
R-SOX: Runtime Semantic Query Optimization over XML Streams

Song Wang, Hong Su, Ming Li, Mingzhu Wei, Shoushen Yang, Drew Ditto
Elke A. Rundensteiner and Murali Mani

Department of Computer Science, Worcester Polytechnic Institute
Worcester, MA 01609-2280, USA

(songwang|suhong|minglee|samanwei|shoushen|dditto|rundenst|mmani)@cs.wpi.edu

1 Motivation

Using schema knowledge to optimize query evaluation,
known as semantic query optimization (SQO), has gener-
ated promising results in XML query processing [2, 3, 7].
In XML stream processing, we can use the schema con-
straints to expedite the traversal of the streams and to min-
imize memory consumption for holding the intermediate
data during query evaluation. These are particularly critical
for stream applications, which require real-time responses
and both typically operate in limited main memory. How-
ever, as illustrated by the motivating scenarios below, these
prior techniques assume that the XML schema is static and
is available prior to the start of the query execution [2, 3, 7].
As the scenario below highlights this assumption is unreal-
istic and thus may render existing techniques non practical.
Case Study 1: Assume that in a news publishing (or dis-
semination) scenario, the news server retrieves news from
a large number of multiple sources, such as different re-
porter devices, different broadcast agencies, and govern-
ment sources and disseminates such heterogeneous mes-
sages as an XML stream to subscribers. Such sources may
disagree with each other on some aspects of the schema. To
provide a uniform interface to the downstream receiver, the
stream server may pre-define an output XML schema. Such
schema must be “coarse” enough so that all XML messages
in the stream do conform to it. This universal schema is
likely to be rather coarse, if the diversity of sources is large,

This project is partially supported by NSF, under grants IIS
0414567, and CNS 0551584

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the VLDB copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Very Large Data Base Endowment. To copy
otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permission from the publisher,
ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09

as it must be the lowest common denominator of the fea-
tures shared across all sources. The schema will contain
huge optional elements and alternative subtypes, thus be-
coming less amendable for schema based optimization.
Case Study 2: In an online auction stream, auction items
can be rather different over time. Maybe only a few core
attributes, like price and expiration date, stay the same. Be-
yond these attributes, different sellers of items can intro-
duce properties to describe their items at will. The stream
server should be able to capture such schema refinements
and provide a runtime schema to the stream receiver inter-
leaved with the data stream. For instance, when one person
or company who sells PCs happens to submit 200 laptops,
the stream server can provide a refined schema to the stream
receiver, which is valid only for the next 200 XML mes-
sages from that seller.

From the above two case studies, we observe that we
need the ability to specify dynamic schema changes at run-
time and utilize these refinements to perform not just static
but run time SQO.
Our R-SOX Solution. Our proposed system R-SOX
(Runtime Semantic query Optimization over XML streams)
is the first such system designed to tackle the above identi-
fied challenges. R-SOX efficiently evaluates XQuery ex-
pressions over highly dynamic XML streams. The schema
can switch from optional to mandatory types, from poten-
tially deep structures to shallow ones, or from recursive to
non-recursive types.

In R-SOX, the dynamic schema changes are embedded
within the XML stream via punctuation. The stream re-
ceiver then will exploit semantic optimization opportuni-
ties and provide the output stream in real-time using an
optimized processing time and memory footprint, by short-
cutting computation when possible and releasing buffer data
at the earliest.
State-of-the-Art. YFilter [9] includes a type inference
technique using schema knowledge to decide whether re-
sults of a pattern are recursion-free. However, it cannot be
used at run-time. XHints [1] extends SIX by supporting
predicates and online index generation using only partially
buffered streams. R-SOX instead focuses on using embed-

ded schema knowledge to speed up logical level pattern re-
trieval. In practice, these techniques are complimentary and
could be combined to achieve better performance. Our R-
SOX system, built with Raindrop [6, 4, 7, 5] as its query
engine kernel, now can specify runtime schema refinements
and perform a variety of runtime SQO strategies for query
optimization.

