM’' 03, November 3-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

Worcester, MA 01609
jlan@cs.wpi.edu

Worcester, MA 01609
rundenst@cs.wpi.edu

streams rather than previously stored data. XML stream
applications such as personalized web page delivery and on-
line shopping order handling, because of the nested complex
XML data format, pose additional challenges beyond those
in the relational stream applications [2].

Since an XML stream can be potentially infinite or may
not be complete within a reasonable time due to the network
delay, a strategy that incrementally processes the available
data is favored over a strategy that only handles the data
after it has been completely received. SAX parsers [12]
are therefore frequently used since they support incremen-
tal XML processing in a token-by-token manner. A token
in XML can be a start tag, an end tag or a PCDATA item.
Note that such a token-by-token processing is not directly
analogous to the tuple-by-tuple pipelining processing typical
for relational query engines. Tuples in relational databases
are discrete and have a fixed schema. Most importantly, a
tuple, coupled with the schema knowledge, has its seman-
tics completely determined by its own values. A token, on
the other hand, is not self-contained since it lacks semantics
without the context provided by other tokens in the stream.
State-of-the-Art: Automata versus Algebra. Current
proposals for processing tokenized XML streams can be di-
vided into two categories. The first category, such as XSM
[9], offers a new query paradigm different from algebraic-
based tuple processing. XSM uses a transducer model for
query processing in which there is no explicit concept of
tuples. All operations are modeled as Turing machine be-
haviors, i.e., reading tokens from input buffers and writing
tokens on output buffers. However, query optimization tech-
niques for such a model have not been much studied by the
database community. On the other hand, the tuple-based
algebraic query model has been long studied and widely
adopted by the database community. Various XML algebras
have also been proposed using a tuple [15, 6] or a tuple-like
[11] data model. Approaches in the second category, includ-
ing YFilter [4] and Tukwila [7], works in a paradigm that
could more naturally take advantage of existing set-oriented
tuple processing techniques.

The query processing in the second category can be de-
composed into two phases. In the first phase, tokens are pro-
cessed by an extended automata engine for pattern retrieval.
Automata are well-suited for this role because they were
originally designed for recognizing languages, i.e., matching
alphabet sequences against the patterns specified in a gram-
mar. The automaton is extended with auxiliary functional-
ities so that when the tokens are scanned and recognized,
objects are created from the tokens and organized into tu-

ples. In the second phase, these tuples are input to a more
conventional query engine capable of processing tuples.

For example, suppose we have an XML stream (a data set
used by an XML benchmark XMark [14]) shown in Figure
1 (a). Each token is annotated with an identifier number in
italics font. Figure 1 (b) shows an XQuery on this stream.
Figure 2 shows the Tukwila [7] query plan for Figure 1 (b).
While the processing in the second-phase engine is expressed
as a query tree of operators, the processing in the first-phase
engine (i.e., automaton) is modelled as a single operator
called zscan. This zscan operator exposes a fixed interface,
namely, the bindings to all the XPath expressions in the
query, to its downstream operators.

1<Open_auctions> for $a in stream(“Open_auctions)//open_auction[year],
2<open_auction> $b in $a/annotation
3 <annotation> Where
4<author> 5 Claude Monet 6 </author> $b/description/emph="“French Impressionism”
return
<auction>
{$b/author}
12 <emph>13 water lilies 74</emph> </auction>

7<description>8 Representative work of
9<emph>10 French Impressionism /1</emph>

15 </description> (b) XQuery on Open_auctions Stream
16 <annotation>
17 <privacy> 18 No 19</privacy>
20 <initial>21 130,000 22</initial>
23 <year>24 1872 25</year>
26</open_auction>

(a) Open_auctions Stream

Figure 1: XML Document and XQuery

!

(Sel Sc=french Impressionism) Tuple Processing Engine
X

\
$a = open_auction[year] (xscan
$b=$ i
$d = $b/description/emph
$e = $b/author

) Automata Engine

(Source Open_auctions $Sl)

Figure 2: Tukwila Query Plan

Such a modelling has two major drawbacks. First, the
fixed interface excludes the possibility of optimizing by push-
ing computation into or pulling computation out of the zscan
operator. For example, Tukwila would not allow pushing the
selection Selgy=«prench Impressionism» iNto zscan and thus
this potential optimization is missed. Second, such a bloated
zscan operator models the complete pattern retrieval phase
as one black box. We note that zscan itself is composed of
a sequence of computations such as finding linear patterns
separately and composing linear patterns into tree patterns.
However no operators of a finer granularity are provided
below this rather complex zscan. In short, such a rigid
and heavyweight operator cannot be effectively optimized
via standard query rewriting techniques. It can neither be
rewritten with the other operators in the query plan, nor can
be internally rewritten. The automata processing, though
accommodated in an algebraic framework as a special oper-
ator, actually does not benefit from the opportunities that
an algebraic framework is supposed to provide.

