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ABSTRACT
Many systems such as Tukwila and YFilter combine automa-
ton and algebra techniques to process queries over tokenized
XML streams. Typically in this architecture, an automaton
is first used to locate all query patterns in the input stream
and compose the matched tokens into XML element nodes.
These XML nodes are then passed to the tuple-based alge-
braic operators for further filtering or restructuring. This
common processing style is however not always optimal. At
times it is more efficient to retrieve only a subset of the
patterns in the automaton while retrieving the rest of the
patterns on the XML element nodes. In this paper, we use
a cost-based solution to explore this novel optimization op-
portunity. We design three plan optimization algorithms,
namely, MinExhaust, GreedyBasic and FastPrune. We also
study how to migrate from a currently running plan to a new
plan in a safe and efficient manner. Our experimentations
have shown that the GreedyBasic or FastPrune algorithm
can quickly find a plan that is close to optimal in most sce-
narios. Also we illustrate that the overhead in our approach
for run-time statistics collection and plan migration are very
lightweight.

1. INTRODUCTION
State-of-the-art XML stream engines commonly combine au-
tomaton and algebra for query processing [9,10,19]. Let us
use the XQuery in Figure 1 (a) as an example. This query
asks to pair certain seller and bidder elements located within
the same auction parent element. Figure 1 (b) depicts the
Tukwila plan [19] for this query. The query processing con-
sists of two stages: automaton processing and algebraic pro-
cessing. In the first stage, all patterns in the query such
as $a = auctions/auction and $b = $a/seller are retrieved
by the X-scan operator which is an abstraction of an au-
tomaton. If certain patterns need to be further filtered or
returned, the automaton extracts the tokens matching the
patterns from the stream and composes them into the tree
structured XML element nodes. For example, in Figure 1
(b), X-scan composes auction and seller element nodes and

binds them to variables $a and $b respectively in the out-
put tuples. In the second stage, these generated tuples are
further manipulated by tuple-based algebraic operators, for
example, by Select$f=“01609” operator.

for $a in stream(“open_auctions”)/auctions/auction[reserve]
$b in $a/seller, $c in $a/bidder

where $b//profile contains “frequent”and $c//zipcode= “01609”
return

<auction> {$b, $c} </auction>                  

Source $s

X-Scan   $a = auctions/auction
$b = $a/seller
$c = $a/bidder
$d = $a/reserve
$e = $b//profile
$f = $c//zipcode

Select $f = “01609”

(a) Example Query

(b) Tukwila Query Plan: Retrieving 
All Patterns in Automaton

$a $b $c

Source $s

X-Scan’
$a = auctions/auction
$d = $a/reserve

$a $d

NodeNav$a, /bidder$c

(c) Alternative Plan: Retrieving Part 
of Patterns in Automaton

… …

$d $e $f

Figure 1: Alternative Tukwila Plans

Retrieving all patterns in the automaton requires only one
single pass of read over the input. It has thus been assumed
by the current literature [9, 10, 19] to be the most effective
manner for pattern retrieval. We have demonstrated analyt-
ically and experimentally this commonly made assumption
is not necessarily true [16, 17]. In the plan in Figure 1 (b),
patterns are retrieved independently. For example, whether
$a/reserve occurs in a binding of $a does not affect whether
$a/seller will be retrieved, and vice versa. Now consider a
variation of the Tukwila plan as shown in Figure 1 (c). This
plan retrieves only auctions/auction and $a/reserve in X-
Scan’. In the output tuples of X-Scan’, the bindings of $a
contain only those auction elements that have reserve child
elements. These tuples are further manipulated to locate
the remaining patterns. For example, NodeNav$a,/bidder$c
navigates into the bindings of $a, i.e., the auction element
nodes, to locate /bidder.

The latter plan essentially “serializes” the retrieval of
$a/reserve and the other patterns including $a/seller,
$a/bidder, $b//profile and $c//zipcode. If only a small
number of auction elements has reserve child elements, very
few output tuples are generated by X-Scan’. This plan then
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saves the pattern retrieval of $a/seller, $a/bidder, $b//profile
and $c//zipcode compared to the former plan. These savings
can be significant because retrieving patterns $b//profile
and $c//zipcode which contain the recursion navigation step
“//” can be rather expensive [11].

In our previous work [16, 17], we have proposed an alge-
bra to support plans that can retrieve patterns both in and
out of the automaton. In this paper, we now address the
automaton-in-or-out optimization problem, that is, deciding
which patterns should be retrieved in the automaton versus
out of the automaton. The major challenges tackled by our
work are as follows.

First, we define a cost model for the plans that support
pattern retrieval both in and out of the automaton. Al-
though costing of tuple-based XML operators has been stud-
ied [1,21], there is little research on costing token-based pat-
tern retrieval. The novelty of our cost model lies in the
costing of automaton computations.

Second, we develop several plan search algorithms catering
to different scenarios. When n, the number of patterns in
the query, is small, our MinExhaust algorithm guarantees to
find the optimal plan in O(2n) time. Given its high complex-
ity, we design a second algorithm called GreedyBasic which
finds a plan in O(n2) time. A third algorithm called Fast-
Prune expedites GreedyBasic by pruning sub-optimal plans
during the plan search, thus still generating the same plans
as GreedyBasic.

Third, since the statistics of the stream source are often un-
available before the stream arrives, and worse yet they may
continue to change over time [3], we have to perform the op-
timization at run-time. We study how to collect the statis-
tics as the plan is running. We also study how to migrate
the currently running plan to a better plan. In particular,
we design an efficient, incremental migration strategy that
avoids recreating the automaton for the new plan. We also
define a migration time window in which the migration can
be safely undertaken.

