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ABSTRACT
Although various mining algorithms have been proposed in the lit-
erature to efficiently compute clusters, few strides have been made
to date in helping analysts to interactively explore such patterns
in the stream context. We present a framework called CLUES to
both computationally and visually support the process of real-time
mining of density-based clusters. CLUES is composed of three
major components. First, as foundation of CLUES, we develop
an evolution model of density-based clusters in data streams that
captures the complete spectrum of cluster evolution types across
streaming windows. Second, to equip CLUES with the capabil-
ity of efficiently tracking cluster evolution, we design a novel al-
gorithm to piggy-back the evolution tracking process into the un-
derlying cluster detection process. Third, CLUES organizes the
detected clusters and their evolution interrelationships into a multi-
dimensional pattern space – presenting clusters at different time
horizons and across different abstraction levels. It provides a rich
set of visualization and interaction techniques to allow the analyst
to explore this multi-dimensional pattern space in real-time. Our
experimental evaluation, including performance studies and a user
study, using real streams from ground group movement monitoring
and from stock transaction domains confirm both the efficiency and
effectiveness of our proposed CLUES framework.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Management, Performance

Keywords
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1. INTRODUCTION
The discovery of complex patterns such as clusters, outliers, and

associations from huge volumes of streaming data has been rec-
ognized as critical for numerous domains, ranging from financial
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analysis to moving object monitoring. Such applications built upon
high-speed data streams not only expect a stream processing sys-
tem to computationally detect patterns in a highly efficient manner,
but also require it to provide an exploratory platform that helps the
analysts to interact with and thus comprehend both the detected pat-
terns and their interrelationships. For example, in traffic monitoring
applications, an analyst does not only need to know the major traffic
congestions (clusters) just detected in the traffic streams, but also
needs to keep track of how these clusters evolve over time. Dur-
ing routine monitoring, the analyst may monitor the clusters at a
highly abstract level, such as whether new patterns formed recently
or whether an earlier cluster now has split into several smaller ones.
A closer exploration may be necessary in some circumstances. For
example, a cluster that is growing quickly in size but not moving in
position may indicate a traffic congestion or even an accident. The
analyst then needs to zoom into that particular cluster to study the
cluster structure (how vehicles are distributed in the cluster) and
obtain information on the individual vehicles needing help. Obvi-
ously, using the traditional console or file output to simply report
the clusters as tuples associated with cluster identifications would
be of limited use, because the analysts can hardly comprehend such
high volume data presented in plain text in real time.

To better support complex pattern mining in the streaming en-
vironments poses the following requirements:1) pattern evolu-
tion semantics as foundation are neccessary to characterize pattern
changes over time in the streams;2) efficient pattern and evolu-
tion computation methods have to be designed to handle high input
rate streams;3) appropriate visualization techniques must effec-
tively convey the detected patterns and their interrelationships; and
4) most importantly, all these critical components above need to be
well integrated into a unified framework, which provides analysts
an efficient and easy-to-use exploration platform.

Target Query Semantics. We support mining of density-based
clusters [13, 14] insliding stream windows. For this query seman-
tics, arbitrarily shaped clusters are continuously detected within the
most recent portion of the stream that fall into the query window.
The traffic congestion monitoring task discussed above is an exam-
ple that requires such query semantics. This is because the traffic
congestions can be in any shape, and position information being
valid for only a certain period of time necessitates cluster formation
based on the most recent positions of the vehicles. Other applica-
tions that can be served by such query semantics include detecting
intensive-transaction areas in most recent stock trades, and identi-
fying malicious attacks in current network traffic.

1.1 Analysis of State-of-the-Art
While mining of streaming data has been studied for various pat-

tern types [2, 9, 7], little attention has been paid to date for de-
sign of holistic frameworks that support the overall mining process



for density-based clusters in sliding windows. First, an evolution
model that effectively characterizes the changes of density-based
cluster structures over time is needed. Reporting the changes of
patterns in data streams [1, 2, 5, 6, 10, 17] has long been recog-
nized as important. The previous efforts of clustering streaming
data [2, 5, 6, 10, 17] assume that the streaming clusters are sphere-
shaped and can be expressed using accumulative statistics. They
use a “subtraction" function to calculate the difference between the
statistics of clusters identified at different time points. However,
these techniques usually do not deal with cluster changes caused
by cluster membership transformations of individual objects, such
as split and merge. Also they either cannot handle clusters with
arbitrary shapes or with sliding window semantics, and thus do not
meet the requirements of the applications mentioned earlier.

To our knowledge, no evolution semantics specific to density-
based clusters in streaming environment have been presented so far
in the literature. [17] is perhaps the closest research effort to us
in terms of designing cluster evolution model. It presents a clus-
ter change model, MONIC, to track cluster transactions. However,
this model is neither designed for the streaming environment nor
specifically for density-based clusters. In particular, in streaming
window semantics, as object expirations and arrivals happen within
a single window slide process, an evolution model needs to handle
the composite effect caused by both of them in a single transaction
(see section 3). While [17] provides evolution semantics for cover-
ing losing (expiration) or gaining (arrivals) cluster members sepa-
rately, it does not offer semantics covering the situations in which
both happen together. Second, to handle potentially high speed in-
put streams, the cluster changes have to be detected and conveyed
in a highly efficient manner. For density-based clusters, monitoring
the changes of their complex cluster structures in streaming envi-
ronment is particularly challenging. However, [17] provides neither
efficient computational methods nor visualization and interaction
techniques to allow analysts to quickly identify and understand the
cluster changes in real time.

Second, to track cluster evolution across sliding windows, an ef-
ficient computational method needs to be designed. Existing al-
gorithms for detecting density-based clusters in streams [8, 9] do
not meet the requirements of our target applications, because they
neither identify the individual members in the clusters nor enforce
the sliding window semantics for the clustering process. [20], the
only algorithm we are aware of that detects density-based clusters
in sliding windows, suffers from dramatically increasing demands
on system resources when the ratio between the window size and
the slide size of the query window increases. We characterize this
problem in depth in Section 4. More importantly, none of these
clustering algorithms support evolution tracking for density-based
clusters, which is one of the key focuses of this work.

