
1

VAMANA - A Scalable Cost-Driven XPath Engine
Venkatesh Raghavan, Kurt Deschler and Elke A. Rundensteiner

Computer Science Department, Worcester Polytechnic Institute, Worcester, MA 01609
Email: (venky, desch, rundenst)@cs.wpi.edu, Tel: (508) 831 5815, Fax: (508) 831 5776

Abstract¡Several systems have recently been proposed for
the evaluation of XPath expressions. However, none of these
systems have demonstrated both scalability with large docu-
ment sizes and robust support for the XPath language. Many
of the scalability problems can be attributed to inadequate use
of indexing during query evaluation. While poor support for
the XPath language is often a consequence of an architecture
overly optimized for certain queries. Finally, the proposed
systems fail to adequately address costing with respect to query
optimizations.
We present VAMANA as a solution for a cost driven and

scalable evaluation of ad-hoc XPath expressions. VAMANA£s
index-oriented query plans allow queries to be evaluated while
reading only a fraction of the data. VAMANA£s pipelined
query framework minimizes the cost of intermediate query pro-
cessing while providing cost-based transformations to further
improve performance. Our experimental study con¦rms that
VAMANA£s cost-driven optimization approach for optimizing
queries achieves a substantial performance improvement with
negligible optimization overhead compared to non-optimized
queries. Our study comparing VAMANA against several lead-
ing XML query engines demonstrates that VAMANA£s query
engine is signi¦cantly faster than these existing solutions in all
considered cases.

Index Terms¡XML, XPath, query optimization, cost esti-
mation, indexing.

I. Introduction

Many applications are already working with or begin-
ning to work with data in the XML format. We anticipate
that the need for queries over XML data will emerge
that emphasize the structural semantics of XPath and
XQuery languages for querying XML data. This brings
the need for an e©cient query engine tailored for XML
data ¡ similar to current commercial database engines
o¨ering query support for relational data. Early on, several
DOM-based query engines had been proposed for XPath
evaluation [1], [2], [3]. DOM-based engines load the entire
document into main-memory before query execution. The
maximum document size is bounded by the amount of
physical main memory [4], hence scalability is clearly an
issue here.
Signi¦cant research has been focused on developing
e©cient storage and query strategies for XML data.
These e¨orts can be broadly divided into two categories,
namely, those storing XML documents in relational tables
and those employing a native storage solution for XML
documents. The relational solution is based on shredding
the XML document into relational tables [5], [6]. The
relational storage solution must cope with the mismatch
between the relational and the semi-structural XML
data model. The relational solution requires a mapping

algorithm to translate the user XML query into system-
speci¦c SQL subqueries to be executed on the underlying
relational database. This often is not e©cient, and in fact
certain XML queries cannot be easily translated into SQL
[5].
Alternatively, there has been activity into developing
specially tuned system support for managing XML na-
tively in an XML repository [7], [8], [9]. Such systems
must support optimized evaluation of XML queries. For
this, some of these systems have began to develop special
query-processing algorithms, most notably the popular
path join algorithms. They do not however yet fully take
advantage of the opportunities o¨ered by native XML
index support. Most importantly, thus far these systems
fail to demonstrate scalability with large document sizes
[7], [8] along the line we are expected to achieve in
database systems for other data models. Cost-based query
optimization, which is a now cornerstone of relational
database technology, has not yet been given adequate
attention in the context of XML databases. While some
work on histograms for XML statistics capture has been
undertaken in Timber [9], complete cost models for cost-
based query rewriting have not yet been explored in the
literature. Also, the existing costing based on histograms
would require the system to continuously maintain the
statistics under updates, which may prove expensive in
environments that experience rather frequent updates. A
robust support to all 13 XPath axes, predicate condition
like value, range and position have not yet been provided
by most of the existing engines [7], [8], [9].

A. VAMANA Approach

VAMANA is our solution for a cost driven, high per-
formance engine for XPath queries. VAMANA is built
around an XML repository called Multi-Axis Storage
Structure (MASS) [10], which is an e©cient system for
storing and indexing XML documents many gigabytes in
size. VAMANA provides comprehensive support for XPath
expression evaluation for all 13 XPath axes.
VAMANA employs a cost model that is independent
of the schema. Query costs are obtained from the actual
indexed data rather than a data dictionary and thus are
always up to date and accurate. This guarantees that cost
accuracy is not a¨ected by updates, inserts and deletes
that may occur in the XML data. VAMANA£s costing
approach has the further advantage of exact counts that
can be obtained for both location steps and arbitrary
text values. This degree of accuracy allows VAMANA to

2

decide which query transformations are likely to lead to
an e©cient query plan. Our costing algorithm has the
capability to calculate the cost over the entire database
that may contain many XML documents or can be speci¦c
to a particular XML document or even a speci¦c point
within one XML document.
Currently most of the recent XML systems [11], [7],
[9] make use of structural-path join type algorithms to
evaluate XML queries. In contrast VAMANA makes ex-
tensive use of indexes for query evaluation by considering
index-only plans. To the best of our knowledge VAMANA
is the only XML query engine that focusses on index-
only plan approaches for large XML documents. Also most
prevalent XPath engines [2], [3], [12], [7] only deal with
ancestor, descendant or child axes, ignoring the other axes
supported by the XPath standard.
VAMANA£s main contributions can be summarized as
follows:
1) We de¦ne a physical algebra that supports index-
based style of execution for any given XPath expres-
sion, including all 13 XPath axes as well as predi-
cates such as value, range and position predicates.