Our experiments illustrate that the optimization techniques
reduce the processing time significantly in many cases. The
experiments also demonstrate that the run-time statistics
collection and plan migration have a very low overhead.

2. XML STREAM QUERY PLANS
We now briefly review the XML stream processing model
that combines automaton and algebra. We use the Rain-
drop [15–17] XML stream processor for illustration purposes.
The automaton used in Raindrop is similar to those in Tuk-
wila [19] and YFilter [9]. In fact, it serves as the core of
many other automaton-style XML stream engines [11,12,22].
Hence the techniques discussed in this paper are not limited
to Raindrop engine. Any stream engine using the automa-
ton and algebra processing model [9,10,19] can apply these
techniques.

Table 1 describes the Raindrop operators used in this paper.
Figure 2 depicts a Raindrop plan for the query in Figure 1
(a). The highlighted subplan retrieves $b = $a/seller and
$e = $b//profile. TokenNav$a,/seller$b locates all the to-

Operator Description

SourcesourceName$s Bind data source to column $s

TokenNav$v1,path$v2 $v1 represents a sequence of to-
kens that corresponds to an element.
TokenNav$v1,path$v2 locates the to-
kens of elements that are accessible via
path from $v1.

Extract$v1$v2 Take token inputs from
TokenNav$v1,path$v2, compose
these tokens into XML nodes and bind
them to $v2.

NodeNav$v1,path$v2 $v1 represents an element node.
NodeNav$v1,path$v2 locates the ele-
ment nodes that are accessible via path

from $v1 and binds these nodes to $v2
StructuralJoin$b Joins input tuples whose column $b con-

tains the same element.
Taggerpattern$v Tagger an input tuple according to

pattern.

Table 1: Semantics of Raindrop Operators

kens that are part of the seller elements. Extract$a$b then
composes these tokens into XML element nodes. Similarly,
TokenNav$b,//profile$e and Extract$b$e locate and com-
pose profile element nodes. StructuralJoin$a finally joins
each seller element node with its descendant profile element
nodes.

Extract$a$d Extract $a$c

StructuralJoin$a

Extract $c$f

StructuralJoin$c

TokenNav$a, /reserve$d

TokenNav$a,  /seller $b

TokenNav$a,  /bidder $c

TokenNav$c, //zipcode$f

Select$f = “01609”

StructuralJoin$b

TokenNav$b, //profile $eExtract$a$b

Extract$b$e

Select$e contains “frequent”

TokenNav$s, /auctions/auction$a

Source “open_auctions ”$s

Tagger<auction>$b,$c</auction>

Figure 2: Plan for Query in Figure 1 (a)

Top of Figure 3 shows the automaton which implements the
TokenNav and Extract operators in the Raindrop plan. A
stack is used to store the history of state transitions. Bot-
tom of Figure 3 depicts the snapshot of the stack after each
token (annotated under the stack) in an example stream is
processed. Initially, the stack contains only the start state
q0 (see the first stack). As we need to define the cost for
pattern retrieval in the automaton, we now describe how the
automaton functions.

1. When an incoming token is a start tag:

(a) If the stack top is not empty, the automaton checks
whether the states at the stack top can be transitioned. For
example, when <auctions> is encountered, the automaton
transitions q0 to q1 and pushes q1 onto the stack (see the
2nd stack). If no states are transitioned to, the automaton
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q1
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q2

q0
q1

<emph>

q0
q1

<auctions> </emph>

q2
auction

q1
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q3
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q6

profile

q5
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q0

auctions

zipcode

*

q8

*
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reserve
q3
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q6

profile

q5

q9bidder
q0

auctions

zipcode

*

q8

*

q4

q7

q0

q2

q0
q1

q0
q1
q2

q4, q5

<seller>

q0
q1
q2

q4, q5

<seller>

q0
q1
q2

</annotation>

q0
q1
q2

q4, q5

<profile>

q0
q1
q2

q4, q5

<profile>

q5, q6

Figure 3: Snapshots of Automaton Stack

pushes an empty set (denoted as ∅) onto the stack. For ex-
ample, before <annotation> is encountered, stack top con-
tains a q2 (see the 3rd stack). No transition with label ”an-
notation” starts from q2. Therefore, a ∅ is pushed onto the
stack after <annotation> is processed (see the 4th stack).

(b) If the stack top is empty (∅), the automaton directly
pushes another empty set onto the stack without any tran-
sition lookup (see the 5th stack after we see <emph>).

2. When an incoming token is a PCDATA token: the au-
tomaton makes no change to the stack.

3. When an incoming token is an end tag: the automaton
pops off the states at the stack top (see the 6th stack after
we see </emph>).

TokenNav and Extract consume tokens and are called automaton-
inside. The other operators such as NodeNav and Tagger
consume tuples containing XML element nodes and are called
automaton-outside. Tree-like element nodes can be accessed
in a non-sequential manner, and hence are advantageous
over XML tokens, which can be accessed only in a sequen-
tial manner. For example, in a tree structure, from an entry
node, we can access its second child node without having
to access all descendants of the first child node. It is there-
fore more efficient to locate patterns in such tree structures
than over those only sequentially accessible tokens. There-
fore once an element node has been formed, it will not be
converted back to tokens again. That is to say, the out-
put of automaton-outside operators will not be consumed
by automaton-inside operators.