Third, appropriate visualizations are needed to display the clus-
ters as well as their evolution. Previous research focuses on visual-
izing time series data [15, 19], data associated with timestamps in
static datasets. In such context, no issues of data arrival speed nor
continuous updates of streams arise. Also, although visualization
tools [11, 18] have been developed to present cluster structures in
static environments, none of them tackle visualization and real-time
visual interaction support for monitoring clusters and their evolu-
tion in the stream context.

1.2 Proposed Solution
In this work, we present a unified CLUster Evolution in Stream

analysis framework, CLUES, to both computationally and visually
support cluster mining in data streams.

First, we design the firstevolution semanticsfor density-based

clusters over sliding windows, deployed to model cluster evolu-
tions in the CLUES framework. We address the following two
key challenges. 1) Our proposed semantics not only cover statis-
tical changes of individual clusters, such as the size or the centroid
changes, but also classify structural cluster changes that involve
multiple clusters, including splitting and merging of clusters. Such
semantics are shown to effectively describe the changes of clusters
over time in our user study. 2) Our proposed evolution semantics
are efficiently computable. This is critical for real time applica-
tions, because a system conducting expensive clustering processes
can hardly bear any additional computational burden.

Second, a novel algorithm is proposed to serve as the compu-
tational component of CLUES. It does not only efficiently extract
clusters from sliding windows, but more importantly to also track
cluster changes based on our proposed evolution semantics. This
algorithm uses a compact hierarchical structure to incrementally
store and update the progressive clusters and their evolution in-
terrelationships. Our experimental study (Section 6) demonstrates
that our proposed algorithm is not only on average300% times
faster than the state-of-the-art detection technique [20], but also
consumes significantly (on average60%) less memory space. In
addition, this algorithm only consumes a very modest amount (less
than10%) of extra system resources to conduct evolution tracking
along with the clustering process.

Finally, CLUES organizes the detected clusters and their evolu-
tion information into a multi-dimensional pattern space, with one
dimension representing the cluster changes over time and the other
representing clusters in different abstraction levels. We have de-
signed a rich set of visualization and interaction techniques to en-
able analysts to easily navigate through the proposed pattern space
by reviewing, monitoring, and even predicting cluster changes over
time at different levels of abstraction. Our user study in Section 6
shows that our system can effectively improve both the efficiency
and accuracy of human analysts for tracking cluster evolution com-
pared to the alternative strategies.

2. PRELIMINARIES
We now introduce the concept of density-based clusters [13, 14].

We use the term “data point" to refer to a multi-dimensional tuple
in the data stream. Density-based cluster detection uses a range
thresholdθrange ≥ 0 to define theneighborshipbetween any two
data points. For two data pointspi andpj , if the distance between
them is no larger thanθrange, pi andpj are said to be neighbors.
We use the functionNumNeigh(pi, θ

range) to denote the number
of neighbors a data pointpi has, given theθrange threshold.

Definition 2.1. Density-Based Cluster: Given θrange and a
count thresholdθcount, a data pointpi with
NumNeigh(pi, θ

range)≥ θcount is defined as a core point. Oth-
erwise, ifpi is a neighbor of any core point,pi is an edge point.pi
is a noise point if it is neither a core point nor an edge point. Two
core pointsc0 andcn are connected, if they are neighbors of each
other, or there exists a sequence of core pointsp0, p1, ...pn−1, cn,
where for anyi with 0 ≤ i ≤ n−1, each pair of core pointspi and
pi+1 are neighbors of each other. Finally, a density-based cluster
is defined as a maximum group of “connected core points" and the
edge points attached to them. Any pair of core points within a clus-
ter are “connected". Figure 2 shows an example of a density-based
cluster composed of 11 core points (black) and 2 edge points (grey)
in windowW0.

We focus on periodic sliding window semantics as proposed in
Countinuous Query Language[3] and widely used in the litera-
ture [4, 20]. These proposed semantics can be either time-based



or count-based. In both cases, each query has a query windowW
with with a fixed window sizewin and a fixed slide sizeslide (ei-
ther a time interval or a tuple count). The query window covers
the most recent portion of the stream quantified by the window size
win, say the latest 10K tuples (count-based) or the tuples coming
into the system within the last 10 minutes. When a certain amount
of time has elapsed (time-based) or a certain number of tuples have
arrived (count-based), the query window slides (moves forward) by
the slide sizeslide. During each window slide, old tuples expire
from the query window, while new tuples arrive and fall into the
query window. Such query semantics periodically extract patterns
based on all tuples falling into the query window.

3. EVOLUTION MODEL OF CLUSTERS
In this section, we propose the first evolution model that mod-

els the semantics of density-based clusters changes over sliding
windows. The proposed evolution semantics is defined between
any two adjacent sliding windows upon a data stream, sayWn and
Wn+1. The process of sliding a query window can be divided into
two phases, namely purging the expired and then adding the new
data points. Our evolution semantics covers not only the cluster
changes caused by each of these two phases in isolation, but also
by both of them together. We call the cluster changes caused by
either of these two phases,single-step evolution, and those caused
by both of them,multiple-step evolution.

Model for Single-Step Evolution. Our single-step evolution
semantics covers seven change types. Given two cluster setsClu_set1
andClu_set2 identified inWn andWn+1 respectively, the change
types of single-step evolution are:

birth: If a clusterCi in Clu_set2 does not include any core
point members from any clusterCj in Clu_set1, we define this as
thebirth of a new clusterCi in Clu_set2.

termination: If none of the core point members of a clusterCi

in Clu_set1 appear in any clusterCj in Clu_set2, we define this
as theterminationof Ci.

split: A clusterCi in Clu_set1 splits, if its non-expired core
point members now belong to at least two different clusters inClu_set2.

merge: ClustersCi, Ci+1... Ci+n in Clu_set1 merge, if all
their core point members remaining inWn+1 now belong to a sin-
gle clusterCj in Clu_set2.

preserve/shrink/expand: A clusterCi in Clu_set1 preserves/
shrinks/expands, if no termination, split or mergehas happened
to it, and its size doesn’t change/decrease/increase significantly in
Clu_set2 respectively. Here the definition of “significance" can
be controlled by an adjustable thresholdθsig, which denotes a per-
centage of the original cluster size ofCi in Wn.