2) We propose a novel cost estimation model for accu-
rately estimating the cost of a query plan expressed
in our physical algebra. This model is supplemented
by our method of e©ciently gathering accurate
statistics about the XML data from the underlying
storage structure MASS, directly.

3) We have developed an optimizer based on a library
of a large set of rewrite rules that have been adapted
for our physical algebra. This is complimented by a
cost-driven heuristic search strategy that constructs
optimized physical plans with minimal overhead. As
per our knowledge, existing XPath engines do not
provide the facility to change the query plan guided
by actual statistics collected directly from the stored
data at run time.

4) We have successfully implemented the above ideas
in the VAMANA query engine, which employs an
iterative and indexed-based execution strategy.

5) We describe experiments that demonstrate the ef-
fectiveness of our cost-driven, rule-based optimizer.
Query transformation is guided by the selectivity
factor of operators in the query plan. This heuristic
is guaranteed to always produce a query plan that
has better execution time than the original query
plan.

6) Furthermore, we report on our experimental study
comparing VAMANA with alternative engines [2],
[3], [7], [13], illustrating the practicality and
e¨ectiveness of our proposed query processing tech-
niques. Our experiments highlight the e¨ectiveness
of the cost model in identifying operators that are
expensive and should thus be optimized.

II. Related Work

In recent years many DOM-based XQuery [2], [3], [13]
and XPath engines [12] have been proposed. DOM based

query engines are very main memory intensive. This poses
a limitation on the size of the XML document [12].
Galax [2] is a popular XML query engine developed by
Bell and AT&T labs. Based on our experiments described
in Section VIII, Galax does not support all 13 XPath axes
and performs poorly against large XML documents. The
query optimization is at the logical level and does not
utilize any statistics. Jaxen [13] is an open source XPath
library for Java and makes use of the conventional top-
down tree traversal approach for query processing. Jaxen
does not support large XML documents of sizes ≥ 10Mb.
TIMBER [9] is a native XML database that can
store and query XML documents. The query execution
in TIMBER heavily depends on structural joins. Join
operations can be expensive as the query becomes more
complex. Query optimization involves estimating costs
of all promising sets of evaluation plans. The physical
algebra for a complex query can have many nodes thus
exponentially increasing the number of possible evaluation
plans. The criteria for selecting a promising plan is
not speci¦ed. TIMBER makes use of a two dimensional
histogram called a position histogram to estimate cost.
Maintaining such a histogram can become expensive under
frequent updates of the XML document.
eXist [7] is the closest to our e¨ort, also being a native
XML database system that provides index-based query
processing for XPath expressions. eXist indexes elements
or attributes based on their corresponding names. This
index structure facilitates the path-join algorithm used in
eXist to evaluate XPath expressions. To evaluate pred-
icate expressions that contain value comparisons, eXist
requires switching back to conventional memory-based
tree traversal. An XML data store is used to facilitate
storage of the DOM structure. This feature only indexes
top-level elements. Hence predicate expressions involving
attributes, text or low-level elements will involve more
than just one look-up, while in VAMANA the index
structure supports value-based comparisons in one look-
up. eXist currently fails to execute all XPath axes like
following-sibling, previous-sibling, etc. The Xindice system
[8] is another native XML database management system
that creates user-de¦ned pattern indexes for small to
medium size documents < 5Mb.
Natix [11] is a native XML storage structure that
clusters subtrees of XML documents into small XML
segments. The XML data tree is partitioned into small
subtrees and each subtree is stored into a data page. To
facilitate the storage of large documents, Natix makes use
of proxy objects that maintain the record identi¦er for
the subtrees. Natix utilizes an inverted index to e©ciently
support query evaluation. The Natix query engine makes
use of a path join algorithm for query execution. Natix
does not address cost estimation and query optimization
phases in query processing.
Many XML query estimation techniques [9], [14],
[15] have been proposed in recent years. Some of them
extend the existing traditional database histograms for
statistics gathering. In a histogram approach, the domain

3

for an attribute attr in a relation R is partitioned into
buckets considering a uniform distribution of the data in
the relation. StatiX [14] is an XML query result estimator
that makes use of histograms to summarize the XML
schema structure and gather statistics. Histograms need
to be maintained to keep them accurate over time. This
could prove expensive for frequent updates.
The system described in [15] makes use of correlated

sub − path trees (CST), which gather statistics only of
frequently occurring sub-paths or twiglets in the data tree.
While e©cient for those frequent and thus indexed paths,
it may prove ine©cient for applications with many ad-hoc
queries.