3. AUTOMATON PULL-OUT OR PUSH-IN
REWRITE

We now present the rewrite rules that move pattern retrieval
into or out of the automaton. In the plan in Figure 4 (a),
$v2 = $v1/p1 is retrieved in the automaton. The pull-out
rule eliminates TokenNav$v1,p1$v2 and Extract$v1$v2 and
introduces NodeNav$v1,p1$v2 (see the rewritten plan in Fig-
ure 4 (b)). If Extract$v0$v1 operator, which forms the XML
nodes bound to $v1 so that NodeNav$v1,p1$v2 can navigate
into, had not existed in Figure 4 (a), it would be introduced
into the rewritten plan. We can also rewrite the plan in
Figure 4 (b) back to the plan in Figure 4 (a) by pushing
$v2 = $v1/p1 into the automaton. We refer to the pull-out

or push-in of a pattern retrieval as mode change of the cor-
responding TokenNav or NodeNav operator respectively.

TokenNav$v0, p0$v1

TokenNav$v1, p1$v2

Extract$v1$v2

StructuralJoin$v1

…

TokenNav$v0, p0$v1

Extract$v0$v1

…

StructuralJoin$v1

(a) (b)

NodeNav$v1, p1$v2

Figure 4: Automaton Pull-out/Push-in

Let us consider a more complicated case. Suppose we want
to change the mode of TokenNav$a,/seller$b in Figure 2
where $b is further navigated into by TokenNav$b,//profile$e.
We say $b = $a/seller is the ancestor pattern of $e =
$b//profile; or $e = $b//profile is the descendant pat-
tern of $b = $a/seller. Changing TokenNav$a,/seller$b to
NodeNav$a,/seller$b makes /seller to be retrieved in XML
element nodes bound to $a. Since $b is located within $a,
bindings of $b must also be XML nodes. This dictates
$e = $b//profile being retrieved in XML nodes. There-
fore, the mode of TokenNav$b,//profile$e has to be changed
as well. An Extract$s$a operator is introduced so that
NodeNav$a,/seller$b can be performed. Figure 5 shows the
rewritten plan with the new operators highlighted.

On the other hand, in Figure 5, if we push in $b//profile,
bindings of $b must be tokens. Since $b is located within $a
($b = $a/seller), bindings of $a must be tokens as well. As a
result, the mode of NodeNav$a,/seller$b has to be changed.
This leads to the property below.

Property 1 Secondary effect of mode change: If we
change the mode of TokenNav$v1,path$v2 (resp.
NodeNav$v1,path$v2), then we must also change the mode
of any TokenNav that retrieves path’s descendant pattern
(resp. any NodeNav that retrieves path’s ancestor pattern).

When considering the mode change of a TokenNav oper-
ator, if we were to put the newly generated NodeNav op-
erator in a suboptimal position out of the automaton, we
may be biased towards disallowing this mode change. We
thus adopt the commonly used commute rewrite rules to
optimize the tuple-based portion of the query plan. These
commute rules are traditional and omitted here, but can be
found in [14]. Other rewrite rules for optimizing the tuple-
based portion of the plan can be equally plugged into our
optimization algorithms.

4. COSTING STREAM QUERY PLANS
We now define a cost model for comparing plans with differ-
ent amount of pattern retrievals in the automaton. Since the
stream can be infinite, we define the cost on a finite input
unit instead of the entire input. In Raindrop, we refer to
the elements retrieved by the bottommost TokenNav oper-
ator as the bottom input elements. We define the cost of
an operator as the average time of processing the data that
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Extract$a$d

Extract $a$c

StructuralJoin$a

Extract $c$f

StructuralJoin$c

TokenNav$a,  /reserve$d

Extract $s$a

TokenNav$a,  /bidder$c

TokenNav$c, //zipcode$f

Select$f = “01609”

TokenNav$s, /auctions/auction$a

StreamSource“open_auction”$s

Tagger<auction>$b,$c</auction>

NodeNav$b, //profile $e

Select$e contains “frequent”

NodeNav$a, /seller $b

Figure 5: Rewritten Plan After Mode Change of
TokenNav$a,/seller$b in Figure 2

originate from one bottom input element. For example, the
cost of the plan in Figure 5 is the average processing time
of one auction element1.

Costing TokenNav Operators. When costing a TokenNav
operator, we need to be careful with “amortized” computa-
tions. For example, in Figure 3, the rightmost stack con-
tains q5 and q6 at the top. An incoming </profile> will
lead to a stack backtrack. However we cannot solely assign
this backtrack cost to TokenNav$b,//profile$e. Suppose the
query does not ask for $b//profile. After a <profile> is
processed, the stack top would contain an empty set. Next,
when a </profile> arrives, the backtrack is still needed to
restore the stack to the status before the matching <profile>
has been encountered.

To avoid repeatedly counting the amortized computations,
we compare the costs of automata Awith and Awithout. Awith

encodes $v1/p1 and all the ancestor patterns of $v1/p1.
Awithout encodes only the ancestor patterns of $v1/p1. The
cost difference between Awith and Awithout is then the cost of
retrieving $v1/p1. Using the notations in Table 2, Equation
1 captures the cost of TokenNav operators in an automaton
A.

Equation 1. Cost(TokenNav operators in automaton A)

= state transition cost for processing start tags (1)

+ stack backtrack cost for processing end tags (2)

=
P

q∈Q(A)nactive(q) CnonEmp (3.a)

1When the query has n input streams and n > 1, the cost
of a plan can be easily extended to be the average time
of processing n elements each of which is a bottom input
element from a different input stream.

Notation Explanation

Q(A) states in an automaton A

CnonEmp cost of processing a start token when stack top is
not empty

Cemp cost of processing a start token when stack top is
empty

Cbacktrack cost of popping off states at the stack top
Cextract(q) cost of extracting elements, whose start tags ac-

tivates state q, in a bottom input element
nactive(q) the number of times that stack top contains a

state q in a bottom input element.
nstart, nend number of start or end tags in a bottom input

element.