Our Approach. We instead propose to model the au-
tomata processing as a query subplan composed of operators
at a more reasonable granularity. Such a model now offers
benefits in several aspects. First, the subplan can be rea-
soned over in a modular fashion. Optimization techniques
can be studied for each operator separately rather than only

for a plan as a whole. Second, equivalence rules can be ap-
plied for rewriting the query plan. The automata processing
therefore is accommodated in the algebraic framework uni-
formly with the other operators, treating all query semantics
as first class citizens.

Our algebraic framework is composed of plans at four lev-
els of abstraction. The highest level is a semantics-focused
plan which expresses the query semantics regardless of per-
sistent or stream data sources. Next, the stream logical plan
extends the first level with special constructs for tokenized
stream data sources. The next lower level is the stream
physical plan describing implementation strategies for each
operator defined at the stream logical plan level. The final
level, the stream ezecution plan, describes the synchroniza-
tion and data transfer mechanism among physical operators.
Each level adds more details to the plan at the adjacent
higher level. Mapping alternatives are offered to convert a
plan from each level to the next lower level. Such a layered
framework enables us to reason at different levels of detail,
thus rendering optimization tractable and practical.
Roadmap. We briefly describe the semantics-focused plan
in Section 2. Then we focus on the stream logic plan and
stream physical plan in Sections 3 and 4 respectively. Due
to space limitations, we do not present the lowest level here.

2. SEMANTICS-FOCUSED PLAN

The semantics-focused plan is based on an algebra called
the XML Algebra Tree (XAT) [15]. It captures the core
features of XQuery. The operators in XAT include (1) XML
specific operators, e.g., Tagger, NavUnnest and NavNest; (2)
SQL like operators, e.g., Select and Join. The data model
is a collection of tuples called XAT tuples. A XAT tuple is
composed of cells each of which is bound to a variable.

Figure 3 shows the semantics-focused plan for the query in
Figure 1 (b). The intermediate XAT tuples are also shown
for some operators. The semantics of the XAT operators
used in the example are described in Table 1. For each op-
erator, except the Source operator, its semantics are defined
in terms of the outputs expected when given an input col-
lection S.

Operator Description

Source®22L Bind data source desc to $col

Taggerﬁ"’"l For each tuple s € S, tagger s in pattern
p. A new tuple generated by concatenat-
ing s with taggered data bound to $col.

NavUnnestgggﬁ,wth For s € S, navigate into column $coll.

For each node reachable via path, a new
tuple generated by concatenating s with
target bound to $col2.

For s € S, navigate into $coll, aggregate
all nodes reachable via path. A new tuple
generated by concatenating s with aggre-
gated nodes bound to $col2.

Select. For s € S, filter s by condition c.

Table 1: Semantics of XAT Operators

Feol2
NavNestg 011 patn

A cell in an XAT tuple can be one of the following types,
called regular XAT cell formats: (1) an atomic value, (2) an
XML element node modeled as a labeled tree (e.g., bind-
ing to $a in the output of NavUnnests:, //open_auction$a)
or (3) an unordered or ordered collection' of XML element
nodes or atomic values (e.g., binding to $d in the output of
Na/vN63t$b,/description/emph$d)-

'XQuery supports both unordered and ordered expressions.

Tagger<result>$e</result>$f)

(NavNest $b, /author $&) $S1 $a $c sb sd
Open_auctions>.. j<open_auction>... <annotation> ... emph>...</emph
(Selectsd: “French Impressionism”) </Open_auctions> | </open_auction> 1892 </annotation> emph>...</emph:
------------------------- >\0pcn7al|cti<{ns>. N opcnfauctior_n oo 1924 <annolalion_> ... [femph>...</emph
$S1 $a($c ?b (NavNestsb, /description/emph $d) </Open_auctions> | </open_auction> </annotation> [<emph>...</emph:
Open_auctions>.. [<open_auction>... T === —————————— $S1 $a $c
</open_auctions> | </open_auction> 1892 </annotation>

NavUnnest$a, /annotation $b) Open_auctions>.. fopen_auction>...

(< ions>, ion>
‘Open_auctions>..|<open_auction>... 1924

»{</Open_auctions>| </open_auction> 1892

</Open_auctions>| </open_auction> </annotation> (

)
NavNest$a, /year $c

) Open_auctions>.. <open_auction>... 1924

$S1 $a lg——————————————)

</Open_auctions> | <open_auction>

Open_auctions>..[<open_auction>... (R)

</Open_auctions>| <open_auction> NavUnnest S1, //fopen_auction $a $S1

0 - - 0 A--eeeeeeeeeeemeemeeood »<Open_auctions>.. |
pen_auctions>...[<open_auction>... . .

</Open_auctions>| <open_auction> (Source “Open_auctions” $S1) </open_auctions>

Figure 3: Semantics-Focused Plan (annotated with intermediate results for querying over Figure 1 (a))

Particularly, a variable bound to a path expression in the
For clause (e.g., $a from For $a in Stream(“Open_auctions”)
//open_auction) is expressed as an output variable of
NavUnnest (e.g., NavUnnests,//open_auction$a). For clause
evaluates the path expression, iterate over the items in the
resulting sequence, and bind the variable to each item in
turn. In contrast, the Let, Where or Return clause binds a
variable (e.g., $d from Where $b/description/emph = “French
Impressionism”) to the expression result without iteration.
These variables are expressed as output variables of NavNest
(e.g., NavNestgy, sdescription/emphSd). The two highlighted
intermediate results in Figure 3 show the difference.