III. Running Example

As running example, we use the XML document
auction.xml generated by the XMark [16] benchmark.
Figure 1.a shows an instance of a person element in an
XML document. An XPath expression [17] is composed
of a series of location steps. Each location step has three
parts namely an axis specifier, a node test and an
optional predicate. An axis specifier de¦nes the direction
of the speci¦ed navigation in the XML document tree
structure. In this paper we use the XPath expressions Q1
and Q2 shown in Figure 1.b as our running examples.
The context node for a location step is de¦ned as an
XML node that is currently being processed [17]. In our
example, the context node of the ¦rst location step in Q1
and in Q2 is the root of the XML document. The context
for the following location steps and predicate expressions
are provided by their corresponding parent. For example,
in Q1 the context for the location parent::* is provided
by the XML nodes returned by descendant :: name.
The axis specifier de¦nes the relationship between the
context node and the selected XML nodes. The node test
speci¦es the type of elements to ¦lter from the given
axis. Predicate is a ¦lter on the nodes produced by the
combination of axis specifier and node test. In Q2,
the predicate text() =′ Y ungF lach′ ¦lters the elements
returned by the location step //name.

a. <person id="person144">
<name>Yung Flach</name>
<emailaddress>Flach@auth.gr</emailaddress>
<address>

<street>92 Pfisterer St</street>
<city>Monroe</city>

<country>United States</country>
<zipcode>12</zipcode>

</address>
<watches>

<watch open_auction=“open_auction108”/>
<watch open_auction=“open_auction94”/>
<watch open_auction=“open_auction110”/>

</watches>
</person>

Q2: // name[text() = Yung Flach]/following-sibling::emailaddress

Q1: descendant::name/parent::*/self::person/addressb.

Fig. 1. a. XML Document. b XPath Expressions

IV. VAMANA System Overview

VAMANA is comprised of XPath Compiler, Optimizer,
Cost Estimator and Query Execution Engine components
as illustrated in Figure 2.

Cost Estimator

Optimizer Query Execution Engine

XPath Compiler

MASS Storage StructureLoader

XML
Documents

Transformation
Library

XPath Expression

Default Query Plan

Default Query Plan

Optimized Query Plan

Statistics

Axis or Value
Based Queries

Resultant Tuples

XPath Engine

VAMANA

Fig. 2. VAMANA Architecture Overview

A. XPath Compiler

All XPath expressions can be logically represented as an
algebraic tree structure. Each location step is translated
into a parse tree node with relevant attributes like axis,
node test and predicate information. The parse tree is
built bottom up. Hence as the nodes are being created
they are attached to its parent. The default parse trees
for the expressions Q1 and Q2 are shown in Figure 3. Once
the parse tree is generated we map each node to exactly
one VAMANA operator to produce the physical plan.

// name

BINARY
PREDICATE (EQ)

Yung Flachtext()

child::address

self::person

parent::*

descendant::name

a. Q1 b. Q2

following-sibling::
emailaddress

Fig. 3. Default Parse Tree for Q1 and Q2

B. VAMANA Storage Structure

VAMANA uses the MASS [10] indexing structure for
all document storage and access. MASS simpli¦es query
processing by facilitating e©cient index-based access for
all XPath location steps and value-based lookups. The
combination of VAMANA£s pipelined query operators
and MASS e©cient indexing allows for e©cient query
evaluation with minimal system resources.

4

MASS facilitates e©cient evaluation of XPath axes,
node tests, and range position predicates with use of its
clustered indexes. MASS [10] uses Fast Lexicographical
Keys (FLEX) for the structural encoding of XML nodes
in the document. MASS node clustering allows e©cient
sequential traversal over node sets with minimal I/O and
key comparisons. MASS can also count node set size for
both axis-based and value-based lookups without fetching
the data. MASS£s e©cient index lookups facilitate index-
based query plans that outperform join-based plans in
many cases. And the e©cient counting allows VAMANA to
quickly and accurately cost query plans. VAMANA shares
the same node representation as MASS, which eliminates
the cost of translating between node representations. Fur-
thermore, document nodes do not need to be materialized
from the persistent storage unless they are actually used
in query processing. This is accomplished by passing the
FLEX keys in place of the corresponding tuples.
MASS provides statistical information like number of
tuples per page, number of pages, etc. used in cost
estimation. The count of the number of tuples that satisfy
a particular nodetest is used extensively. Thus is not
expensive to calculate, because MASS£s index structure
facilitates count calculation from the FLEX key of the
¦rst and last node that satisfy the node test. Thus we
can avoid scans by computing count on the index level
without going to data.

V. Physical Algebra

A. VAMANA Physical Plan

A VAMANA default query plan P is an execution tree
generated by replacing each node of the parse tree with
its equivalent VAMANA algebra operator. A VAMANA
operator is denoted as opcond

id , where op is the symbol
of the operator type, cond represents a set of conditions
applied by the operator, id is an identi¦er that uniquely
identi¦es each operator, with 1 ≤ id ≤ m, where m is the
number of operators for a given plan P .

Φ4
parent::*

Φ2
child::address

Φ3
self::person

Φ2
following-sibling::emailaddress

Φ6
//::name

Φ5
child::textL4

‘Yung Flach’

β3
EQ

a. Q1 b. Q2

Φid
axis::nodetest

Step Operator
Lid

value

Value Operator
βid

OPERATOR

Binary Operator

c.