These seven change types describe all possible cluster changes
from one window to the next if considering either tuple expirations
or tuple insertions only.

Lemma 3.1. For any density-based cluster setClu_set identi-
fied in a windowWn, the seven change types above cover all po-
tential cluster changes that can be caused by either inserting or
deleting data points fromWn.

Here we give an intuitive explanation for Lemma 3.1. When in-
serting new tuples intoWn, these tuples can only either join the
existing clusters or fall into non-cluster areas inWn. 1) When new
tuples join existing clusters, they can only cause eitherpreserva-
tion or expansion of individual clusters, depending on whether the
number of new members each cluster gains is significant or not, or
merge of several clusters, when new tuples build connections be-
tween existing clusters.2) When new tuples fall into non-cluster

areas, they can only cause either thebirth of new clusters (as den-
sity reaches the threshold) or no cluster changes (as they become
new noise). Thus, insertion of new data points intoWn can only
causebirth, merge, expansion or preservation of the existing clus-
ters inClu_set.

Second, when data points are deleted fromWn, they can ei-
ther be members of existing clusters inClu_set or belong to non-
cluster areas (noises).1) Deleting cluster members from existing
clusters can only causeshrinkage or preservation of clusters, de-
pending on whether the number of members each cluster loses is
significant or not,termination of clusters, when the whole cluster
structure is deleted or collapsed after losing members, orsplit of
the clusters, when the connections between subparts of an existing
cluster are broken but at least two subparts still constitute smaller
clusters.2) Deleting noises causes no cluster changes. Thus, delet-
ing data points fromWn can only causeshrinkage or preservation,
termination or split of clusters

This shows that the seven single-step change types cover all po-
tential cluster changes that can be caused by either inserting or
deleting tuples fromWn.

Figure 1: Depiction of Evolution Semantics

Model for Multi-Step Evolution. We now consider change
types caused by the combination of both inserting and deleting data
points fromWn. For example, given two clustersCi andCj both in
Wn, two subparts ofCi, sayCi_sub1 andCi_sub2, and two subparts
of clusterCj , sayCj_sub1 andCj_sub2, Ci_sub1 andCj_sub1 may
belong to a new clusterCk in Wn+1, while Ci_sub2 andCj_sub2

may belong to another new clusterCl in Wn+1.
To cover such more complex cases, we define the notion of multi-

step evolution as a composition of two single-step evolutions to ex-
press cluster changes caused by first deleting all expired tuples and
then inserting new tuples.

split-expand: In Wn+1, new clusterCi formed by splitting of
clusterCj in Wn has, in addition, gained more members.

split-merge: In Wn+1, new clusterCi formed by splitting of a
clusterCj in Wn merges with other clusters fromWn.

shrink-merge: In Wn+1, clusterCi in Wn shrinks in size and
then merges with other clusters fromWn.

Theorem 3.1. For any density-based cluster setClu_set iden-
tified in a query windowWi, the seven single-step evolution types
and the three multiple-step evolution types cover all potential clus-
ter changes caused by window sliding.

We give an intuitive explanation of Theorem 3.1 below. Each



phase of the window sliding process, namely deleting expired and
inserting new tuples, can only cause four types of single-step evolu-
tion (Lemma 3.1). Among these single-step evolution types,termi-
nation andbirth are non-composable single step evolutions. This
is because a cluster already terminated cannot participate in any
further evolution, and a cluster just born cannot have any evolu-
tion before its birth. Thus nine (3 × 3) possible combinations
remain. Among them, six of these combinations composed by
two single-step evolution types regarding cluster size changes only,
namelypreservation, shrinkage andexpansion, can be collapsed
into single-step evolution again. For example,shrinkage and then
expansion will be classified aspreservation, shrinkage or expan-
sion, depending on the specific size change of the cluster. So, the
only three real multi-step evolution types remaining are the ones
we listed above. In conclusion, our proposed evolution seman-
tics (demonstrated in Figure 1) cover all possible cluster changes
caused by window slides.

4. A NOVEL CLUSTERING STRATEGY SUP-
PORTING EVOLUTION TRACKING

We now design an algorithm that not only significantly improve
the performance of the state-of-the-art techniques in terms of clus-
tering, but more importantly supports tracking of cluster evolution
based on our proposed evolution semantics (Section 3).

4.1 Proposed Stream Clustering Algorithm
As both analytically and experimentally shown in [20], detect-

ing clusters from scratch at each window is prohibitively expensive.
[20] also demonstrates that Incremental DBSCAN [13], which was
designed to handle a single insertion or deletion to density-based
clusters in data warehouse, does not scale well to handle large num-
bers of updates in each stream window. Thus, designing an efficient
incremental computation method is critical for cluster detection.

For incremental clustering, one key challenge is to efficiently
maintain cluster memberships of cluster member tuples over time.
The expiration of data points may cause complex cluster changes,
such as splitting, which may require cluster membership relabeling
of all the remaining cluster members from scratch. Thus, discount-
ing the effect of expired points from the detected clusters can be
computationally very expensive.

To address this problem, we exploit the property of sliding win-
dow semantics and apply the general concept of “predicted view"
[4, 20] as described below. Since sliding windows tend to par-
tially overlap (slide < win) [3], some data points falling into the
windowWi will also participate in some of the windows right af-
ter Wi. Based on the knowledge about data points in the current
window and the slide size, we can pre-determine which subsets of
the current data points will participate in certain future windows.
Figure 2 shows “predicted views" for four future windows. In par-
ticular, 16 data points, namelyp1 to p16 (each depicted as circles,
and the number in the circle representing its time stamp), fall into
the current windowW0 and 14 of them (p1 to p13) form a single
cluster. By analyzing the slide size (equal to 4) and the time stamps
on each point, we know that data pointsp13 to p16 will also partici-
pate in three future windows, namelyW1 toW3. While data points
p9 to p12 and data pointsp5 to p8 can only participate in two and
one future windows respectively.