At this top level of the framework, we apply general rewrit-
ing optimization [15] such as decorrelation.

3. STREAM LOGICAL PLAN

At the stream logical plan level, besides the regular XAT
cell formats, we additionally support a token-based data for-
mat to accommodate the tokenized input. Meanwhile, new
operators and plan structures are introduced to manipulate
this new data format.

3.1 Token-Based Data Format

The new data format, contextualized tokens, is composed
of two parts: value and context. The value models the local
characteristics of the token itself while the context models
the relationship between this token and other tokens.

Token Value. The token value is represented as a triplet
(ttype, tname, attrs). ttype is the token’s type which can be
START, END, or PCDATA. tname is the tag name for the
start and end tag, or the data content for PCDATA item.
For the start tag token, attrs is a set of attribute name and
attribute value pairs. For the other types, attrs is an empty
set . The values of the first 6 tokens in Figure 1 are:

1 (START,“Open_auctions”,0) 2 (START,“open_auction”,()

3 (START,“annotation”,0) 4 (START, “author”,0)

5 (PCDATA,“Claude Monet”,0) 6 (END,“author”,0)

Definition 1. A token’s associated element is the element
of which this token is a start tag, an end tag or a direct
PCDATA content.

Definition 2. A token tis a component token of an element
e if ¢’s associated element is €’s subelement or e itself.

Token Context. We focus on the context regarding the
ancestor-descendant relationship between tokens. This re-
lationship is most commonly queried in XPath expressions

using such axis specifications as child, descendant, parent
and ancestor-or-self axis etc. Similar to other work in the
literature, we currently do not address the relative position
relationships among siblings, such as preceding-sibling axis,
nor position predicates like description/emph[2].

Each token context also carries the concept of an iden-
tifier which identifies the token’s associated element. An
element’s start tag, end tag or direct PCDATA token thus
have the same context identifiers.

Functionalities Supported by Contextualized Tokens.
The contextualized tokens should support three boolean func-
tions as defined below. In the notations below, ¢ and t' rep-
resent two tokens, and p represents an XPath expression.

1. Reachable(t,t',p): If t and t' are both start tags, return
whether from the element associated with ¢, the element
associated with ¢’ is reachable via p. Otherwise, return false.

2. Within(t,t'): If t is a start tag, return whether for the
element e associated with ¢, token ¢’ is a component token
of e. Otherwise return false.

3. t = t': Indicate whether the context identities are
the same. In other words, it indicates whether elements
associated with t and ¢’ are the same.

3.2 Operators for Contextualized Tokens

We now introduce new operators that take contextual-
ized token inputs or generate contextualized token outputs,
namely, Source, Navigate, EztractUnnest, ExtractNest and
StructuralJoin. An operator is defined by Opparesoutvar(Us,),
where Op is the operator’s name, paras is the parameters
and outvar is the variable bound to newly generated cell in
the output tuples. It gives the outputs of Op on U,, the
first n input tuples.

We use the monoid comprehension calculus [5] to describe
the semantics. Informally, a monoid comprehension is in
the form of mergeOp{f(a,b,...) | a < A, b < B, ..., predi,

preds, ...} where mergeOp is for merging several collections
into one collection. The following computation would be
performed:

result : = an empty collection;
for each a in A, b in B, ...,
if pred1 A preda A ...
result : = result mergeOp f(a, b, ...)

For example, U{(a,b)la < {1,2},b < [4]} joins the set
{1, 2} with the list [4]. Since U, the mergeOp for a set, is
used for result collection construction, a set is returned, i.e.,

Notation Explanation

u.$c get value of cell $c from tuple u

< c1 =v1,C2 =v2,... > construct a tuple with cell c; of value
v1, cell ca of value va...

U1 0 U2 construct a tuple concatenated from

tuples w1 and wuo

construct a tuple by projecting all
columns except those in colList from
tuple u

H_cotnistw

+H merge operator for list (represented

as [])

Table 2: Notations

{(1, 4), (2, 4)}. Several other notations used for defining
the semantics are listed in Table 2.

3.2.1 Source

SourcesirName$s(Th) = H {< $s =1t0,85 =t >|t + T}

The Source operator’s inputs are a list of tokens repre-
sented as T,,. Source binds a stream specified by str Name
to an output variable $s. $s is bound to the first start tag
(represented as o) in the stream, which identifies the root
element and thus the stream. Moreover, the content of the
root element needs to be outputted. Therefore each output
tuple also contains an implicit variable $5 which is bound to
the component tokens of $s. In general, we use $v to rep-
resent an implicit variable accompanying explicitly specified
variable $v.