Table 2: Notations for Costing Automaton

+ [nstart − Σq∈Q(A)nactive(q)] Cemp (3.b)

+ nend Cbacktrack (4)

=
P

q∈Q(A)nactive(q) (CnonEmp − Cemp) + nstart(Cemp +

CbackTrack)

In Equation 1, Expression (1) is expanded into Expressions
(3.a) and (3.b).

P

q∈Q(A) nactive(q) is equal to the number
of start tokens that are processed with a non-empty stack
top. Expression (3.a) then denotes the cost of processing
start tags with a non-empty stack top.

The number of start tags that are processed with an empty
stack top is equal to (nstart − number of start tags that
are processed with an non-empty stack top), i.e., (nstart −

Σq∈Q(A)nactive(q)). Expression (3.b) then denotes the cost
of processing start tags with an empty stack top.

The cost of processing an end tag is equal to the cost of
popping out the states at the stack top, namely, Cbacktrack.
Since there are nend end tags in a bottom input element,
Expression (4) denotes the cost of processing end tags.

Let us use Ap1 to denote the sub-automaton that encodes
$v1/p1 only. We then have Equation 2.

Equation 2. Cost(TokenNav$v1,p1$v2)

= Cost(TokenNav operators in Awith) − Cost(TokenNav
operators in Awithout)

=
P

q∈Q(Awith)−Q(Awithout)
nactive(q) (CnonEmp − Cemp)

=
P

q∈Q(Ap1)nactive(q) (CnonEmp − Cemp)

Costing Extract Operators. For an Extract$v1$v2, sup-
pose the start token of a binding of $v2 activates state q.
nactive(q) is then the number of elements bound to $v2 in one
bottom input element. Therefore, the cost of Extract$v1$v2
operator is nactive(q)Cextract(q).

Costing NodeNav Operators. We implement
NodeNav$v1,p$v2 as a width-first tree traverse. Suppose
p = p1/p2/.../pn where pi (1 ≤ i ≤ n) is either a navigation
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step or a descendant axis “//”. We first traverse all the chil-
dren of the entry node $v1 and find those whose tag names
match p1. From these matched nodes, we again traverse
their children to match p2 and so on. We use npi

, wpi
and

Cvisit to denote the number of nodes matching p1/.../pi, the
number of children of these matched nodes and the time for
visiting one node. The time NodeNav$v1,p$v2 spends on
processing one input tuple is then

Pn
i=1 npi−1

wpi−1
Cvisit.

Costing of Other Automaton-outside Operators. The full
list of cost models can be found in [14]. Some automaton-
outside operators such as Select, when appearing in one plan,
must appear in all other alternative plans because we do not
provide any rewrite rule to eliminate a Select operator. For
these operators, we can always observe the actual time it
spends on processing one input tuple in the current running
plan. There is no need to provide an equation to estimate
such single unit processing cost.

5. RUN-TIME STATISTICS COLLECTION
Currently we use a simple statistics collection model. To
optimize a query, we run an initial plan of this query on
the incoming stream while at the same time collecting the
statistics needed for this particular query. For example, we
attach counters to the states in the automaton. Each time
when a start tag arrives, the counter of each state at the
top of the stack is incremented by 1. This way we can get
nactive(q), which is needed for costing the automaton (see
Table 2), for each state q. The statistics collection is rather
straightforward so that we omit the discussion here.

6. MINEXHAUST: FINDING OPTIMAL PLAN
In this section, we first present a baseline search algorithm
that guarantees to find an optimal plan. We then exam-
ine search redundancies in the baseline algorithm, i.e., same
plans may be explored multiple times. Eliminating these
redundancies gives us the MinExhaust algorithm.

6.1 Baseline Exhaustive Algorithm
Suppose an initial plan, denoted as G in Figure 6, has n
patterns p1, p2, ..., pn. For each pattern retrieval operator,
we change its mode and get a new plan, denoted as G1, G2

and so on. Cycles on the new plans denote that we opti-
mize the tuple-based portion of the new plans. Currently in
Raindrop, we use the commuting optimization techniques
in [18]. Any other optimization on tuple-based plans can
be also plugged in here. We then treat the new plans as
initial plans and repeat the above process. For example,
from G1, we change the mode of the operator retrieving p2

(resp. p3, ..., pn) and get a new plan G12 (resp. G12, ...,
G1n). Note that we do not change the mode of the operator
that retrieves p1 in G1 because that would generate a same
plan as G. We continue the process until no new plans are
generated. This process explores all possible plans and thus
guarantees to find the optimal plan.

6.2 Eliminating Redundancy
In Figure 6, there is a path from the plan we start with,
G, to any other plan, G’. We can encode the process to
obtain G’ from G in a sequence of patterns. We use [pi1,
pi2, ..., pin], called a rewrite sequence, to denote that we

G initial plan

G12

change p2

G13

change p3

G1 G2 …

change p1

…

…

G21

change p1 …

change p2

[p1]

[p1, p2] [p1, p3]

[p2]

[p2, p1]

… …

Figure 6: Baseline Exhaustive Search

change the mode of the operator retrieving pi1 first, then
change the mode of the operator retrieving pi2 and so on.
Two rewrite sequences are redundant to each other if they
generate the same plans. We now present two lemmas about
redundancy of rewrite sequences. Below, we use navOp to
generally represent a pattern retrieval operator, i.e., either
a TokenNav or a NodeNav. Also, recall the definition of
ancestor and descendant patterns in Section 3.

Lemma 1. Redundancy due to Pattern Dependency:

Suppose p1 is the ancestor or descendant pattern of p2 (we
say p1 and p2 have dependencies). Given a rewrite sequence
S containing both p1 and p2, there always exists another
rewrite sequence that contains no patterns with dependency
and yet produces the same plan.