By using this concept, we can avoid the computational effort
needed for discounting the effect of expiring data points. The idea
is to pre-generate “partial clusters" for future windows based on the
data points in the current window that are known to participate in
the respective future windows. Using the same example shown in

Figure 2: Predicted views of four consecutive windows at time
of W0 (slide size = 4 tuples)

Figure 2, the 12 data points inW0 that are known to participate
in W1, namelyp5 to p16, will form two clusters inW1, without
considering the new objects that later may come intoW1.

When the window slides, we simply update the pre-generated
clusters in the “predicted views" by inserting the new data points
into them. No effort for handling expiration of data points is needed,
because these views were generated without considering these to-
be-expired data points. Note all the cluster changes caused by in-
sertion of additional data points, namely birth of new clusters or
expansion or merge of existing clusters, are incrementally main-
tainable. They are computationally much cheaper than handling
expiration-related changes, which may require recomputation from
scratch. Figure 3 demonstrates the updated clusters at the time of
W1 after the window slides fromW0 to W1. The two clusters in
W1 (pre-generated at time ofW0) actually merge into one after the
new data pointsp17 to p20 arrive.

Figure 3: Updated predicted views of four consecutive windows
at time of W1 (slide size = 4 tuples)

Independent View Maintenance. As a straightforward appli-
cation of the predicted view concept, the “pre-generated" clusters
in each future window can be maintained independently. In partic-
ular, one can represent and thus update the “pre-generated" clusters
in these views independently when the window slides. However,
the demands of this approach on both CPU and memory resources
increase linearly as the number of predicted views to be maintained
increases. More specifically, for a clustering queryQi, the number
of predicted views to be maintained equals⌈ Qi.win

Qi.slide
⌉. For exam-

ple, given a queryQi with Qi.win=10000(s) andQi.slide=10(s),



this approach must maintain 1000 independent “predicted views".
Clearly, this represents a heavy burden in terms of both memory
and CPU resources. Figure 8 (left part) shows an example of the
independent storage for the predicted views depicted in Figure 2.
Here, information for representing cluster structures is repeatedly
stored even if unchanged across predicted views. More importantly,
as the clusters in different windows are treated independently, it
does not facilitate cluster evolution tracking, which is based on
interrelationships between cluster sets identified in adjacent win-
dows. Extra-N [20], the only algorithm in the literature conducting
density-based clustering in sliding windows, suffers from both of
these shortcomings.

Integrated View Maintenance. To overcome these shortcom-
ings, we now propose our new clustering algorithm based on an
Integrated predicted WINdow maintenance strategy, called IWIN.
IWIN exploits the interrelationships among the “pre-generated" clus-
ter structures in a sequence of future windows to compress them
into one single compact structure. This integrated storage mech-
anism enables efficient maintenance of a sequence of predicted
views.

We first exploit the notion of“growth" between any two density-
based cluster sets.

Definition 4.1. If Clu_Set2 is a “growth" of Clu_Set1, any
two data points that belong to the same cluster inClu_Set1 will
also belong to a single cluster inClu_Set2.

Figures 4 and 5 demonstrate an example of two cluster sets be-
tween which the “growth property" holds. The white circles repre-
sent the data points belonging to both cluster sets, while the black
ones represent those belonging toClu_Set2 only. As demon-
strated in Figures 4 and 5 also,birth of “new" clusters,expansion
andmerge are the only three possible cluster changes between any
two cluster sets between which the “growth property" holds (see
Section 3 for definitions for those change types).

Figure 4: Cluster Set 1 con-
taining 3 clusters

Figure 5: Cluster Set 2 con-
taining 3 clusters

If the growth property transitively holds among a sequence of
cluster sets, aHierarchical Cluster Structure can be built to in-
crementally store the clusters in these cluster sets. The key idea
of such a hierarchical cluster membership structure is to incremen-
tally store the cluster “growth information" from one cluster set to
another. Figures 6 and 7 respectively give examples of indepen-
dent and hierarchical cluster membership structures built for the
two cluster sets shown in Figures 4 and 5.

As shown in Figure 6, if we store the clusters in these two cluster
sets independently, each cluster member (white squares) belong-
ing to both clusters has to store two cluster memberships, one for
each cluster set. However, if we store them in the hierarchical clus-
ter structure (Figure 7), we no longer need to repeatedly store the
cluster memberships for these “shared" cluster members. Instead,
we simply store cluster memberships for each cluster member be-
longing toClu_Set1, and then store the cluster growth informa-

Figure 6: Independent Clus-
ter Storage for Cluster Sets 1
and 2

Figure 7: Hierarchical Clus-
ter Storage for Cluster Sets 1
and 2

tion from Clu_Set1 to Clu_Set2. Such growth information is
based on thegranularity of clusters rather than the granularity
of individual tuples. In particular, we correlate each clusterCi in
Clu_Set1 with the “grown clusters" inClu_Set2 that containCi.

Such hierarchical cluster structure does not only saves the mem-
ory space, but will also allow us to incrementally tracking clus-
ter evolution. Now we explore the insights from this hierarchical
cluster structure to design the IWIN algorithm. We first make the
observation that, at any given time T withWn being the current
window, the pre-generated cluster set in a futureWn+i is always
a growth of that identified in the predicted view ofWn+i+1. The
intuitive explanation for this observation is that a cluster set in an
earlier windowWn+i can be considered as formed by adding data
points to the cluster set in the later windowWn+i+1 (data points
expire in the opposite direction). Put differently, adding data points
to a cluster set can only cause “growth" of it.