We illustrate the semantics of each operator using the
example in Figure 1. Each token in the tuple cells is repre-
sented by its identifier as annotated in Figure 1 (a).

Ezample 1. For Source«open_auctions” $s1, the first 3 out-
put tuples are,

20

$s1 | $

==
w N =

3.2.2 Token Navigate Operator Nav

We provide a token navigate operator Nav for pattern
recognition over the tokens. NavUnnest and NavNest at the
stream logical level now specifically refer to the navigation
over XML element nodes. Unlike NavUnnest and NavNest
whose outputs contain the target element nodes, Nav only
pinpoints the target node by its start tag while composition
of the target nodes are modeled separately in ExtractUnnest
and EztractNest.
Navg, ,$d(Un) =

+"{< $d = U1$€,$(Z = U2$g > [e] H—|{$€}ul
| w1 < Un, w2 < Un, Reachable(ui.$e,u1.9¢,p),
Within(ui.$¢, u2.3€)}

Each input tuple u to Navg, ,$d contains a cell $¢ which is
a component token of the entry variable $e (i.e., the element
to be navigated into). If Reachable(u.3e, u.$¢€, p) is true, u.€
is then the target element and bound to $d. Each output

tuple also contains a component token (bound to $d) of $d.

Ezample 2. If Navss1,//open_auction$a takes the first 5 out-
put tuples from Source«open_auctions”$s1 as inputs, its out-
puts are:

$s1 | $a | $a

e
NN NN
O W N

3.2.3 Composition Operator ExtractUnnest

Sections 3.2.3 and 3.2.4 introduce two extract operators.
They convert the data in a contextualized token format into
a regular XAT cell format. In other words, they materialize
the on-the-fly tokens. We use the term Eztract to in general
refer to both the ErtractUnnest and ExtractNest operators.

EztractUnnestg. ,9d only takes outputs of Nav as in-
puts. For each target element found, EztractUnnest com-
poses (represented as @) its component tokens into an XML
element node. For each such composed node, a tuple is cre-
ated. In the notation below, Group(coiList),aggregateOp(cot)C
represents (1) grouping the collection C' by the columns in
colList and (2) for each group, producing one tuple consist-
ing of: 4. values of columns in colList, and 4i. the aggre-
gation (which is still bound to col), resulting from applying
operator aggregateOp on the column col of that group.

EztractUnnestse y8d(Un) = Group s, s;» o GayUn

Ezxample 3. 1f EmtractUnnest%l,//opm_amtion$a consumes
the first 4 output tuples of Navgs1,//open_auctionba (shown
in Example 2), an output tuple is generated in which the
cell $a contains a yet-to-complete XML element node. This
tuple is only a partial output for the inputs seen so far and
would be updated as more inputs are processed. Eventually,
$a in the tuple would contain a complete XML element node
composed from 2P 3 @ ... B 26 where tokens 2 and 26 are
the start and end tags of an open_auction element.

$s1 | $a | $a
I |2 2030405

3.2.4 ExtractNest

Eztract Nestge ,$d aggregates (represented as +) all tar-
get nodes within the same $e into a collection and creates
one tuple for the whole collection.

EzxtractNestg. ,$d(Un) =
Groupg.) 1y sa)(Group s, sa),¢ s Un)

Ezample 4. Assume ExtractNestgy jdescription/emphSd con-
sumes the first 6 output tuples from Navsy, /description/emph 34,
the output is:

$s1 | $a | b | $d
T 723 [[0010011,12813@ 14]

3.2.5 Structural Join

A Nav operator can only resolve a linear XPath expres-
sion, i.e., an expression without node test filters. To recog-
nize a tree expression like a/b|c], a structural join operator is
needed to glue the bindings to separate linear expressions.
For example, the expressions a/b and a/c are merged on
their common bindings to their navigation step a. In the
notations below, we use UR,1 and U L2 to denote the first
nl and n2 input tuples from the left and right side respec-
tively. Tuples are joined on the context identities of $e.

StructuralJoing, (ULn1, URn2) =

+H{<ulour > |ul < ULp1,ur < URn2,ul.$e = ur.Se}

Ezample 5. Suppose ExtractNestsy, jqescription/empndd is
structurally joined with ExtractNestg,f,/author on $b (a start
tag of an annotation element). Assume the left input is:

$s1 | $a | $b | $d

1 [23 [[9010011,12¢ 13 14]
and the right input is:

$s1 | $a | $b | $e

1 [2]3[[40586]

Then the output is:
$s1 | $a | $b | $d | $e
T [23][9010011,12013014] [[4D 5 ® 6]

3.3 Stream-Specific Plan Structures

XML streams arrive on the fly. Without materialization,
each token can be accessed only once. The token consuming
operators must be arranged in a meaningful way to avoid
any conflicts of “repetitive token access”. We therefore pro-
pose a special plan structure, called order-free-navigation,
to meaningfully organize those token-consuming operators.