Contributions of R-SOX include:
1. We design techniques that adaptively invoke multi-

mode operators for efficient processing of recursive
pattern queries on potentially recursive data guided by
run-time schema.

2. We apply the early filtering techniques dynamically to
avoid unnecessary computations on pattern retrieval to
now be driven by runtime schema knowledge.

3. We put forward a novel technique, called unblocking
data output, which avoids unnecessary data buffering
thus maintaining a minimized memory footprint.

4. For changes of the plan at run time, we design tech-
niques for safe migration by adjusting the transitions
in automaton and associated plan execution controls.

2 R-SOX System
The architecture of the R-SOX system is described in Fig-
ure 1. The input XML streams are annotated by the stream
sender with RSIs (Runtime Schema Information). The
Stream Loader extracts these RSIs from the input stream,
and the Schema Knowledge Manager maintains the runtime
schema knowledge over time according to the RSIs.

Stream
Loader

Annotated
Input Streams

Raindrop
Query Engine

Schema
Knowledge
Manager

RSI

Runtime
Query Plan

Adaptor

Runtime
Schema

XQuery

Output
Schema

Query Plan
Generator

Execution
Plan

Query Plan
Refinement

Stream
Annotator

Stream
Data

R-SOX XML Stream Processing System

Annotated
Output Streams

Query
Result

• SQO Rule Library
• Rule Applier
• Performance Monitor

Figure 1. R-SOX System Architecture

The user XQuery is parsed and translated into a stream
execution plan by the Query Plan Generator. The Runtime
Query Plan Adaptor collects runtime schema knowledge,
performs online semantic query optimization and incremen-
tal query plan migration. The output schema is inferred
by the runtime query plan adaptor based on the updated
schema. This output schema is propagated to the Stream
Annotator, which will annotate the query result generated
by the Raindrop Query Engine with output RSIs.

3 Runtime Schema Management

Designing the Runtime Schema Model. We now briefly
describe the dynamic schema punctuation model we have

designed to interleave schema change metadata into XML
data streams, called runtime schema information (RSI).
RSIs indicate schema changes applicable for all subsequent
XML elements in the stream until when the schema change
expires or is overwritten by a later RSI. RSIs are sent along
with other XML messages in the stream as punctuations.

RSI ::= Scope,Target,Action
Scope ::= ScopeType,ScopeLength,ScopeLenType
ScopeType ::= xpath
ScopeLength ::= integer|inf
ScopeLenType ::= TIME|COUNT
Target ::= TargetType,TargetPosType,TargetCard
TargetType ::= xpath
TargetPosType ::= xpath|null
TargetCard ::= ∗| + |?|(min, max)|null
Action ::= +| − |R

Figure 2. Grammar of the RSI

RSI contains information for schema knowledge con-
struction and updating. The grammar of the RSI is sketched
in Figure 2. The following example RSIs are defined over
the schema of element type news based on the grammar.
S1: <!ELEMENT news (source?, (paragraph|comment))>
RSI1: ((/news, inf, TIME), (/news/comment, ,), -)
S2: <!ELEMENT news (source?, paragraph)>
RSI2: ((/news, 200, COUNT), (/news/category, /news/paragraph, *), +)
S3: <!ELEMENT news (source?, paragraph, category*)>

RSI1 on current schema S1 denotes the change that the
stream will not have any comment element for future news
nodes. The runtime schema after arrival of RSI1 will be
S2. RSI2 says that category∗ will appear after the node
type paragraph for the subsequent 200 news nodes. The
runtime schema is changed correspondingly to S3.
Building the Runtime Schema. Similar to other projects,
we model the runtime schema as a directed ordered graph.
R-SOX maintains the current schema graph incrementally
by synchronizing it with newly arriving RSIs.