Example 1. In Figure 7 (a), $b = $a/seller and $g =
$b//phone have a dependency. We apply a rewrite sequence
[$a/seller, $b//phone] on this plan. We first pull out $b =
$a/seller. Due to the secondary effect (see Property 1 in
Section 3), $e = $b//profile is also pulled out. Figure 7
(b) shows the plan after this rewrite. Next, we push in $g
= $b//phone. Due to the secondary effect, $b = $a/seller
is pushed back into the automaton which undoes part of the
first rewrite. We get a final plan in Figure 7 (c).

We can also derive the final plan by pulling out $b//profile
and pushing in $b//phone in Figure 7 (a). The correspond-
ing rewrite sequence is [$b//profile, $b//phone] in which the
two patterns have no dependency. The first rewrite sequence
is redundant.

Lemma 2. Redundancy due to Order Insensitivity:

If a rewrite sequence S does not contain patterns that have
dependencies with one another, then S generates the same
plan as any other rewrite sequence that contains the same
set of operators in S but in a different order.

Example 2. In Figure 7 (a), we can either apply the
rewrite sequence [$b//profile, $b//phone] or [$b//phone,
$b//profile] to derive the plan in Figure 7 (c).

Proofs for both lemmas can be found in [14]. Based on
the above two lemmas, we design an MinExhaust algorithm
that eliminates the generation of any redundant plan in the
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TokenNav$a,  /seller $b

StructuralJoin$b

TokenNav$b, //profile $eExtract$a$b

Extract$b$e

NodeNav$b, //phone $g

NodeNav$a,  /seller $b

NodeNav$b, //profile $e

NodeNav$b, //phone $g

(a) (b)

TokenNav$a,  /seller $b

StructuralJoin$b

TokenNav$b, //phone $gExtract$a$b

Extract$b$g

(c)

NodeNav$b, //profile $e

Figure 7: (a) Initial Plan; (b) Pull out $a/seller in (a); (c) Push in $b//phone in (b)

baseline exhaustive search. According to the redundancy
due to order insensitivity lemma, this algorithm enumerates
the combinations (instead of permutations) of n patterns.
Changing the modes of all operators in one such combina-
tion leads to one alternative plan. Also, according to the
redundancy due to pattern dependency lemma, we exclude
any combinations that include two patterns with dependen-
cies. Each remaining combination now leads to one unique
alternative plan. It can be easily seen that for a query with
n patterns, MinExhaust explores up to 2n alternative plans.

7. FAST SEARCH WITH PRUNING
We now present the GreedyBasic and FastPrune algo-
rithms whose complexity is more practical for large queries
than MinOptimal. Given an initial plan with n patterns,
GreedyBasic changes the mode of each pattern retrieval op-
erator and gets a new plan respectively, denoted as G1, ...,
Gn. Among the new plans, if the best plan is better than
the initial plan, it is picked as the current plan. Suppose
G1 is picked after the first iteration. In the second iteration,
GreedyBasic explores changing the modes of operators that
retrieve p2, ..., pn in G1 respectively. This time we get a new
current plan. The iterations continue until no new plan is
found to be better than the current plan.

We can further improve GreedyBasic by applying a prun-
ing technique of sub-optimal plans. Below we use NavOp for
convenience to denote a pattern retrieval operator, be it ei-
ther TokenNav or NodeNav. Let us use CostCut(NavOp, G)
to denote (cost of the plan after mode change of NavOp −

cost of plan G). Suppose for a NavOp we can estimate a con-
stant c such that CostCut(NavOp, G) > c > 0 for any plan
G. For any plan G, the mode change of NavOp increases
the cost. We can then safely exclude the mode change of
NavOp during the plan search.

We now consider the case where NavOp is a
TokenNav$v1,p1$v2 with $v1 = $v0/p0. Let us use G and
G′ to denote the plan before and after the mode change
of TokenNav$v1,p1$v2 respectively. Equation 3 denotes the
cost cut by pulling out $v1/p1.

Equation 3. CostCut(TokenNav$v1,p1$v2,G)

= Cost(G′) − Cost(G)

= automaton cost in G′ − automaton cost in G (1)

+ non-automaton cost in G′ − non-automaton cost in G (2)

= Cost(Extract$v0$v1) * isIntroduced (3.a)

− Cost(TokenNav$v1,p1$v2) (3.b)

+ Cost(NodeNav$v1,p1$v2) (4.a)

+ (cost of automaton-outside operators except
NodeNav$v1,p1$v2 in G′ − cost of automaton-outside op-
erators in G) (4.b)

In Equation 3, (1) is expanded into (3.a) and (3.b). An
Extract$v0$v1 operator may be introduced during the rewrite
(see Figure 4 in Section 3). isIntroduced in (3.a) is a boolean
indicating whether an Extract$v0$v1 is introduced or not.

(2) is expanded into Expressions (4.a) and (4.b). For (4.a),
Cost(NodeNav$v1,p1$v2) can vary in different plans depend-
ing on the position of NodeNav$v1,p1$v2 in the plan. We can
easily compute this minimal cost of NodeNav$v1,p1$v2 by
applying the commute rules to pull up NodeNav$v1,p1$v2.
This way NodeNav$v1,p1$v2 consumes the least input and
thus costs the least. We denote this minimal cost as
min(Cost(NodeNav$v1,p1$v2)). We then have Exp. (4.a)
> min(Cost(NodeNav$v1,p1$v2)).

