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ABSTRACT

A continuous top-k query retrieves the k most preferred objects
in a data stream according to a given preference function. These
queries are important for a broad spectrum of applications rang-
ing from web-based advertising to financial analysis. In various
streaming applications, a large number of such continuous top-k
queries need to be executed simultaneously against a common pop-
ular input stream. To efficiently handle such top-k query workload,
we present a comprehensive framework, called MTopS. Within this
MTopS framework, several computational components work col-
laboratively to first analyze the commonalities across the workload;
organize the workload for maximized sharing opportunities; exe-
cute the workload queries simultaneously in a shared manner; and
output query results whenever any input query requires. In par-
ticular, MTopS supports two proposed algorithms, MTopBand and
MTopList, which both incrementally maintain the top-k objects
over time for multiple queries. As the foundation, we first iden-
tify the minimal object set from the data stream that is both neces-
sary and sufficient for accurately answering all top-k queries in the
workload. Then, the MTopBand algorithm is presented to incre-
mentally maintain such minimum object set and eliminate the need
for any recomputation from scratch. To further optimize MTop-
Band, we design the second algorithm, MTopList which organizes
the progressive top-k results of workload queries in a compact struc-
ture. MTopList is shown to be memory optimal and also more effi-
cient in terms of CPU time usage than MTopBand. Our experimen-
tal study, using real data streams from domains of stock trades and
moving object monitoring, demonstrates that both the efficiency
and scalability of our proposed techniques are clearly superior to
the state-of-the-art solutions.
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1. INTRODUCTION
Motivation. Continuous top-k queries over streaming windows

has been studied by several previous works [14, 15, 16, 17]. Such
query semantics, which require continuous reporting of the k most
preferred objects from the most recent portion of the stream, has
been shown to be able to serve a broad range of real-time applica-
tions. For example, a web-site manager may want to continuously
monitor the most “clicked" products within the last 1 hour on their
web-site, and thus learn the trend of customers’ interest. Also,
financial analysts may want to continuously monitor the largest
transactions in NYSE within the last 10 minutes, as those trans-
actions may have significant impact on the future market change.

However, existing methods mainly focused on designing an effi-
cient execution strategy for a single continuous top-k query. Little
effort has been made to solve the problem of simultaneous exe-
cution of a large number of top-k queries submitted to the same
input stream. In real-world applications, the need for handling a
workload composed of multiple continuous top-k queries is clear
for the following reasons: 1) Continuous top-k queries are parame-
terized, namely, when specifying such a query, an analyst needs to
provide parameters, including the number of top preferred objects
k, the window size and the refresh rate. 2) Thus, multiple analysts
monitoring the same input stream may submit multiple continuous
top-k queries yet using different parameter settings. For example,
the stock transaction stream from NYSE is constantly monitored
by thousands of financial analysts. Although many of them may
be interested in monitoring the top-k largest transactions that hap-
pened most recently, They may submit top-k queries with different
parameter settings due to their different analytical tasks. Some of
them may want a relatively large k setting, say top 100 or 200, to
capture many high volume transactions, while others may be inter-
ested in fewer top objects, say top 5 or 10. Also, some of them
may specify a high refresh rate, say every 5 or 10 seconds, as they
need to conduct frequent trades that need the most updated query
results as their decision making support. Others, of course, may be
satisfied with a moderate refresh rate, say every 5 or 10 minutes, as
their applications require less frequent updates. 3) In fact, even a
single analyst may submit multiple queries with different parame-
ter settings with the intent to further analyze retrieved result sets so
as to derive a well supported conclusion. For example, the web-site
manager mentioned in the above example may want to know the
most clicked products within last 3 hours vs. those within last 10
minutes, which may together better reveal the customers’ interest



changes. Therefore, a stream processing system should be able to
accommodate a workload of large number of top-k queries.