Φ5
descendant::name

R1 R1

Fig. 4. VAMANA Query Plan for Q1 and Q2

We extend the idea of a context node de¦ned in XPath
to a reference to an XML node in the underlying indexed

structure. In a VAMANA query plan each operator re-
turns tuples which have structural encoding. This is used
to de¦ne the context node of its corresponding parent
operator. Consider the XPath expression Q2 (Figure
4) in which φ

//::name
6 is de¦ned as the contextchild of

φfollowing−sibling::emailaddress
2 .
The context node of any given VAMANA operator

opcond
id de¦nes uniquely the position of an XML node in the
index structure. The position is obtained by the structural
path information encoded in the context node.
Predicate operators are used to represent XPath predi-
cate ¦lters [17], [18]. The predicate operator is made of a
predicate condition and has one or two predicate children.
The context node for processing a predicate operator is
provided by its parent operator on which the predicate
condition is evaluated. The predicate operator in return
provides the context node for its leaf operators. In Figure
4.b, the operator φ

//::name
6 being the leaf operator has no

context children but one predicate child βEQ
3 .

Since the leaf operator has no context children, the
context has to be set by the query execution engine before
executing the query plan. In our example, the context of
the leaf operator (φdescendant::name

5 in Q1 and φ
//::name
6 in

Q2) is set to the root of the XML document. Alternatively,
in an XQuery expression [19] the leaf operator could
receive context nodes from another expression.
Next, we introduce the concept of context path and
predicate path which are required for dynamic context
setting (Section V-B) and cost estimation (Section VI-
B). A context path represents the path in the query plan
from which the context is iteratively obtained. It is a path
of operators in which each operator is the context child
of the previous one. For example, the context path of
the root node R1 in Figure 4.b is context-path(R1) =
< φfollowing−sibling::emailaddress

2 , φ
//::name
6 >. A predicate

tree represents a sub-tree of operators starting from
predicate children of a predicate operator to its leaves.

B. Dynamic Setting of Context

In VAMANA£s index-based execution strategy, to start
execution every operator requires a context node that
uniquely refers to a particular XML node in the underlying
index structure.
Leaf operators in the context path of the XPath expres-
sion are initially set by the query execution engine to the
root of the XML document. When the leaf operator is ¦rst
requested to provide tuples, it fetches the ¦rst XML node
in the index structure that satis¦es the conditions de-
scribed in the operator. As the leaf operator is repeatedly
requested for tuples, the context is dynamically moved
over the index until all XML nodes in the index structure
that satisfy the condition are exhausted.
The leaf operators on the predicate paths have their
context set by the tuples generated by the operator on
which the predicate condition ¦lters on. For every tuple
generated by the parent operator, the context of leaf
operators in the predicate tree is set and then the predicate
condition is evaluated.

5

The non-leaf operator starts execution from the con-
text node whose information is extracted from the tuple
generated by its context child. As the current XML node
is processed the context node is dynamically changed to
the next XML node in the index structure. When the
current non-leaf operator reaches an XML node that does
not satisfy its condition(s), it stops further advancement
and requests the next tuple from its context child. The
operator ¦nishes execution when it has exhausted all the
tuples provided by its context child.

C. VAMANA Operators

The default query plans for XPath expressions Q1 and
Q2 are shown in Figure 4. VAMANA operators used for
XPath speci¦c operations are given below.

1) Root Operator R1. The root operator identi¦es the
starting point of the query plan. It has at most one
context child and no predicate children. It returns
all the tuples obtained from its context child.

2) Step Operator φaxis::nodetest
id . Each location step in

an XPath expression is identi¦ed by a step operator.
A step operator has at most one context child and
at most one predicate operator. Each step operator
fetches tuples from the index structure that satis¦es
a particular nodetest at a given axis with respect
to a given context node.

3) Literal Operator Lυ
id. A literal operator represents

a literal of a particular value υ 1. A literal operator
has no context child and no predicate children.

4) Exist Predicate Operatorξid . It denotes an exists
predicate for an XPath expression. An exists predi-
cate has one predicate child. For each tuple obtained
from its parent operator, the operator applies the
predicate expression as a ¦lter condition. If the
tuples condition is satis¦ed the parent operator is
signalled to pass it to its corresponding parent. If
the tuple doesn£t satisfy the condition, it requests
the next tuple from its parent.

5) Binary Predicate Operator βcond
id . A binary pred-

icate operator is denoted as βcond
id , where cond is

a logical connector operation like AND, OR, etc..
A binary predicate has two predicate children and
a predicate condition. The predicate condition is
applied to each of the tuples fetched by the parent
operator. The binary condition is evaluated after
executing both the sides of the predicate expression.

6) Join Operator Jcond
id . The join operator has a

join condition and two context children. Tuples are
fetched from both the context children and the join
is applied.

VI. Optimizer

Optimization process in VAMANA is comprised of three
phases, namely expression clean up, cost gathering and
re-writing. Iterations of these phases are performed until

1In Q2 the literal operator has a value Yung Flach

the cost function of the query plan has been optimized.
During optimization the query plan is transformed into an
intermediate query plan by applying equivalence rules [20]
from the transformation library. VAMANA optimization
aims to transform the query plan such that each operator
in the query plan is executed in the most optimized fash-
ion. The query plan is incrementally optimized until the
costs of all operators have been considered for optimization
within the constraints of the VAMANA cost model.

Φ4
parent::*

Φ2
child::address

Φ3
self::person

Φ5
descendant::name

Φ2
child::address

Φ3
parent::person

Φ5
descendant::name

a. Default Query Plan b. Cleaned Query Plan

Fig. 5. Clean Up of XPath Expression Q1

A. Query Clean-Up

During each iteration before estimating the cost of each
operator in the query plan, the optimizer does a clean
up that targets all self axis nodes. Figure 5.a is the
default query plan for Q1 : (descendant :: name/parent ::
∗/self :: person/address). The clean up phase merges
nodes φself ::person

3 and φparent::∗
4 into a single operator

φparent::person
3 . The resultant query plan (Figure 5.b) is
equivalent to the default query plan.