Exp. (4.b) is guaranteed to be no less than 0 if no Select
or NodeNav operators in G select on or navigate into $v2.
The optimal ordering of the automaton-outside operators is
determined by their rankings [18]. The ranking function of
an operator is defined on two factors, the operator’s selec-
tivity and its processing time on one input tuple. There-
fore, the optimal ordering of automaton-outside operators
in G′ remains the same as in G. However, some operators
executed before the automaton-outside operators in G can
now be executed after them. For example, in Figure 7 (c),
NodeNav$b,//profile$e is executed after TokenNav$b,//phone$g.
In contrast, in Figure 7 (c), NodeNav$b,//profile$e is exe-
cuted before NodeNav$b,//phone$g. The cost of an automaton-
outside operator in G′ is always no less than that in G. In
summary, we have Exp. (4.b) ≥ 0.

In summary, CostCut(TokenNav$v1,p1$v2, G) ≥
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min(Cost(NodeNav$v1,p1$v2)) − Cost(TokenNav$v1,p1)$v2.
This leads to the following lemma.

Lemma 3. Pruning by Bounding Cost Cut. Given a
NavOp = TokenNav$v1,p1$v2 where $v2 is not further se-
lected on nor navigated into, if min(Cost(NodeNav$v1,p1$v2))
− Cost(TokenNav$v1,p1)$v2 ≥ 0, mode change on NavOp
always leads to a worse plan.

We apply the pruning strategy on GreedyBasic, now called
FastPrune. The correctness of this pruning strategy does
not depend on the search strategy, i.e., it could be applied
to any other algorithms including MinOptimal.

8. RUN-TIME OPTIMIZATION

Run-time Statistics Collection.. To optimize a query, we
run an initial plan of this query on the incoming stream while
at the same time collecting the statistics. For example, we
attach counters to the states in the automaton. Each time
when a start tag arrives, the counter of each state at the
stack top is incremented by 1. This way we can get nactive(q)
for each stats q, which is needed for costing the automaton
(nactive(q) is the number of times that stack top contains
a state q, see Table 2). The statistics collection is rather
straightforward so that we omit the discussion here.

Run-time Plan Migration.. At the run time, the optimizer
is invoked periodically. If a new plan is found, the current
running plan is migrated to the new plan. We now describe
how to efficiently and safely perform the plan migration.

The optimization algorithms above generate algebraic plans,
but not the automata which are indispensable for plan ex-
ecution. We can save the cost of reconstructing a new au-
tomaton from scratch by reusing the current automaton. For
this purpose, our optimization algorithm returns not only a
new plan but also a set of pattern retrieval operators in the
current plan whose modes have been changed. If a pattern
$v1/p has been pulled out, we remove the states that en-
code path p in the current automaton. If a pattern $v1/p
has been pushed in, we add states that encode p to the cur-
rent automaton.

Even when we have a new plan and a new automaton ready,
we cannot just start the migration at a random time. This
may corrupt the running system. Suppose we are running
the plan in Figure 2. Figure 3 shows the stack content as
tokens are processed. Assume we now pause this running
plan in the middle of processing a seller element, say, when
processing <profile> (see last stack). We then start to mi-
grate to the new plan in Figure 5 which results from the
pull-out of $a/seller. Now all states after q4 in the automa-
ton in Figure 2 are removed. For the next incoming start
tag, the transition entry of the state at the stack top, i.e.,
q5 and q6, would be looked up. However neither q5 nor q6 is
in the automaton. The processing then corrupts.

To avoid such corruption, we define a migration window.
The migration can start whenever the execution is not in

the middle of processing a bottom input element. In the
above example, the migration can only start whenever the
execution is not in the middle of processing an auction. For
example, the migration can start right after a </auction>
is processed.

9. EXPERIMENTAL EVALUATION
We run experiments on two Pentium III 800 Mhz machines
with 512MB memory each. One machine sends XML token
streams via sockets to the second machine which then pro-
cesses the received data. We compare the plan search time
and the quality of the plan found by MinExhaust, GreedyBa-
sic and FastPrune algorithms. We test queries conforming
to the three pattern trees shown in Figure 8, similar to previ-
ous work on XQuery optimization [4,13,25]. In our pattern
tree, a node represents an XML element. The top node in
the pattern tree represents the bottom input element. The
label p on the edge from a parent node u to a child node
v indicates that a path p exists within the element repre-
sented by u. The bottom input elements that contain all
the specified patterns are returned as the query results.

p1 p2
pn… p11 p12 pn1 pn2…

p1 pn

(a) Wide-and-simple (b) Wide-and-complex

p12

…

p22

pn2

p11

p21

pn1

(c) Deep-and-Complex

…

…

…

Figure 8: Pattern Trees

9.1 Wide-and-Simple Pattern Trees
Query Sets: We design three queries that conform to the
wide-and-simple pattern tree in Figure 8 (a). These three
queries differ in the number of patterns in the query, i.e.,
the value of n in Figure 8 (a) is 5, 10 and 20 respectively.

Data Sets: We use the XMark DTD [2] which describes
auction data. We add more child elements to the auction
root element in XMark DTD so that we are able to issue
queries that contain up to 20 patterns. We use ToXGene [7]
to generate two streams each of which has a size around 52M.
In stream 1 (stream 2 resp.), for any of the three queries,
4/5 of the patterns have a selectivity of 10% (90% resp.)
while 1/5 of the patterns have a selectivity of 90% (10%
resp.). These two streams are used to test the algorithms
in the extreme cases. In stream 1, most pattern retrieval
operators have a low selectivity and are favored to be re-
trieved in the automaton. Therefore, in stream 1, the initial
plan which retrieves all patterns in the automaton is close
to the optimal plan. In contrast, in stream 2, most pattern
retrieval operators have a high selectivity so that they are
more favorable to be pulled out from the automaton in the
initial plan. We expect that more changes need to be made
to the initial plan to get the optimal plan in this case.