Challenges. However, handling a large number of continuous
top-k queries in a single system under high input rate is a challeng-
ing problem. The naive method of executing each of the queries
independently for a huge workload has prohibitively high demands
on both computational and memory resources. The state-of-the-
art single continuous top-k query processing method [16] may take
10s to update the query result for a window containing 1M tuples
tuples. If one simply uses this method to independently execute
100 continuous top-k queries in single system, the response time of
each query suddenly increases to around 1000s, which is definitely
unaccpetable for streaming applications. Thus, given the real time
responsiveness requirement, we need to design efficiently shared
execution strategies, which are able to effectively share the both
the memory and CPU utilization among multiple queries.

Proposed Solution. To solve this problem, We present a com-
prehensive framework, called MTopS for Multi Top-k Optimized
Processing System. Within this framework, we introduce several
innovations for optimizing multiple top-k query processing by ef-
fectively sharing the available CPU and memory resources.

1) First, a Meta Query Analyzer (MQA) is proposed in MTopS to
analyze the workload at the compilation stage. It generates a single
meta query to represent the query logic for all workload queries,
and thus succeeds to remodel the problem of executing multiple
top-k queries into the execution of a single query meta query for
our system. Technical details of MQA algorithms are discussed in
Section 4.

2) A Runtime Infrastructure (RINF) is designed in MTopS to
physically store the progressive top-k results for the meta query
(generated by MQA) in highly compact formats. Our RINF designs
guarantee that it only holds the minimum necessary set for multiple
top-k query execution, and thus achieve optimal memory usage.
Infrastructures’ design is discussed in Section 5 and 6.

3) A Runtime Multiple Query Scheduler (RMQS) in MTopS
manages the timing for updating the progressive top-k results in
RINF and generating query results for individual queries.

4) Novel execution strategies are provided in a Meta Query Ex-
ecutor (MQE) to efficiently update the progressive top-k results in
RINF over time. MQE algorithms are also discussed in Section 5
and 6.

5) Finally, a Query Result Extractor (QRE) extracts top-k results
for individual queries from RINF whenever needed.

Our experimental studies using real streaming data from mov-
ing object monitoring and stock trades domains show that our sys-
tem uses at least 271 times less CPU processing time and 175.4
folds less memory space as compared to the State-of-the-art inde-
pendent execution solution[16] for handling 1000 queries. In fact,
our MTopS system comfortably handles a workload in the order
of 1000 queries with the average processing time ranging between
4-30 ms/object depending on the query parameter settings, which
satisfies the needs for most real-time applications.

.

2. PROBLEM DEFINITION
Top-k Queries in Sliding Windows. In a sliding window scenario,
the continuous top-k query Q (S,win,slide,k) returns top-k objects
within each query window Wi on the data stream S. We use the
term ’object’ to denote a multi-dimensional tuple in the input data
stream. The objects that participate in the top-k results of a given
window are referred to as the ’top-k elements’ of that window. A
query window is a sub stream of objects from stream S that can

be either count-based or time-based. The window win periodically
slides after a fixed amount of objects have arrived (count-based) or
a fixed time has passed (time-based) to include new objects from
S and to remove expired objects from the previous window Wi−1.
The top-k results are always generated based on the objects that are
alive in the current window Wi.
Multiple Top-k Queries. Given a query workload WL with n
top-k queries Q1(S,win1,slide1,k1), Q2(S,win2,slide2,k2),. . . ,
Qn(S,winn,sliden,kn) querying the same input data stream S
while all the other query parameters, i.e, win, slide, k may differ.

We focus on executing all the registered queries simultaneously
such that each query is answered accurately at their respective out-
put moments. More specifically, we continuously output the re-
quired top-k results for each query at their corresponding slide
sizes. Our goal is to minimize both the average processing time
for each object and the peak memory space needed by the system.

3. MTOPS FRAMEWORK
We now introduce the architecture of the MTopS framework shown

in Figure 1, while details of the techniques used in each block are
discussed in the subsequent sections 4 to 8.