By the example above, RSI S2 indicates that the change
on news will be expires after 200 news nodes. At that time,
we need to roll back the change. However, we cannot sim-
ply roll back to the previous version of the schema graph
because other RSIs may already have been installed in the
mean time on the schema graph after this RSI. If we were
to blindly apply the delta change in reverse, like adding the
category node back to news, it is possible that the news
node may not exist any more. R-SOX offers the schema
management based on schema version with reversable delta
changes augmented by change dependencies.

4 Runtime Query Optimization Strategies
We now highlight some of the semantic query optimiza-
tion(SQO) strategies used by our run time optimizer. We
now apply query optimization strategies whenever the
schema changes. Thus the system has to perform plan mi-
gration after the query optimization.

Run-time Plan Migration Strategy. When the schema
changes, a new query plan will be generated by optimizer.
In traditional stream systems, it is safe to drain out all exist-
ing tuples in the middle operators if operators are stateless.
However, this is not the case for XML streams. The buffer

in the middle operators in the plan may contain partial ele-
ments. So we could be corrupting the results if migration is
not done carefully.

The algebra plan change can also negatively effect the
automaton. Since the query plan is changed, the patterns
to retrieve by automaton may have to be changed as well.
For this, we identify safe moments for migration and then
remove appropriate transitions from states and adjust the
automaton stack if needed.

Processing Recursive Types. Recursive types will make
the descendent pattern retrieval (“//”) in XPath more com-
plex and thus resource intensive. For a input stream having
recursive schema, RSIs can be used by the stream server to
indicate the existence of recursion for data fragments or in-
dicate the depth of the recursion level. For instance, if RSIs
indicate the data fragment is recursive, we will apply recur-
sive mode algebra operators in the query plan that maintain
and associate ID information with each element. We must
perform ID based comparison in the downstream join oper-
ator to obtain correct results. If RSIs indicate the data frag-
ment is not recursive, non-recursive mode algebra operators
which do not need to perform ID comparison in the down-
stream join operatorss are invoked at runtime. Thus both
the memory and computation cost can be saved when we
use RSIs to indicate the recursion information about these
elements [8].

Early Filtering. Dynamic SQO in R-SOX utilizes early
detection of failed predicates. If within a binding of $v, re-
sults of pα must all occur before any of pβ , we say a result
of pβ is an ending mark of pα. We can test the predicates
of pα earlier as soon as we see an occurrence of pβ , with-
out waiting for the end tag of $v. This failure test will in-
voke skipping the evaluation of all the other XPaths within
this binding. R-SOX supports dynamic SQO rules utilizing
ordering, occurrence, or exclusive constraints in the XML
schema. While in our earlier work [7] we supported static
optimization, we now have enhanced these techniques to
be triggered by RSIs at runtime. Let’s consider the exam-
ple shown in Query 1, which asks for the paragraph and
comment information under the news element with state
name “MA”.

Query 1: for $p in /news_stream/news
where $p/state = ‘‘MA’’
return $p/paragraph, $p/comment

Suppose that the runtime schema for the current $p binding
has been refined by RSIs from Schema S4 to S5:

S4: <!ELEMENT news (source, nation?, state?,
(paragraph | comment | category)*)>

S5: <!ELEMENT news (source, (nation | state),
paragraph*, comment*, category*)>

Both the exclusive and ordering constraints can be used
to achieve the early filtering optimization in Query 1.
The ordering constraint indicates that $p/paragraph,
$p/comment and $p/category are candidate ending marks
for the XPath $p/state. The exclusive constraint between

the nation and state provides another possible ending
mark for the $p/state.

Unblocking Data Output. In the query execution, opera-
tors need to wait for the completeness of the whole bound
pattern before passing data up to the output because some
predicates may not yet be satisfied or the extracted pat-
terns need to be output according to a specified sequence.
The plan rewriting algorithm of R-SOX can avoid such
data holding by early detection of successful predicates and
switching the output mode of related operators. This opti-
mization is called unblocking data output.We perform this
optimization by: (a) checking predicates earlier and (b) en-
suring the elements satisfy the output sequence.