B. Cost Estimation

Since VAMANA uses a bottom-up execution strategy
the cost estimation starts from the leaf operators of a
given query plan and is propagated upwards. Consider
the XPath expression Q1 in Figure 5.b.
At each operator opi the statistics gathered are:
1) COUNT (opi) : This statistics is only calculated
for step operators. It represents the count of the
number of XML nodes in the underlying index
that satisfy the node test of the step operator
(φaxis::nodetest

i). MASS provides an API to e©ciently
gather the count of a particular node test in its
storage structure [10].

2) TC(opi) : For a literal operator Lυ
i , text count

(TC(opi)) is the number of occurrences of a par-
ticular literal value (υ) in the index structure.

3) IN(opi) : Maximum number of tuples operator opi

will receive in total from its context child.
Case 1: For a leaf step operator on the context path
of the query plan, the total number of tuples received
is equal to the number of tuples available in the
underlying index, i.e. IN(opi) = COUNT (opi).

6

TABLE I

Cost Table

AXIS CASE OUTPUT (opi)

child, descendant, COUNT (opi) > IN(opi) COUNT (opi)
descendant-or-self COUNT (opi) ≤ IN(opi)

parent, ancestor, ancestor-or-self, following, COUNT (opi) > IN(opi) IN(opi)
following-sibling, preceding, preceding-sibling COUNT (opi) ≤ IN(opi)

self COUNT (opi) > IN(opi) COUNT (opi)
COUNT (opi) ≤ IN(opi) IN(opi)

0

0

1

N iδ i

COUNT = 4825
IN = 4825 OUT = 4825

Φ5
descendant::name

COUNT = 2550
IN = 4825 OUTT = 4825

Φ3
parent::person

COUNT = 1256
IN = 4825 OUT = 1256

Φ2
child::address

R1

Fig. 6. Cost Estimation of Plan in Figure 5.b

Case 2: For all non-leaf operator(s), IN(opi) =
OUT (opj), where opj is the context child of opi.
Case 3: For all leaf step operator(s) on the predicate
path of query plan, the total number of tuples
received is equal to the number of tuples received
by its predicate operator.

4) OUT (opi) : The maximum number of tuples that
the current operator opi returns.
Case 1: A leaf step operator on the context path of
the query plan returns all the tuples that occur in the
index with respect to the context of the leaf operator,
i.e., OUT (opi) = COUNT (opi). For example, in
Figure 6 the leaf operator φ//::name

5 returns all tuples
satisfying the node test name starting from the root
of the XML document.
Case 2: A literal operator(s) returns the same values
every time a request for tuples is received. To
facilitate the optimization of literal operators using
a value-index, we de¦ne output as OUT (opi) =
TC(opi), where TC(opi) corresponds to the number
of times a literal value occurs in the index.
Case 3: For all non-leaf step operator(s) (both con-
text and predicate paths), OUT (opi) is calculated
using the cost table shown in Table I. Consider
operator φparent::person

3 in Figure 6. It receives 4825

tuples from its context child φ
//::name
5 , while there

are only 2550 instances of person in the XML docu-
ment. This implies that the operator φparent::person

3
can return at most 2550 tuples. Table I summarizes
the upper bound of tuples that can be produced by
a given step operator for each axis type.
Case 4: For leaf step operators on the predicate path,
OUT is calculated by the cost table (Table I).
Case 5: For binary predicate operators that have a
value-based equivalence, OUT (opi) is calculated as
the minimum of number of tuples from the parent
operator and the text count (TC) of the literal value.
Case 6: For all other predicate operators, OUT (opi)
is equal to the maximum number of tuples generated
by the parent operator on which the predicate
expression is applied.

5) Selectivity Ratio: De¦ned as δ(opi) = Ii/Oi. After
calculating the selectivity factor for all the nodes it
is scaled to a ratio between the bounds of 0 and 1.

After cost estimation the optimizer generates an ordered
list L of all operators sorted by their selectivity factor. The
ordered list L(P) for a query plan P with m operators is
de¦ned to be an ordered array << opj , δ(opj) > | where
opjεN (N is the set of valid operators for the given query
plan) and the pairs are sorted on the selectivity ratio
δ(opj) >.
1) Running Example: The cost estimation of Q1 starts
from the leaf operator φdescendant::name

5 (Figure 6). The
leaf operator fetches the count of the number of XML
nodes that satisfy the node test name in the index
structure (COUNT(φ5) = 4825). Based on the cost model
for a leaf operator described in Section VI-B, IN(φ5) =
OUT(φ5)= COUNT(φ5) = 4825.
This cost is re§ected in its parent φparent::person

3 as
IN(φ3) = OUT(φ5) = 4825. The count of the step operator
is gathered in the same way as its context child. Based on
the cost table described in Table I we calculate OUT(φ3)
= IN(φ3) = OUT(φ5) = 4825.
To illustrate the logic in the cost table described in Table
I, consider the estimation of the operator φchild::address

2 .
IN and COUNT are gathered in the same fashion as its
context child. Operator φ2 has COUNT(φ2) = 2550 and
receives as input from φparent::person

3 4825 tuples. Since
there is a smaller number of address than person and the
axis is child, the upper bound of the number of output
tuples is determined by φ2. In a similar fashion the cost

7

estimation can be done for query Q2 (Figure 7).