Given the growth property holds among pre-generated cluster
sets in any pair of adjacent future windows, we now design an in-
tegrated structure to maintain the pre-generated cluster structures
in adjacent windows. We call it theIntegrated Representation of
Predicted Views (IntView). For any windowWn, IntV iew_Wn

is an integrated data structure that represents the predicted views of
Wn, Wn+1 ... Wn+i, whereWn+i is the last window that any cur-
rent data point inWn will participate in before its expiration. The
right part of Figure 8 gives an example ofIntV iew_W0 represent-
ing the “predicted views" ofW0,W1,W2 andW3 at the time ofW0

(Figure 2), with the left part depicting independent representation.
By using theIntViewstructure, IWIN realizes incremental storage
of pre-generated clusters for future windows, reducing the memory
utilization.

Since the clusters in different “predicted views" are now corre-
lated inIntV iew (“grow" from one to the next) , we design an up-
date method that is able to incrementally update the pre-generated
clusters in all future windows in one single pass. More specifically,
for each new data point, the update process toIntV iew_Wn starts
from the predicted window with the largest window number (the
lowest level in theIntV iew hierarchy). It then incrementally up-
dates other windows in decreasing order of window numbers (in the
higher levels ofIntV iew). When updating the clusters in a win-
dowWn+i, a new data pointpnew communicates with its neighbors
in this window only. Ifpnew causes a merge of two clustersCi and
Cj in Wn+i, andCi andCj are subparts of two different clusters
Cn andCm in the earlier window(s), it propagates the “growth in-
formation", namely mergeCn andCm, as well. This assures that
all the cluster “growth" inWn+i will be “known" by the upper level
windows. Thus,pnew never needs to re-communicate with the data
points stored inWn+i when updating the upper level windows. The
pseudo-code of the IWIN algorithm is listed in Figure 9.

In conclusion, the upper bound of the memory consumption for



Figure 8: Independent vs. Integrated Representation of Pre-
dicted Views

pi: a data point. pnew: a new data point.
pi.T :pi’s time stamp.
clu_mem:cluster membership. Wi : predicted window.
W.Tend/start : ending/starting time of W.
PV :predicted view.Wi.PV :PV built for Wi.
PV.neighbors: neighbors distributed toPV .
evo optional:optional, for evolution maintenance only

IWIN (θrange, θcnt, win, slide)
1 For each new data pointpnew

2 if pnew.T > Woldest.Tend

(2.1) PregenerateEvolution(Evo,sig); //(evo optional)
3 Purge the oldestWi

4 loadpnew into index
5 neighbors:=RangeQuerySearch(pnew, θ

range)
6 UpdateIntView(pnew, neighbors)
7 if pnew.T == Toutput

8 Output();
9 add new windowWnewest to IntV iew
10 Toutput = Toutput + slide

UpdateIntView (p, neighbors)
1 For each predicted windowWi (fromWnewest)
2 UpdatePredictedView(p,Wi.PV );

(2.1)If Wi = Woldest (evo optional)
(2.2) UpdateEvolution(p,Evo) (evo optional)

UpdatePredictView (p, PV )
1 p.neighborcount = PV.neighbors.size();
2 For i:=1 toPV.neighbors.size()
3 PV.neighbors[i].neighborcount++;
4 if PV.neighbors[i] becomes a new core
5 HandleNewCore(PV.neighbors[i]);
6 if p.neighborcount ≥ Qi.θ

cnt

7 HandleNewCore(p, PV );

HandleNewCore(p, PV )
1 p.type = core;
2 p.clu_mem=new clu_mem ;
3 For i:=1 toPV.neighbors.size()
4 if PV.neighbors[i].type == core
5 MergePV.neighbors[i]. andp. clu_mem;
6 if PV.neighbors[i].type == noise
7 PV.neighbors[i].type := edge;
8 PV.neighbors[i].clu_mem := p.clu_mem;

Figure 9: The IWIN Algorithm

IWIN is now independent of the number of predicted views to be
maintained, while that for the state-of-the-art technique [20] in-
creases linearly with the number of predicted views. Computa-
tionally, at each window, IWIN only requires a single pass through
the new data points, each communicating with its neighbors once,
while Extra-N requires each new data point to communicate with
each of its neighbors in all windows in which they both will partic-
ipate.

4.2 Evolution Tracking Procedures
Next we discuss how IWIN incrementally determines the evolu-

tion of clusters at each window slide. Our key insight here is that
this evolution semantics computation can be piggy-backed with
the process of IWIN’s cluster structure maintenance. Generally,
the computation for evolution semantics is composed of two steps.
First, before each window slide, when the view of the current win-
dow is still available, information about “predicted evolution" will
be extracted based on the relationship between the current view and
the predicted view of the next window. Second, after each window
slide, when new data points arrive, an evolution update process will
be carried out along with the cluster structure update to compute
the impact of each new data point on the cluster evolution. Now we
further explain the proposed techniques for these two steps.

Step 1: Extract Predicted Evolution Relationships. The
key idea here is that usingIntV iew techniques the single-step
evolutions caused by purging are already known before the win-
dow slides. In particular, since our proposed IWIN algorithm uses
the hierarchical structureIntV iew to incrementally store the clus-
ters identified in the current window and those pre-generated for
later windows, the cluster changes caused by the expiration of data
points are already captured in our structure.

Using the earlier example in Figure 2, atW0, the only cluster
identified in this window is “predicted" to be split after purging the
to-be-expired data points in the next windowW1. This informa-
tion is already captured in theIntV iew structure depicted on the
right of Figure 8. Namely, this cluster is associated with two pre-
generated clusters inW1. So, before each window slide (purge),
we extract the predicted evolution based on the view of the current
window and the predicted view for the next window.

Such predicted evolution reflects future cluster changes after purg-
ing the to-be-expired data points. Although subsequent arrivals of
new data points mayexpandor mergethese pre-generated clus-
ters or causebirth of new clusters, it is guaranteed that the pre-
generated clusters will neverterminate, shrink or split with the
arrival of new data points. In other words, any two data points
predicted to be in the same cluster are guaranteed to remain in the
same cluster. This is important for applications in which the life
span and stability of clusters needs to be analyzed.