Consider the example shown in Query 1 that outputs
the paragraph and comment lists for each news element
while the predicate on state has been satisfied. Assume
we check the predicate early and the runtime schema for
the current binding news is refined by RSIs from S4 to
S5. Under S4, we need to hold at least the comment
list because the output sequence requires the paragraph
list to be returned before the comment list. The refined
schema S5 provides order constraint between paragraph
and comment. Now we need not hold any paragraph or
comment once the predicate is satisfied.

Sometimes data holding cannot be avoided because the
available constraint information is not sufficient. For in-
stance, consider the schema is refined from S4 to S6:
S6: <!ELEMENT news (source, (nation | state),

(paragraph | comment)*, (category | comment)*)>

In this case, we do not have enough schema information to
remove the data holding of comments. However category
could now serve as the ending mark of the paragraph.
Therefore, when we see the first category, all the extracted
comments can be output.

5 Demonstration Focus
The prototype of R-SOX has been implemented using Java
with the Raindrop as its core query engine [5]. We use an
online auction monitoring as one of the example applica-
tions in our demonstration. Steps shown include:

Plan Visualization Tool. R-SOX parses the XQuery and
generates automaton-algebra stream plans. Our visual tool
allows viewers to explore the plans.

Runtime Schema Management. Figure 3 depicts an incre-
mentally maintained schema graph. The left shows the RSIs
received and the right represents the current schema knowl-
edge for one particular auction data input. The highlighted
node is to be deleted according to the new RSI.

Runtime Plan Migration. With updated schema knowl-
edge, our query plan refinement will update the query plan
incrementally using R-SOX’s runtime SQO techniques.
Figure 4 depicts as one representative example the adapted
execution plan showing runtime computation shortcuts by

Figure 3. Runtime Schema Graph in R-SOX

Figure 4. Runtime Query Plan in R-SOX

applying the early filtering technique. We will also show
how and when to migrate the plan safely.

Performance Monitoring. We will demonstrate the perfor-
mance benefits of different SQO strategies using metrics,
such as execution time and buffer requirements.

References

[1] A. Gupta and S. Chawathe. Skipping Streams with XHints.
Technical report, Univ. of Maryland, College Park, 2004.

[2] C. Koch, S. Scherzinger, N. Scheweikardt et al. FluxQuery:
An Optimizing XQuery Processor for Streaming XML Data.
In VLDB, pages 228–239, 2004.

[3] D. Florescu, C.Hillery et al. The BEA/XQRL Streaming
XQuery Processor. In VLDB, pages 997–1008, 2003.

[4] H. Su, E. A. Rundensteiner and M. Mani. Semantic Query
Optimization in an Automata-Algebra Combined XQuery En-
gine over XML Streams. In VLDB Demo, 2004.

[5] H. Su, E. A. Rundensteiner, M. Mani. Automaton Meets
Algebra: A Hybrid Paradigm for XML Stream Processings.
DKE Journal, 2006.

[6] H. Su, J. Jian, and E. A. Rundensteiner. Raindrop: A Uniform
and Layered Algebraic Framework for XQueries on XML
Streams. In CIKM, pages 279–286, 2003.

[7] H. Su, E. A. Rundensteiner, and M. Mani. Semantic Query
Optimization for XQuery over XML Streams. In VLDB,
pages 1293–1296, 2005.

[8] M. Wei, M. Li, E. A. Rundensteiner, and M. Mani. Processing
recursive xquery over xml streams: The raindrop approach. In
ICDE Workshops, page 85, 2006.

[9] Y. Diao, M. Altinel and M. J. Franklin. Path sharing and pred-
icate evaluation for high-performance xml filtering. In TODS,
pages 467–516, 2003.