In essence, the order-free-navigation plan structure mod-
els the automata behavior. An automaton, when required
to find the pattern A or B, would not impose any order on
which pattern to find first. Rather it defines each pattern as
a sequence of states and lets the input alphabets drive the
transition between these states. Either pattern can be found
before the other depending on the order in which they occur
in the data. Multiple patterns are resolved during a sin-
gle scan without the materialization. Order-free-navigation
is such an automata on-the-fly processing style. It decou-
ples the data dependency between navigate operators in the
semantics-focused plan and thus lifts the execution order
restrictions.

(ExlractNestsb, /description/emph$d>

(ExtractNestSa‘ /year $c) ﬁ\lavsb. /description/emph $d)

(Navsa, /year $¢) (Navsa, /annotation $b)

Nav S1, //open_auction $a
Source Open_auctions S1

Figure 4: Stream Logical Plan

For example, for the two shaded operators in Figure 3,
NavNestsy jemph/description 3d must be executed before
NavNestsy, /quthor Be can be executed on the same $b. Since
$b needs to be navigated twice, $b has to be materialized
in between. In Figure 4 which depicts the corresponding
stream logical plan, we instead model these two operators as
being independent. They share the same upstream operator
Navga, jannotation 30, Which indicates the shared read from
Navge, jannotation$b. The downstream StructuralJoing, then
joins the outputs originating from the two navigate opera-
tors, imposing that the two patterns must both be satisfied.

3.4 Stream Logical Plan Rewrite Rules

We now have plan structures that model both automata
execution style and non-automata execution style. Rewrite
rules are offered to switch operators between these two styles.
For example, the break-linear-navigation rule rewrites a set
of “linear” node navigation operators into independent to-
ken navigation operators.

. col2 . coll
NavigateNestoors pain2(Navigate Nestoon patn1) <

12 12
Extract Nestiois path2(NaVeoi0,path2) Pcoloecolo

coll coll
EmtraCtNe'StcolO,pathl (Navcolo,lmthl)

Similar rules are provided for the different combinations
of NavNest and NavUnnest. The query plan in Figure 4 is
rewritten into the plan in Figure 3 by repeatedly applying
these rules until no more can be applied.

4. STREAM PHYSICAL PLAN

4.1 Implementation of Contextualized Tokens

A contextualized token is a “raw” token in the stream en-

hanced with explicit context information. We use a variation
of a pushdown automaton to implement such tokens.
Data Structures. The automaton is composed of two
parts. Figures 5 (a) and (b) shows these two parts for the
query plan in Figure 4 respectively. One part is based on a
non-deterministic finite machine (NFA). It encodes the path
expressions present in the query. Each final state in the au-
tomaton marks the end of a path expression. The second
part is a stack-like structure representing the contexts of to-
kens. For each start token, instances of those states that the
token would induce the NFA to transit to would be pushed
into the stack. If there is no state to transit to, an empty set
is pushed instead. For each end token, the instances at the
stack top are popped. The stack is restored to the status
before the matching start tag had been encountered. For
a PCDATA token, since it lacks a paired token to restore
the stack, the instances would first be pushed into and then
popped out of the stack. For a start or PCDATA token, the
stack after the instance push-in is the token’s context. For
an end tag, the stack before the instance pop-out is its con-
text. Each context is identified by the token that triggers
the push-in of its stack top. Therefore the tokens associated
with the same element have the same context.

open_auction

(a) Finite Automaton

97 |4 97 |4
@ 3] 94 3] 94 |3 | ¢4
2 2192 |2| 92 |2 92 |2 | @2
ql 1| q |¢] ql 1] 4l 1] al 1| al
q0 q0 q0 q0 q0 q0 q0
<Open_auctions> <open_auction> <annotation> <author> Claude Monet </author>

(b) Contextualized Token

Figure 5: Automaton Implementation of Context

Natural Lifetime of Context. Since the instances of the
stack top states can be removed, a start token context’s

“natural lifetime” (meaning without any persistence of the
removed state instances) is only valid until the context of
its paired end tag is computed. For example, the context of
token 4 is only accessible in the two stacks highlighted with
rippled lines in Figure 5. A contextualized token can be
represented in two ways, with a persistent context or a non-
persistent context. If the presentation of a non-persistent
context is used, the operator consuming such tokens must
be executed with discretion to be consistent with the natural
lifetime of its inputs (discussed in Section 4.3).

4.2 Alternative Physical Operators

A logical operator may have several alternative physical
operators it can map to. Due to space limitation, we here
give one example on Structural Join.

A structural join, depending on its position in the query
plan, may require a certain representation of its contextual-
ized token inputs. Figure 6 shows two alternative subplans.
Since $b is a subelement of $a ($6 = $a/annotation), the
natural lifetime of $b is shorter than that of $a. Suppose
StructuralJoing, on inputs from ExtractNests,, /yeqrSc and
Selectgg=«rrench Impressionism” 18 very selective and we want
to perform it before StructuralJoing, as shown in Figure 6
(a). Suppose within each $a, $b occurs before $c¢ ($¢ =
$a/year), then $b’s context expires before $a’s. When a
tuple containing $c is generated by ExtractNests,, /yearSc,
the contexts of $b in the outputs of ExtractNestg, jquthorde
would have been lost if a non-persistent context representa-
tion were used. Therefore a persistent context representa-
tion of $6 must be used here for the later structural join on
$b. In contrast, in Figure 6 (b), StructuralJoing, is exe-
cuted first. When the context of $b expires, the context of
$a is still alive. A non-persistent context representation of
both $a and $b can be used here. Therefore, we design two
implementations of structural join. InTimeStructuralJoin
joins on a non-persistent context representation while Any-
TimeStructuralJoin joins on a persistent context represen-
tation of the contextualized tokens.