Step 2: Update Evolution Relationships. We incrementally
maintain the evolution relationships between clusters in adjacent
windows at the arrival of each new data point. Since the new data
points may only cause growth related changes, this maintenance
process of the evolution semantics is fairly straightforward. We
simply keep track of which type of cluster change is caused by
the insertion of each new data point. Since such effort is anyway
needed for cluster computation itself, the only extra effort here is to
record the accumulative cluster changes caused by incoming tuples.

In general, this evolution tracking is an incorporated but optional
part of our IWIN algorithm. It can be activated during the IWIN
clustering process by simply calling the two functions, namely
PregenerateEvolution() andUpdateEvolution(p,Evo), shown
in Figure 11. Where these two functions are called in IWIN algo-
rithm are shown in Figure 9.



5. MULTI-DIMENSIONAL PATTERN SPACE
AND VISUALIZATION

We now describe our proposed pattern space of CLUES frame-
work, which organizes the detected patterns and their evolution in
an intuitively accessible and understandable fashion. Our current
system supports a two dimensional pattern space with dimensions
representing the change over time and across different abstraction
levels (Figure 10).

5.1 Past, Present and Future Views
Along the time dimension, our pattern space provides a sequence

of views representing the clusters identified in the different por-
tions of the data stream over time. More specifically, each view in
the pattern space is a snapshot of the clusters identified in a single
window. Those views are organized in the order of their recent-
ness, and thus systematically reflect thepast, the presentand the
predictedfutureof clusters identified in the stream.

Evo: Evolution Semantics Maintained.
Wcur: current window (Woldest on IntView).
Wnext: the window afterWcur.
Wcur−p: current window before insertingp.
Wlast: the (expired) window beforeWcur.
Ci: a cluster.Wi.Ca a cluster inWi.
DistClu(Wi, D): distinct clusters inWi to which data points
in datasetD belong to .

PregenerateEvolution()
1 For eachWcur.Ci

2 If |DistClu(Wnext, Ci)| == 0
3 add [Wcur.Ci terminates] to Evo;
4 If |DistClu(Wnext, Ci)| == 1
5 Ca.clu_mem = Ci.clu_men;

(Ca ∈ DistClu(Wnext, Ci))
6 If |Wcur.Ci| − |Wnext.Ca| > sig
7 add [Wcur.Ci shrinks] to Evo;
8 Elseadd [Wcur.Ci remains] to Evo;
9 If DistClu(Wnext, Ci)| > 1
10 For eachCa ∈ DistClu(Wnext, Ci)
11 add [Wcur.Ci splits intoWnext.Ca] to Evo;

UpdateEvolution(p,Evo)
1 If p is a new core
2 If |DistClu(Wcur−p, p.neighbors)| == 0
3 add [Wcur.Cnew birth ] to Evo;
4 If |DistClu(Wcur−p, p.neighbors)| == 1
5 If |Wlast.Ci| − |Wcur.Ci| ≤ sig (p ∈ Ci)
6 remove [Wcur.Ci shrinks] from Evo if any;
7 If |Wcur.Ci| − |Wlast.Ci| > sig
8 add [Wcur.Ci expands] to Evo;
9 If |DistClu(Wcur−p, p.neighbors)| > 1
10 If DistClu(Wcur−p, p.neighbors) covers

all clusters split fromWlast.Clui

11 remove all [Wlast.Clui split into ...] fromEvo;
12 add [DistClu(Wcur−p, p.neighbors) merge

Clunew] into Evo;
13 Else Ifp belongs to anyCi

15 If |Wlast.Ci| − |Wcur.Ci| ≤ sig
16 remove [Wcur.Ci shinks] from Evo if any;
17 If |Wcur.Ci| − |Wlast.Ci| > sig
18 add [Wcur.Ci expands] to Evo;

Figure 11: IWIN Functions for Tracking Evolution

Two important characteristics distinguish our pattern space from
simply lining up the clusters identified in previous windows. First,
we depict the cluster evolution interrelationships between the clus-
ters from one window to the next. For example, our system can tell

the analyst that a cluster identified in the current window has been
formed by a “merge" of two clusters in the previous window, or re-
versely, two clusters identified in the current window are the results
of the “splitting" of a previous cluster. Second, besides the views
presenting the clusters identified in the previous and current win-
dows, our system depicts a sequence of views for the near future,
each presenting the clusters that are predicted to appear in a subse-
quent future window. As in the past and the present views, these
future views are also “linked" by lineage information, indicating
that users can track the potential evolution of clusters over multiple
views. For example, a future view generated by our system may in-
dicate that a cluster identified in the current window may split into
several smaller clusters or totally disappear in the next window. Al-
though future views are predictions and thus may differ from actual
clusters identified later, it is guaranteed that the “predicted" clusters
will never shrink, split, or disappear (see Section 3).

Generally, by navigating along the time dimension, analysts can
1) monitor the cluster in the current window, 2) review the cluster
evolution in the recent past, and 3) study the prediction of cluster
evolution in the near future.

5.2 Tuple vs. Pattern Level Cluster Views
The second dimension in the pattern space represents changes of

the abstraction levels, namely tuple vs. pattern level.
In thepattern level views, each cluster in a window is abstracted

as a single object. Visually, our system presents each cluster using
a colored circle. Two important characteristics of a cluster, namely
its size (population) and its position, are conveyed by its radius and
relative position in the view. More specifically, the radius of each
circle is increased as the size of the corresponding cluster increases.
We also layout the clusters by mapping their centroids into a single
dimension (vertical axis in Figure 10) based on their positions in
the data space. Other statistical properties about each cluster, such
as density, can be retrieved for any cluster by moving the mouse
over it.

The pattern level cluster views also explicitly depict the cluster
evolution across windows. First, in each window, a color mapping
mechanism is used to preserve the lineage of the identified clus-
ters. For example, if a cluster identified inWn+1 is defined to be
the “same" cluster as one identified inWn, we use the same color
to present both of them in these two adjacent windows. The spe-
cific color mapping is driven by our cluster evolution semantics
discussed in Section 3.