R1

Φ2
following-sibling::emailaddress

COUNT = 2550
IN = 1 OUT = 1

Φ6
//::name

COUNT = 4825
IN = 4825 OUT = 1

β3
EQ

IN = 4825 OUT = 1

L4
‘Yung Flach’

`

TC = 1 COUNT = 4825
IN = 4825 OUT = 4825

Φ5
child::text

Fig. 7. Cost Estimation of XPath Expression Q2

C. Optimization

Starting from the operator with the highest selectivity
ratio, the optimizer examines each operator for its opti-
mization potential. Selective operators are pushed down by
applying transformation rules. The applicable transforma-
tion rule is determined by verifying the new cost that will
incur if the transformation was done. If the transformation
increases the cost of execution of the current operator,
then that transformation rule is not considered. Increase
in cost means that the transformed operator ¦lters a lesser
number of tuples. This cost estimation is done dynamically
during the optimization phase. The cost involves the
estimation of the transformed operator or sub-query that
replaces the operator. This is inexpensive compared to
costing the entire query plan. When a particular operator
has been transformed, the optimizer repeats the process
of costing and transformation.
1) Running Example Q1: Optimization of Q1 starts
with the most selective operator φchild::address

2 in the
ordered list L(P). Since VAMANA transformation library
does not have any equivalent rules for this operator
it moves on to operator φparent::person

3 . The optimizer
¦nds an equivalence rule and performs the corresponding
transformation (Figure 8). We then repeat the process of
estimation and transformation on the modi¦ed query plan.
The transformed query plan now facilitates the push-down
of the most selective operator φchild::address

2 by applying
the transformation rule to produce the query plan shown
in Figure 11. Since no further valid transformation rule
are available to optimize the query plan, it is considered
optimal and passed for execution.
2) Running Example Q2: The initial costing for the
default query plan of Q2 is shown in Figure 7. VAMANA£s
exploits the index by translating value-based queries into

COUNT = 4825
IN = 4825 OUT = 4825

Φ5
descendant::name

COUNT = 2550
IN = 4825 OUT = 4825

Φ3
parent::person

COUNT = 1256
IN = 4825 OUT = 1256

Φ2
child::address

R1

COUNT = 4825
IN = 2550 OUT = 4825

Φ5
child::name

COUNT = 2550
IN = 2550 OUT = 2550

Φ3
//::person

COUNT = 1256
IN = 2550 OUT = 1256

Φ2
child::address

R1

IN = 4825 OUT = 4825

ξ6

a. Initial Query Plan b. Transformed Query Plan

Fig. 8. Optimization of XPath Expression Q1

Φ2
following-sibling::emailaddress

Φ6
//::name

Φ5
child::textL4

‘Yung Flach’

β3
EQ

R1

Φ2
following-sibling::emailaddress

Φ6
parent::name

Φ5
value:: ‘Yung Flach’

R1

a. Default Query Plan b. Transformed Query Plan

Fig. 9. Optimization of XPath Expression Q2

a location step. VAMANA facilitates the calculation of
the text count TC for the literal operator (L

′Y ungFlach′
4).

The XML document has only one occurrence of the
value Y ungF lach. Hence βEQ

3 can at most return one
person that can satisfy the predicate condition, out of the
4825 tuples generated by its parent operator φchild::address

2
(Figure 9).

VII. Query Execution Engine

The execution of a query plan P begins by setting the
context of the leaf step operators on the context path of
the query plan. In the running examples it is set to be the
root of the XML document. For an XQuery expression that
typically contains multiple XPath expressions, the context
node could be provided from another XPath expression.
A VAMANA operator during execution can be one
of the following three states: INITIAL, FETCHING or
OUT OF TUPLES. An operator is said to be in the
INITIAL state when it has not yet been requested for
a tuple. An operator goes into the FETCHING state
either when it is fetching tuples from the underlying index
structure, or when it is waiting for either its context child
to fetch the next tuple to be processed, or for the predicate
children to ¦nish processing.

8

Algorithm 1 Execute() - Step Operator
Input: Step Operator φcurrent;
Output: Resultant Tuple.
while φcurrent.state() != OUT OF TUPLES do
if φcurrent.getState() = INITIAL then
if φcurrent is a leaf node then

φcurrent.setState(FETCHING)
return φcurrent.fetchNextTuple()
// Fetches the next node from the MASS index.

else
φcurrent.setNextContext() // See Algorithm 2

end if
else
if φcurrent.getState() = FETCHING then
T = φcurrent.fetchNextTuple()
if φcurrent is a leaf node then
return T

else
if T != null then
return T

else
φcurrent.setNextContext()

end if
end if
if φcurrent has a predicate child then
if φcurrent.evaluatePredicate() then
return T;

end if
end if

end if
end if

end while

An operator is in OUT OF TUPLES state when both
of the conditions below are true.
Case 1: When all tuples that satisfy the speci¦ed
condition have been extracted from the index.
Case 2: Context child (if any) has no more tuples.
Algorithm 1 explains in detail the execution