For each stream, we run an initial plan that retrieves all
patterns in the automaton, collect statistics from the stream
and apply the search algorithm to get a new plan. We then
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stream
n

MinExhaust GreedyBasic FastPrune Initial
Plan

# of
plans

Opt.
Time

Plan
Exec.
Time

Effective-
ness

# of
plans

Opt.
Time

Plan
Exec.
Time

Effective-
ness

# of
plans

Opt.
Time

Plan
Exec.
Time

Effective-
ness

Exec.
Time

1
5 32 592 1543 117% 9 232 1543 96% 1 64 1543 88% 1821
10 1024 15921 5439 336% 27 475 5439 94% 3 106 5439 87% 6349
20 ∞ ∞ N/A N/A 144 2271 9402 92% 10 242 9402 77% 12468

2
5 32 508 3987 84% 15 381 3987 79% 10 142 3987 77% 5340
10 1024 14982 9283 166% 54 823 9283 69% 36 294 9283 65% 14611
20 ∞ ∞ N/A N/A 204 3126 22271 68% 136 1053 22271 63% 36841

Table 3: MinExhaust, GreedyBasic and FastPrune on Wide-and-Simple Queries (all time in ms.)

run the new plan on the same stream again and measure
its execution time. Table 3 reports the result. The column
“effectiveness”of a search algorithm is defined as (time spent
on finding a plan + time spent on executing the plan found
)/(time spent on executing the initial plan). The smaller the
number is (i.e., spent less time on finding a plan that runs
faster), the more effective the search algorithm is.

The number of plans explored by MinExhaust is fixed given
a query. When n = 10, the optimization time already far
exceeds the execution time on both XML streams 1 and
2. When n = 20, MinExhaust is impractical so that we do
not report it. In contrast, the number of plans explored by
GreedyBasic varies with different streams because Greedy-
Basic terminates whenever no single mode change in the
current plan yields a better plan. Although GreedyBasic ex-
plores much less plans than MinExhaust, it still succeeds to
find optimal plans on both streams.

FastPrune can prune the pull-out of a pattern that has no
descendant patterns. In the wide and simple queries, p1, p2,
..., and pn all have no descendant patterns. The technique
of “pruning by bounding cost cut” is tried on all of them. It
excludes the pull-out of those TokenNav with selectivity of
10%. The optimization time is improved most significantly
in the third experiment (see row 3), since the initial plan has
more TokenNav operators that have a selectivity of 10%
than any of the other five initial plans.

9.2 Wide-and-Complex Pattern Trees
We generate XML streams conforming to the DTD describ-
ing Ebay’s auction data [24]. We design a query as shown in
Figure 9 with $b, $c, $d and $e having 2, 2, 12 and 5 filters
respectively. This query conforms to the wide-and-complex
pattern tree in Figure 8 (b). We test on a set of data streams
with different data characteristics as shown in Table 4. The
purpose is to generate a “random” data set.

for $a in /listing
let $b :=$a/seller info[seller rating > 4][seller name con-
tains “SF”];
$c := $a/bid history[...]...[...];
$d := $a/auction info[...]...[...];
$e := $a/item info[...]...[...]
where $b and $c and $d and $e
return $a

Figure 9: Wide-and-Complex Query on Ebay Data

Table 5 reports the result. MinExhaust is impractical for

Stream Selectivity
of $b

Selectivity
of $c

Selectivity
of $d

Selectivity
of $e

1 10% 50% 70% 90%
2 90% 10% 50% 70%
3 70% 90% 10% 50%
4 50% 70% 90% 10%

Table 4: Random Data Sets Conforming to Ebay’s DTD:

Each Stream around Size 55M

such a query that contains 25 patterns. Thus it is not re-
ported here. GreedyBasic explores a limited number of al-
ternative plans yet in all cases it finds a plan that cuts the
initial execution time by 15% to 56%. FastPrune cuts down
the number of plans explored most significantly in the third
experiment (see row 3). This is because the search in the
third experiment goes through most iterations. In each it-
eration, we avoid exploring the pull-out of certain patterns.
So accumulatively, we save most plan explorations.

GreedyBasic FastPrune Initial
Plan

# of
plans

Opt.
Time

Plan
Exec.
Time

# of
plans

Opt.
Time

Plan
Exec.
Time

Exec.
Time

1 57 852 23088 52 779 23088 30072
2 59 825 22209 50 776 22209 38690
3 76 1118 21924 28 615 21924 25828
4 37 545 18590 19 423 18590 42301

Table 5: GreedyBasic and FastPrune for Query in
Figure 9 on XML Streams in Table 4

9.3 Deep-and-Complex Pattern Trees
It is interesting to observe that for queries conforming to the
deep-and-complex pattern tree in Figure 8 (d), GreedyBasic
terminates very quickly. According to redundancy due to
pattern dependency lemma in Section 6, two operators that
have a pattern dependency cannot both undergo mode changes.
Suppose from a current plan, the mode change on pi2 (1 <
i < n) in Figure 8 is chosen, then the mode changes on
its ancestor and descendant patterns, including p11, p21, ...,
p(i−1)1, need no longer be considered. Suppose the mode
change on pi1 is chosen. Then even more mode changes
are disqualified for consideration, including mode changes
on patterns p11, p21, ..., and pn1.