Second, we propose to customize the “river metaphor" technique
[15], initially designed to visualize frequency changes, to express
the evolution of clusters. In particular, the derivation of each cluster
from the last window is presented by the “river" (links) between
them. For a given clusterCi in Wn+1, if it is considered to be
(partially) derived from a clusterCj in Wn, our system draws a
“river" betweenCi andCj . In addition, the volume of each river
(width of each link) represents the number of cluster members the
cluster in the later window inherits from the previous window. The
larger the volume of a river, the more cluster members the clusters
in the two windows share.

Tuple level cluster viewspresent specific information about the
members of identified clusters. Visually, cluster members are mapped
to a two dimensional display. The members of a clusterCi are all
presented in the same color associated withCi, which is consis-
tent with the color used in the cluster level view. Our system al-
lows analysts to study the characteristics of any individual cluster
in depth by zooming into it. For the zoomed-in clusters, we provide
a general color mapping mechanism, including hue, saturation, and
lightness variations, to express useful information about the cluster



Figure 10: A screen shot of visualized pattern space.

members, such as their “freshness" or “object type (core object or
not)". Analysts can retrieve detailed information about a tuple, in-
cluding its lineage across the windows, by a mouse click on it. A
screen shot of our system about a zoomed-in view for a cluster at
tuple level view is shown in Figure 12.

Generally, by navigating along the abstraction dimension, ana-
lysts can 1) examine the summary information for the clusters in
each window; and 2) zoom into a specific cluster to retrieve infor-
mation on individual members.

Figure 12: Zoomed-In View for A Single Cluster.

6. EXPERIMENTAL EVALUATION
We conducted our experiments on a Dell desktop with an Intel

Core2 2.2GHz processor and 3GB memory, which runs Windows
7 professional operating system. We implemented the algorithms
in VC++ 7.0.

Real Datasets. We used two streaming datasets in our experi-
ments. The first dataset, GMTI (Ground Moving Target Indicator)
[12], records the real-time information on moving objects gath-
ered by 24 different ground stations or aircraft over 6 hours. It
has around 100,000 records regarding the information on vehicles
and helicopters (speed ranging from 0-200 mph) moving in a cer-
tain geographic region. The second real dataset we use is the Stock

Trading Traces data (STT) from [16], which has one million trans-
action records throughout the trading hours of a day. In our experi-
ment, we detect clusters based on targets’ latitude and longitude in
GMTI and transactions’ price, volume and time in STT.

6.1 Performance Evaluation
Evaluation of IWIN Algorithm. We experimentally verified

the correctness of IWIN by comparing the cluster sets identified
by it with those identified by two alternative algorithms from the
literature, namely Extra-N [20] and Incremental DBSCAN [13]. In
all our test cases the cluster sets identified by IWIN were identical
with those identified by Extra-N and Incremental DBSCAN.

We then compared the performance of IWIN (without evolution
tracking) with the two alternatives mentioned above. Based on our
analysis in Section 4, Extra-N is expected to suffer from scalability
issues when the number of predicted views maintained increases.
This arises when the ratio between the window size and slide size
increases. Also, as reported in [20], Incremental DBSCAN has
scalability problems when the number of data points expiring at
each window slide is large. Thus, one goal of our experiment was to
evaluate the performance of the three competitor algorithms when
handling queries with different query windows. In particular, we
first used all three algorithms to cluster the GMTI data using a fixed
window size 5K, while varying the slide size from 0.25K to 2.5K,
implying that 5 to 50 percent of data points will be expired at each
window slide in different testing cases. We setθrange equal to 0.02
andθcnt equal to 5, respectively. To evaluate the performance for
each algorithm in term of both CPU and memory utilization, we
measured two major performance metrics: 1) the average process-
ing time for each data point, and 2) the memory footprint to store
the progressive clusters.

As shown in C1 of Figure 13, the CPU time consumed by IWIN
was significantly lower than in both alternatives in all the test cases.
The CPU time of all three algorithms increased as the ratio be-
tween the slide size and the window size increases. For Extra-N
and IWIN, this is because the number of predicted views they need
to maintain increases. However, such increase is quite modest for
IWIN, while dramatic (almost linear) for Extra-N. This matches



our analysis in Section 4, as IWIN used an integrated maintenance
strategy for multiple predicted views, while Extra-N maintains them
independently. For Incremental DBSCAN, as it always maintains
each individual update (a single addition or removal of a data point)
independently, such increase in CPU time is mainly caused by more
frequent output. However, since such single-update-oriented opti-
mization does not scale to handle large numbers of data points ex-
piring at each window, its performance is significantly worse than
that of the other two competitors.

For memory consumption, as shown in C2 of Figure 13, IWIN
uses much less memory compared with Extra-N, especially for smaller
slide sizes. Incremental DBSCAN, which uses a simple cluster
maintenance strategy, consumes even less memory in many test
cases. However, because of its significantly worse performance in
CPU time, its overall performance was deemed worse than IWIN.

We also have conducted a series of experiments showing the per-
formance of the competitor algorithms when handling data with
different characteristics. As discussed in [20], one of the most im-
portant factors that affects the performance of density-based clus-
tering algorithms is the Average Number of Neighbors (ANN) each
data point has in each window.ANN is indicated as a percentage
of the window size. So, we utilize a query with the same parame-
ter settings as the previous experiment but a fixed slide size equal
to 5K. We use a synthetic cluster generator as described in [20] to
controlANN to vary from1% to 20%. Experimental results in
C3 and C4 of Figure 13 show that the superiority of IWIN is not
affected by changes toANN of the input data.

In conclusion, IWIN is on average 3 times faster in all our test
cases than Extra-N, the best state-of-the-art technique, while us-
ing 60% less memory space. Put differently, we have a win-win
selection in terms of gains in both CPU and memory resources.