StructuralJoinsb
StructuralJoinsa

(ExtNestsa, /year $¢) (SCIMZ“French]mpressionism")
Y
(EX[NeStZSb. /description/emph$d)(ExtNestsb, /author$e)

(a) Any Time Structural Join

StructuralJoinsa
StructuralJoinsb
Sel$d=“French Impressionism™

(ExtNestsa, /year $¢) (EXtNeSt!Bb‘ /descriptiou/emphﬂid} (ExtNestsb, /author$e)

(b) In Time Structural Join

Figure 6: Alternative Structural Joins

4.3 Executing Automata-Inside Operators

Definition 3. An operator, if either (1) it consumes the
values of the contextualized tokens, or (2) any cell of the in-
put tuples contains contextualized tokens with non-persistent
contexts is said to be executed inside the automata.

The automata-inside operators consume data with limited
lifetime. In case 1 above, the value of a token expires when

the following token is scanned by token navigate operators.
In case 2, the non-persistent context of a start tag is alive
until the paired end tag is scanned. These operators have
to be coupled with the automata in two modes in order to
synchronize their computation with the lifetime of their in-
puts. The regular-invoke mode associates a state with token
value consuming operators while the group-by-invoke mode
associates a state with token context consuming operators.
Regular-Invoke. EzxtractUnnestg. ,$d or Extract Nestg, ,$d
consumes token values. It will be coupled in a regular-invoke

mode with a final state S marking the end of p. When an

instance sg of S is pushed into the stack by a start tag of a

target element (i.e., a binding to $d), the extract operator

is invoked and the subsequent component tokens of this $d

would be composed. When an end tag triggers the popping

of so, the extract operator is revoked indicating the comple-

tion of token composition for the current $d.

For example, in Figure 7 (b), when token 9 leads to the
push-in of an instance of ¢s (shown as the left stack),
ExtractNestgy, /description/emph$d is invoked and “French Im-
pressionism” is extracted into the cell bound to $d (the
left operator). Token 12 again would invoke this operator
(the right stack) and extract another string value “Water
lilies” into the same cell (the right operator) as required by
EzxtractNest’s semantics of aggregating all emph subele-
ments within the same annotation element. We represent
the cell in Figure 7 (b) without underlying line, indicating
that the cell is “open”, namely, it can accept more string
values reachable via “/description/emph” from token 3.

Tagger<result>$e</result> $f lfgendRegulm_ Invoke
=k Group-by Invoke

(ExtractNestsa, fyear $c) { {ExtractNestsb, descri gion emph$d) ExtractNestsb. /authorSg
m

[9 6 12
&7 @17 [s]
Q4 3 TFronch q4 3 }-renc\l:/ lmprlelsslomsm
> @ > aer liles
al 1 ql
90 ExtractNestsb, /description/emph$d) [~q0 ExtractNestsb, /description/cmph$d)
9 <emph> 12<emph>
(b) Regular Invoked
[se]
@ author>Claude
Monet</author>
a4 3 StructuralJoinsb
2 |3 [S |
thor>Claude
Tl D] (ol) [|
;
g Water liies ExtractNestsb, /author$e

16 </annotation> (ExtractNestsb, /description/emph$d)

(c) Group-by Invoked

Figure 7: Invoking Automata-Inside Operators

Group-by-Invoke. FEztractNestg. ,$d must acquire the
knowledge of when a cell is “close”, i.e., a group of subele-
ments within a certain $e has been formed. Because of
the sequential traversal of the XML stream, the extracted

target subelements of bindings to $e naturally cluster on
$e. An end tag of a binding to $e signals that a com-
plete group of subelements within this $e have been gen-
erated. InTimeStructuralJoing, also makes use of such
group end signals. Since all input tuples are clustered on $o,
InTimeStructuralJoin can simply perform a cartesian prod-
uct on the inputs when invoked in a group-by mode by end
tags of bindings to $o. Correspondingly, all clustered inputs
on current $o are purged after the cartesian product, since
they should not participate in the next cartesian product on
a different binding to $o.

For example, in Figure 7 (c), when an instance of ¢4 is re-

moved as token 16 is scanned, Extract Nestgy jdescription/emph$d

is invoked in a group-by mode. The cell collecting the emph
elements within the annotation element with a start tag 3 is
now close (represented as a solid line at the bottom of the
cell bound to $d), indicating a complete output tuple has
been formed. Similarly, ExtractNestsy jauthorde closes the
cell bound to $e. InTimeStructuralJoin is invoked subse-
quently (the number “2” beside it indicates it must be fired
after the two operators with number “1” have been fired),
performing a cartesian product on the input tuples.