FLEX KEYS
<site> a
…
<person id="person144"> a.d.y

<name>Yung Flach</name> a.d.y.a
<emailaddress>Flach@auth.gr</emailaddress> a.d.y.b
<address> a.d.y.c

<street>92 Pfisterer St</street> a.d.y.c.a
<city>Monroe</city> a.d.y.c.b
<country>United States</country> a.d.y.c.d
<zipcode>12</zipcode> a.d.y.c.e

</address>
<watches> a.d.y.d

<watch open_auction=“open_auction108”/> a.d.y.d.a
<watch open_auction=“open_auction94”/> a.d.y.d.b
<watch open_auction=“open_auction110”/> a.d.y.d.c

</watches>
</person>
<person id="person145"> a.d.z
…

Fig. 10. XML Document (Figure 1) with FLEX key

To illustrate the execution process, consider the opti-
mized query plan for Q1 (Figure 11). Figure 10 represents
the element person with its corresponding FLEX keys.
To begin execution the query execution engine sets the
context of the leaf step operator φ

//::address
2 to the root

[a] of the XML document . The root node R1 goes
into FETCHING state and requests its context child
(φ//::address
2) to fetch context.
When operator φ

//::address
2 is requested for tuples it

changes its state to FETCHING and extracts the ¦rst
address [a.d.y.c] in the index. To execute the predicate

Algorithm 2 GetNextContext() - Gets the next context
from the context child
child = Child()
newContext = child.execute()
if newContext != null then

φcurrent.resetContext(newContext)
φcurrent.setState(FETCHING)

else
φcurrent.setState(OUT OF TUPLES)

end if

expression ξ7, its context node must be set to the tuple
having FLEX key [a.d.y.c].

R1

[a.d.y]

a.d.y

a.d.y.c

[a]

[a.d.y]

[a.d.y.c]

[a.d.y.c] Context Node

Setting Context Node

Resultant Tuples

[a.d.y]

[a.d.y]

[a.d.y.a]

[a.d.y.a]

[a.d.y.c]

Φ2
//::address

ξ7

Φ3
parent::person

Φ5
child::name

ξ6

Fig. 11. Execution of a Query Plan

Once the context node of the predicate is set, the
expression is evaluated. The exist predicate operator ξ7
passes a request for tuples to its context child φ

//::person
3 .

This operator in turn fetches the ¦rst person [a.d.y]
who satis¦es the condition axis parent with respect to
the context node [a.d.y.c] in the index. For each person
tuple generated, the second predicate expression (ξ6)is
executed in a similar fashion. If the predicate condition
is satis¦ed then φ

//::person
3 returns the tuple to its parent

ξ7 which in turn passes it to φ
//::address
2 . This signi¦es

that the XML node having a FLEX key [a.d.y.c] satis¦es
the predicate condition parent :: person[child :: name].
It is then returned to R1 to be outputted. This process
is recursively done for all the tuples returned by the leaf
operator φ

//::address
5 .

VIII. Experimental Studies

In this section we present our experimental evaluation
of the VAMANA XPath engine using the data generated
by the XMark benchmark [16]. The experiments were

9

Fig. 12. Execution Time of Q1 in Seconds

performed on a Intel Celeron PC with 512Mb of RAM
running SUSE Linux 9.0. Current XML query benchmark
does not cover a wide range of XPath queries. Hence we
choose the following XPath queries to cover major forward
and reverse axes and predicate expressions.

• Q1 //person/address
• Q2 //watches/watch/ancestor::person
• Q3 /descendant::name/parent::*/self::person/address
• Q4 //itemref/following-sibling::price/parent::*
• Q5 //province[text()=¥Vermont¥]/ancestor::person

Fig. 13. Execution Time of Q2 in Seconds

We compare VAMANA against Galax [2] Jaxen [13]
and eXist [7]. At the time of this testing, leading index-
based query engines like TIMBER [9] and Natix [11]
did not have a release to test our engine against. Thus
eXist is the only native solution we have been able to
compare against. The execution time recorded represents
the total CPU elapsed time used for query execution. All
query evaluations that failed to complete in two hours
have no corresponding data points on the charts. Galax
does not support certain axes like following − sibling.
eXist is unable store large complex documents having

sizes ≥ 20Mb. ¥VQP¥ represents the execution of default
VAMANA query plan without optimization while ¥VQP-
OPT¥ speci¦es the run time of optimized VAMANA query
plan.

Fig. 14. Execution Time of Q3 in Seconds

Figures 12 and 13 show the results of running queries Q1
and Q2 on di¨erent engines. The execution of the query
Q1 //person/address involves physically fetching for every
person XML node a corresponding XML node that satis-
¦es the condition child :: address. For instance, consider
the XML document of size 10Mb, the total number of
XML nodes with the nodetest person is 2550. While there
exist only 1256 address XML nodes, thus causing twice as
many fetch operations. On the other hand, the optimized
query //address[parent::person] reduces the number of
fetches and also exploits the capability of MASS in ¦nding
the parent XML node for any particular XML node. Now,
only a check to see if the parent has a node-test person
has to be made and thus reducing cost by at least 40%.