Table 6 reports the result. Since GreedyBasic already ex-
plores a very small number of alternative plans, FastPrune
brings fairly small gains and thus is not reported. Even for
the queries involving a large number of patterns, GreedyBasic
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n MinExhaust GreedyBasic Initial
Plan

# of
plans
ex-
plored

Opt.
Time

Plan
Exec.
Time

# of
plans
ex-
plored

Opt.
Time

Plan
Exec.
Time

Exec.
Time

3 147 2296 7356 10 205 8059 9122
4 595 8674 10086 14 364 11202 13569
5 2387 38500 12176 17 487 12176 17045
6 9555 180078 13408 20 647 14280 20055

Table 6: MinExhaust and GreedyBasic for Deep-and-
Complex Queries on a 51M XML Stream

terminates quickly. For example, for the last row in Table
6, when n = 6, there are 18 patterns in total in the tree.
MinExhaust explores 9555 alternatives while GreedyBasic
only explores 20 alternatives.

9.4 Overhead of Statistics Collection and Plan
Migration

With plan search time already studied above, we now study
the overhead of statistics collection and plan migration in
the run-time optimization.

Query Sets: We design two queries conforming to the pat-
tern tree in Figure 8 (b). The two queries differ in the num-
ber of patterns in the query (n in Figure 8 (b) is 5 and 10
respectively). We therefore can compare the overhead of two
plans that collect different amount of statistics.

Data Sets: We also design two streams. For a query run-
ning on XML stream 1, the optimal plan is only slightly
different from the initial plan. In contrast, the optimal plan
of the same query on XML stream 2 is significantly different
from the initial plan. We therefore can compare the over-
head of a simple plan migration with a more complicated
plan migration process.
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Figure 10: Cost Ingredients of Run-time Optimiza-
tion (statistics collection time/migration time too
small to be recognizable)

Given the above two queries and two streams, we explore
four experiment settings. In Figure 10, for each experiment
setting, we illustrate the four cost ingredients of query pro-
cessing with run-time optimization, i.e., (1) plan execution
time of initial plan + plan execution time of optimized plan,

(2) plan search time by GreedyBasic, (3) time for statis-
tics collection and (4) time for plan migration. The costs
of the latter three correspond to the overhead of the run-
time optimization. In all four experiments, the plan search
time dominates the overhead. The time of statistics collec-
tion ranges from 10ms - 20ms while that of plan migration
ranges from 0ms - 40ms in the four experiments.

10. RELATED WORK
Cost-based optimization has been actively studied for static
XML processing [1,21,25]. Lorel [21] proposes a cost model
for various XML indices. Lorel uses a greedy search algo-
rithm to choose among path navigation alternatives via dif-
ferent indices. Halverson and Burger etc [1] propose two pat-
tern retrieval methods on stored XML data, i.e., tree nav-
igation and structural-join based pattern matching. Both
methods can be used as different implementations of the
NodeNav operator in Raindrop algebra. What they study
can be seen as breaking a NodeNav$v1,p$v2 operator into
several NodeNav operators retrieving smaller pieces of p and
choosing the implementation method for each NodeNav (of
course their techniques are more suitable in a static database
since indices are required). Since a path expression is usually
not very long, the search space is not large. They therefore
use a dynamic programming approach to search for the best
plan. Timber [25], another static XML processor, proposes
a dynamic programming algorithm with pruning techniques
to choose an optimal order for structural joins.

In the XML stream query field, there are three major ap-
proaches. One approach is to use automata or automaton-
like SAX event handlers to process the whole query [5,6,20,
22]. In this approach, there is no traditional algebraic query
plan. Non-pattern-retrieval functionalities such as filtering
or restructuring are also encoded in the automata. The in-
put, output, and intermediate data in the processor are all
tokens. No XML nodes would ever be formed. The second
approach is to use algebra only. The BEA/XQRL stream-
ing XQuery processor [8] models the query as an expression
tree where an expression can be seen as an operator in an
algebraic query plan. Both the input or output of expres-
sions are tokens. The third approach is then to combine
automaton and algebra [9, 10, 15, 19]. The processors using
the third approach can take advantage of our automaton-in-
or-out optimization techniques.

There have been work on run-time optimization in relational
streams [3, 23, 26]. In one of the representative paradigms,
namely, Eddy [3], no fixed query plans are ever constructed.
Instead, each tuple, driven by the processing cost or selectiv-
ity of the operators and tuple arrival rate, can go through
operators in a flexible order. The query plan is reformu-
lated on a tuple-by-tuple basis. Eddy’s plan reformulation
focuses on changing the order of operators. It is not clear
how to apply this technique to choose among plans that have
a different set of operators as in the automaton-in-or-out op-
timization.

11. CONCLUSION
We have identified a unique optimization opportunity for
XML stream processing. The previous literature on XML
stream processing considers only query plans where all pat-
tern retrieval is pushed into the automaton. We however find
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that for different queries and data characteristics, different
automaton pushdown strategies are needed for generating
optimal plans.

To explore this optimization opportunity, we use a cost-
based approach. We design three plan optimization algo-
rithms. MinExhaust enumerates all possible plans while
avoiding repeated exploration of the same search space. Given
a query with n patterns, it guarantees to find an optimal
plan in O(2n) time. In contrast, GreedyBasic uses heuris-
tics to quickly find a plan in O(n2) time. FastPrune further
prunes the sub-optimal plans in the search by bounding the
cost change from one plan to another plan. Our experimen-
tal study illustrates that the plans found by GreedyBasic
or FastPrune algorithm are often close to the optimal plan
found by MinExhaust.

In order to optimize at run-time, we design an incremental
and thus efficient plan migration strategy. The migration
window we define ensures that the migration can safely un-
dertake without generating wrong result. Our experiments
illustrate that our run-time statistics collection and plan mi-
gration strategies are very lightweight.
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