5. RELATED WORK

Typical stream applications include networking traffic mon-
itoring, sensor network management and web tracking and
personalization. Projects like Fjord [10], Aurora [1] and
STREAM [2] address general issues of querying data streams,
assuming a tuple-like data model.

Studies also surge in the field of querying XML streams.
XSM [9] and XSQ [13] both tackle this problem based on
transducer models. XSM decompose an XQuery expression
into subexpressions each of which is mapped to a trans-
ducer machine. These machines are connected into a net-
work, in which the output buffer of a machine can be the
input buffer of another machine. XSQ supports XPath, a
subset of XQuery. XSQ supports a more efficient memory
management than XSM by promptly cleaning up interme-
diate buffers when they are no longer needed. Both models
present all execution details on the same low level. Such
models suffer in both understandability and optimization.
First, the large number of constructs in the model, such as
states, transitions, actions on buffers, makes it less intuitive
to express query semantics. Second, such a large network
is difficult to reason about for optimization. In contrast,
the success of the relational algebraic model has justified a
general approach of layered query plans, i.e., to hide imple-
mentation details at different levels of abstraction.

YFilter [4] and Tukwila [7] are closest to our work. As
mentioned in Section 1, their approaches suffer from the
rigidity and coarse granularity of the modelling of token-
based automata computation. Our work instead uniformly
integrate the token-based and tuple-based computations and
thus offers more query rewrite optimization opportunities.
Meanwhile, our physical operators are efficiently implemented
by taking advantage of the automata behaviors.

This paper differs from a preceding work [8] in two as-
pects. First, this paper presents precise semantics for op-
erators handling tokenized stream inputs. Particularly, it
proposes a novel concept, contextualized tokens for model-
ing the inputs. Second, multiple mappings from logical to
physical operators are provided in this approach while there
is no separation of logical and physical levels in the pre-

ceding work since a logical operator is tied with only one
implementation.

6. EXPERIMENTS

We have implemented a prototype called Raindrop with
Java 1.4.1. We use ToXGene [3], an XML data generator, to
generate the XML documents conforming to the DTD used
in the XML benchmark XMark [14]. We run experiments
on two Pentium IIT 800 Mhz machines with 512MB memory.
One machine sends XML streams via sockets to another
machine which would then process the received data.

Figure 8 shows a semantics-focused plan and various stream
physical plans resulted from different amount of computa-
tion pushed down into the automata. The query in Fig-
ure 8 asks for every element $b6 whose sibling $c satisfies
a given condition. The upper part of Figure 8 (b) shows
the subplan for automata-inside operators when only the
NavUnnestsi,;jopen_auctionda is pushed into the automata.
The bottom part of Figure 8 (b) shows another subplan
when all three navigate operators and selections are pushed
down into the automata. Our experiments explore the im-
pact of different computation pushdown strategies on the
performance. We do not include the time spent on reading
the stream from the sockets and parsing the stream in the
plan execution time.

p - N

| 1 navigate (ExtractUnnest $S1, //open_auction $a>
r} pushed down
i
|

)
|

i

1
Nav $S1, //open_auction $a) |
;

|
(Tagger<result>Sb</result> $d) I
Ly

(NavNestsa, /initial $b)\ I //_;’/r:avigates
) II l‘ pushed down
|

(Select$e=1

(NavNestsa, /qtty $¢

Q\JaVUnl’lest!iSl,//openiauctlon $Q¢ |
4

|
1
(Source Open_auctions $S1) \

S

(@) ()

Figure 8: Plans from Different Computation Push-
downs to Automata

Our test queries are similar to Figure 8 (a), but vary in
the number of navigate operators. Each query has multiple
physical plans resulted from different amount of computa-
tion pushed down. For each such physical plan, we test it
using various XML documents on which the selection oper-
ators have different selectivities. These XML documents are
generated in a way so that the selectivities of all selections
are the same and independent of each other.

Figures 9 and 10 show the execution time of plans, with
5 and 9 navigate operators respectively, on XML streams
of size 85Mb. They reflect the general trend of the execu-
tion time in the sequence of queries tested as the number of
navigate in the query increases. The x-axis represents the
selectivity of a single selection, where the overall selectivity
(i.e., the cube of a single selectivity) is shown in brackets.

We can see in both figures, plans in which not all navigate
operators are pushed down have consistent rankings. This
is because ExtractUnnestssi,;jopen auctionda occurs in all
partial pushdown plan. These plans materialize elements in
an increasing size since the they have increasing numbers
of extract operators which dictates the ranking of the ex-
ecution time. The amount of materialization is the same

Execution Time (ms)

PP PES PSP

A @AY @ T o0 oY

7 07 o (Vo7 % &

Selectivity of Single Selection (Overall
Selectivity of All Selections)

Figure 9: Plan with 5 Navigates and 3 Selections

under various selectivities, since all selections are done after
the extraction so that they have no impact on the decisions
of what to extract. Therefore the rankings are consistent
under various selectivities.