Fig. 15. Execution Time of Q4 in Seconds

In Q2, VAMANA optimizer reduces the
execution by removing duplicates. The optimizer
translates //watches/watch/ancestor :: person into

10

//watches[watch]/ancestor :: person. This optimization
is done only when duplicate elimination is desired.
VAMANA£s storage structure and execution structure
facilitates evaluation of predicate condition. In comparison
with eXist for query Q5, VAMANA performs nearly
100% faster. This is because eXist has to switch back to
a tree traversal algorithm for predicate evaluation. Figure
14 experimentally con¦rms that the VAMANA optimizer
each time generates an optimized query plan that runs
faster than the default plan. The VAMANA optimizer
chooses to transform a particular operator such that
the number of output tuples of the current operation is
reduced. This guarantees to produce a query plan that
has the same or better execution time as the previous
query plan.

Fig. 16. Execution Time of Q5 in Seconds

To summarize, many of the prevalent XPath engines
[2], [3], [7] only support a subset of the XPath axes.
The experiments shown above illustrate that VAMANA
supports all XPath axes. VAMANA exploits the large
storage capacity of MASS (up to several Gbs) and can
query large XML documents. Galax can only produce
results in a reasonable time frame (less than two hours)
for XML documents of sizes ≤ 30Mb. Jaxen and Xindices
can handle small XML documents up to 10Mb and
5Mb respectively. We conclude that the optimizer always
generates a query plan having the same or faster per-
formance (CPU time) with respect to the default query
submitted by the user. VAMANA£s cost model e©ciently
captures the selectivity of the operators, thus aiding in
transformations.

IX. Conclusion

We present VAMANA, an e©cient, cost-driven XML
query engine. VAMANA£s index-only pipelined execution
is novel to XML query evaluation as most of the existing
engines use structural joins for query evaluation. The
VAMANA cost model has been shown to be e¨ective
for identifying highly selective nodes. The cost-based
heuristics successfully pushes selective operators down to

increase execution speed. The dynamic cost estimation
support makes costing up-to-date in environments even
with frequent XML updates. The model is well supported
by a set of transformation rules used for operator opti-
mization. Our experiments have shown that VAMANA
outperforms many existing XML query engines in both
execution speed and document size.

References

[1] ¤Kweelt.¥ [Online]. Available: http://db.bell-labs.com/galax/
[2] ¤Galax System.¥ [Online]. Available: http://db.bell-labs.com/
galax/

[3] ¤IPSI - XQ.¥ [Online]. Available: http://www.ipsi.fraunhofer.de
[4] A. Marian and J. Simeon, ¤Projecting XML Documents,¥ in
VLDB, 2003, pp. 213 224.

[5] M. J. Carey, J. Kiernan, J. Shanmugasundaram, E. J. Shekita,
and S. N. Subramanian, ¤XPERANTO: Middleware for Pub-
lishing Object-Relational Data as XML Documents,¥ in VLDB,
2000, pp. 646 648.

[6] X. Zhang, M. Mulchandani, S. Christ, B. Murphy, and E. A.
Rundensteiner, ¤Rainbow: Mapping-Driven Xquery Processing
System,¥ in SIGMOD, 2002, p. 614.

[7] W. Meier, ¤eXist: An Open Source Native XML Database,¥ in
Web, Web-Service and Database Systems Workshop, 2002, pp.
169 183.

[8] ¤Apache Xindices Project.¥ [Online]. Available: http://xml.
apache.org/xindice

[9] H. Jagadish, S. Al-Khalifa, L. Lakshmanan, A. Chapman,
A. Nierman, S. Paparizos, J. Patel, D. Srivastava, Y. Wu, and
C. Yu, ¤TIMBER: A Native System for Querying XML,¥ in
SIGMOD, 2003, p. 672.

[10] K. Deschler and E. A. Rundensteiner, ¤MASS- multi Axis
Storage Structure,¥ in CIKM, 2003, pp. 520 523.

[11] C. Kanne and G. Moerkotte, ¤E©cient Storage of XML Data,¥
in ICDE, 2000, p. 198.

[12] ¤Pathan.¥ [Online]. Available: http://software.decisionsoft.com
[13] ¤Jaxen: Universal Xpath Engine.¥ [Online]. Available: http:

//jaxen.org
[14] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Simeon,

¤Statix: Making XML Count,¥ in SIGMOD, 2002, pp. 181 191.
[15] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrish-

nan, R. T. Ng, and D. Srivastava, ¤Counting Twig Matches in
a Tree,¥ in ICDE, 2001, pp. 595 604.

[16] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu, and
R. Busse, ¤XMark: A Benchmark for XML Data Management,¥
in VLDB, 2002, pp. 974 985.

[17] J. Clark and S. DeRose, ¤XML Path Language (XPath) 1.0,¥
Nov 1999.

[18] L. Wood, A. L. Hors, V. Apparao, S. Byrne, M. Champion,
S. Isaacs, I. Jacobs, G. Nicol, J. Robie, R. Sutor, and C. Wilson,
¤Document Object Model (DOM) 1.0,¥ Sept 2000.

[19] S. Boag, D. Chamberlin, M.Fernandez, D. Florescu, J. Robie,
and J. Simeon, ¤An XML Query Language (XQuery) 1.0,¥ Oct
2004.

[20] D. Olteanu, H. Meuss, T. Furche, and F. Bry, ¤XPath looking
forward,¥ in EDBT Workshop on XML Data Management,
2002, pp. 109 127.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