Figure 13: CPU (C1) and memory (C2) comparison when han-
dling queries with different slide sizes. CPU (C3) and memory
(C4) comparison when handling streams with differentANN

Evaluation for Evolution Semantics Computation. In the
previous test cases, we also evaluate the performance of our IWIN
algorithm when evolution tracking is activated (“IWIN+ET"). As
shown in all charts in Figure 13, the overhead caused by the com-
putation of the evolution semantics was modest, if not negligi-
ble, compared to the maintenance of clusters. In particular, both
the CPU and memory utilization caused by semantics computation

were always less than10% of those used for cluster maintenance
in all our test cases. On average, only6% overhead on CPU and
4% overhead on memory are caused by computing evolution in all
our test cases. This is expected, because in our proposed method,
this evolution computation process is naturally embedded and thus
elegantly piggy-bagged by the clustering process.

6.2 User Study for Evolution Tracking
To show that our system effectively helps analysts to track clus-

ter evolution in streams, we conducted a user study based on the
STT data. We invited fifteen users (Users 1 - 15), all students from
a college, to monitor the transaction pattern changes in stock trades
using our proposed system and state-of-the-art techniques. In par-
ticular, the users were asked to identify the evolution of intensive-
transaction areas (clusters formed based on transaction price, vol-
ume and time) with the support of three different exploration sys-
tems. 1) The traditional console view (state-of-the-art technique).
2) The tuple-level view of our system.3) Our full-fledged system
with both tuple- and pattern-level views. All three systems used the
same cluster detection and evolution tracking logic based on our se-
mantics. The console view showed the statistics of clusters in each
window and individual tuples by text. It conveyed cluster evolu-
tion using a consistent cluster identification mechanism, namely the
clusters detected in different windows were given the same cluster
identification, if they were considered to be the same cluster by our
evolution semantics. The other two systems displayed the clusters
and their evolution as we described in Section 5.

We randomly picked twelve time periods in the STT stream, each
covering four successive windows. The monitoring tasks for each
user were to identify cluster changes from one window to the next
in each of these twelve time periods. We call them Tasks 1 to 12,
and put them into three task groups (A, B and C), each covering
four tasks. For Task Group A, Users 1 - 5 used the console view,
while Users 6 - 10 and Users 11 -15 used the tuple-level view and
the full-fledged system respectively. For Task Group B, Users 1 - 5
used the tuple-level view, while Users 6 - 10 and Users 11 - 15 used
the full-fledged system and the console view respectively. For Task
Group C, Users 1 - 5 used our full-fledged system, while Users 6 -
10 and Users 11 - 15 used the console view and the tuple-level view
respectively. The specific task assignment is also shown in Table 1.
In this task assignment, no “pre-knowledge" problem will rise, as
each of the users was only asked to finish particular task once.

Console View Tuple-Level
View

Full-Fledged
System

Users 1- 5 Task Group A
(task 1-4)

Task Group B
(task 5-8)

Task Group C
(task 9-12)

Users 6-10 Task Group C
(task 9-12)

Task Group A
(task 1-4)

Task Group B
(task 5-8)

Users 11-15 Task Group B
(task 5-8)

Task Group C
(task 9-12)

Task Group A
(task 1-4)

Table 1: Task Assignment for User Study.

We measured both the efficiency and accuracy of the users finish-
ing the monitoring tasks. We asked each user to report all pattern
changes they observed in each task. For efficiency, we measured
the time consumed by each user for each task. For accuracy, we
measured the “correctness rate" of each user’s report, namely the
number of correct pattern changes reported by the user divided by
the total number of pattern changes within each task (acquired by
pre-analysis of the stream). Figures 14 and 15 depicted the aver-
age time consumed and the average accuracy of users for finishing



each task within three task groups when supported by different ex-
ploration techniques.

Figure 14: Comparison of
Users’ Efficiency

Figure 15: Compassion of
Users’ Accuracy

As shown in Figure 14, for the same tasks, the users used much
less time when supported by our full-fledged system (10-20 sec for
each task), while they needed a significantly longer time using the
tuple-level view (60-80 sec) and the console view (110-160 sec).
This is because both the console and tuple view do not provide
any intuitive mechanism for users to identify the pattern changes.
Users needed to learn about the relationships among clusters by an-
alyzing the specific cluster members shown in either the text or the
tuple level visualization. This was clearly time-consuming. While
our full-fledged system provides an intuitive pattern-level view that
allows analysts to quickly observe the cluster evolution.

Accuracy-wise, the performance of users was similar when using
the console and tuple views (52− 70%). By analyzing the specific
evolution types identified by the users, we observed that although
the users could easily identify single-cluster evolution (preserva-
tion, expansion and shrinkage) using these two methods, they had
difficulties in identifying the evolutions involving multiple clusters,
such as splits and merges. In particular, by using the console or tu-
ple view, only 25 and 32% of such evolution types respectively
were correctly identified by the users. This is because although
these two methods are able to convey the size changes of single
clusters, they lack effective mechanisms to express complex rela-
tionships among multiple clusters. In contrast, our full-fledged sys-
tem intuitively conveys all evolution types. Thus, users were able
to correctly identify almost all the cluster evolutions (92% on av-
erage) using our full-fledged system. In conclusion, our proposed
solution is shown to help human analysts to track cluster evolution
in the streams in an accurate and efficient manner.

7. CONCLUSION AND FUTURE WORK
In this work, we present a unified framework CLUES support-

ing interactive exploration of density-based clusters in streaming
windows. As a foundation, we designed the first comprehensive
model for classifying the evolution of density-based clusters in slid-
ing windows. At the back-end, a new density-based clustering al-
gorithm over sliding windows is introduced to efficiently compute
not only clusters in isolated windows but also their evolution across
windows. At the front-end, new visualization and interaction tech-
niques were developed to effectively convey the detected clusters
to the analysts. Our performance studies and user studies confirm
the efficiency and effectiveness of our system for tracking clusters
in data streams, respectively.

As future work, based on the platform built in this work, we
will extend our study to more evolution models for clusters and
also other pattern types, including allowing users to customize the
models based on their own applications. At the visualization end,
domain experts will be invited to help us design more customized

visualization and interaction technics, which will provide function-
alities specifically needed by some critical application domains.
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