65000
60000
55000
50000 -
45000 +
40000
35000
30000
25000
20000

Execution Time (ms)

Selectivity of Single Selection (Overall
Selectivity of All Selections)

Figure 10: Plan with 9 Navigates and 7 Selections

We also observed that the execution time of the best par-
tial pushdown plan, ie., the plan with only
ExtractUnnestss,/jopen-auctionda in the automata, has a
crossover with that of the complete pushdown plan. For the
complete pushdown plan, it performs all selections indepen-
dently and thus spends more time in finding the nodes that
would not occur in the final results. However in the com-
plete pushdown plan, ExtractUnnestss,//open-auction$@ DO
longer occurs since no $a is needed outside the automata.
Therefore when the overall selectivity is below certain point,
the partial pushdown plan benefits from serialized filtering.
In contrast, when the selectivity is beyond the point, the
benefit of early-stage filtering in the partial pushdown plan
is offset by the cost of ExtractUnnestssi ;/open_auctiona-

Moreover, the cross over point of the best partial push-
down plan and the complete pushdown plan varies for dif-
ferent queries. It shifts to the higher end as the number
of navigate operators in the query increases, e.g., from the
overall selectivity of 0.5 to 0.8 in Figures 9 and 10. For our
tests ranging from 3 navigates and 12 navigates, the overall
selectivity where the cross over occurs range from 0.1 to 0.8.

In summary, we have shown that no single automata push
down strategy ensures the best performance for all cases.
This further proves the rigid execution strategies the queries
are mapped in systems as YFilter and Tukwila may in many
cases not be the optimal plan. In contrast, Raindrop’s al-
gebraic model provides a framework for finding the optimal
plan.

7. CONCLUSION

Raindrop accommodates a token-based automata paradigm
and a tuple-based algebraic paradigm within one algebraic
framework. This is a novel approach compared to the litera-
ture which models the two processing paradigms separately
and thus optimizes them separately as well. Our approach
instead allows the query optimization over all computations
to be performed in an uniform algebraic manner. The pro-
posed four-level algebraic framework enables an iterative
process of query plan refinement. We have conducted ex-
tensive experiments to explore what computation should be
executed in the automata under various circumstances.

8. REFERENCES

[1] D. Abbadi, D. Carney, U. Cetintemel, M. Cherniack,
C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: A new model and architecture for
data stream management. VLDB Journal, 2003.

[2] B. Babcock, S. Babu, and M. Datar et al. Models and
Issues in Data Stream Systems. In Proceedings of
PODS 2002, pages 1-16, 2002.

[3] D. Barbosa, A. Mendelzon, and J. Keenleyside et al.
ToXgene: a Template-Based Data Generator for
XML. In Proceedings of WEBDB, pages 49-54, 2002.

[4] Y. Diao and M. Franklin. Query Processing for
High-Volume XML Message Brokering. In Proceeding
of VLDB, to appear, 2003.

[5] L. Fegaras and D. Maier. Towards an Effective
Calculus for Object Query Languages. In Proceedings
of SIGMOD, pages 47-58, 1995.

[6] H. V.Jagadish, S. Al-Khalifa and A. Chapman et al.
TIMBER: A native XML database. In VLDB Journal,
volume 11(4), 2002.

[7] Z. Ives, A. Halevy, and D. Weld. An XML Query
Engine for Network-Bound Data. VLDB Journal, 11
(4): 380-402, 2002.

[8] J. Jian, H. Su, and E. Rundensteiner. Automaton
Meets Query Algebra: Towards A Unified Model for
XQuery Evaluation over XML Data Streams. In
Proceedings of ER, to appear, 2003.

[9] B. Ludascher, P. Mukhopadhyay, and
Y. Papakonstantinou. A Transducer-Based XML
Query Processor. In Proceedings of VLDB, pages
215-226, 2002.

[10] S. Madden and M. Franklin. Fjording the Stream: An
Architecture for Queries Over Streaming Sensor Data.
In Proceedings of ICDE, pages 555-566, 2002.

[11] P. Mukhopadhyay and Y. Papakonstantinou. Mixing
Querying and Navigation in MIX. In Proceedings of
ICDE, pages 245-254, 2002.

[12] Open Text Corporation. SAX.
http://www.saxproject.org, 2002.

[13] F. Peng and S. Chawathe. XPath Queries on
Streaming Data. In Proceedings of SIGMOD, pages
431-442, 2003.

[14] A. Schmidt, F. Waas, R. Busse, M. Carey,

D. Florescu, M. Kersten, and I. Manolescu. Xmark —
The XML-Benchmark Project.
http://www.xml-benchmark.org, April 2001.

[15] X. Zhang, B. Pielech, and E. A. Rundensteiner.
Honey, I Shrunk the XQuery! — An XML Algebra
Optimization Approach. In WIDM, pages 1522, Nov.
2002.