Figure 1: MTopS System Architecture

Multi Query Analyzer (MQA). The functionality of MQA is to
analyze the similarity among the member queries in the workload,
and thus organize them at the compilation stage with the goal of
maximizing the resource-sharing for the later runtime execution. In
particular, we propose to use a “meta query strategy", which builds
a single meta query Qmeta to integrate all the member queries in
the given workload. Namely, the input of MQA is a workload of
top-k queries with arbitrary parameter settings, and the output of
MQA is single meta query.

The meta query Qmeta has the following key characteristics.
1)The query window of Qmeta always covers all objects in the
stream that are necessary to answer every member query. 2) The
slide size of Qmeta is no longer fixed but rather adaptive during
the execution, depending on the nearest time point that any mem-
ber query needs to output or to conduct a new window addition or
expired window removal. The specific algorithm of building such
a meta query is discussed in Section V.
Runtime Infrastructure (RINF) and Its Instantiator (IINS). To
execute the meta query generated by MQA, we need an infrastruc-
ture to physically hold the meta data, namely the top-k candidates,
during the meta query execution.



In this work, we propose two runtime infrastructure designs,
which not simply collect the top-k candidates, but also encode them
into efficiently updatable formats. These two designs are the MTop-
Band and MTopList structures. We prove that by using those care-
fully designed structures, we maintain the minimum object set that
is necessary and sufficient for answering all member queries, while
any unnecessary object can be discarded immediately when it ar-
rives at the system.

RINF is instantiated by its Instantiator (IINS) at the compilation
stage.
Runtime Meta Query Scheduler (RMQS). As we discussed ear-
lier in Multi-Query Analyzer, Qmeta needs to adapt its slide size
to meet the time points for output, to build new windows or delete
expired windows, for member queries.

RMQS sends instructions to MQE and QRE at scheduled window-
addition/deletion time points or output time points, and thus tells
them to conduct the corresponding operations at proper time. Such
instructions guarantee that the RINF is properly updated and the
top-k results of all member queries are output as the queries de-
mand.
Meta Query Executor (MQE). MQE is the key online compu-
tation module which executes the meta query Qmeta by incremen-
tally updating the top-k candidates held in RINF as the input stream
passing by. Such update process include two aspects, namely han-
dling the newly arrived objects and purging the expired objects.

When handling newly arrived objects, for each new object onew ,
MQE first evaluates whether it has the potential to appear in the
output of Qmeta. onew is inserted only if it is eligible to participate
as top-k result, otherwise discarded immediately to avoid unneces-
sary computation and storage.

When purging expired objects, MQE checks which objects are
“completely expired" for the meta query, meaning that they are no
longer in the query window of any workload queries. Such objects
are physically removed from RINF immediately, while those ex-
pired for only some of the queries will still be kept in RINF. In this
case MQE updates the properties of RINF.
Query Result Extractor (QRE). The functionality of QRE is to
extract the top-k results from RINF for each member query at the
moment when the output of this particular query is needed. This
result extraction process is non-trivial, because the top-k candidates
for all member queries are encoded in a single data structure in
RINF.

4. ANALYZING THE MULTI TOP-K QUERY

WORKLOAD
We now discuss our queries’ parameters analysis that transforms

the workload of many queries into single meta query.
Notion of Predicted Views. It is well recognized that in the

sliding window scenario, query windows tend to partially overlap
(Qmeta.slide < Qmeta.win). Therefore, if an object participates in
the top-k result of window Wi, it may also participate in the top-k
results of some of the future windows Wi+1, Wi+2, , Wi+n until
the end of its life span. Thus based on our knowledge at time Wi,
and the slide size slide, we can exactly ŞpredictŤ the specific subset
of the objects in the current window that will participate in each
of the future windows. We call these predicted subsets of future
windows as “predicted views”.

With this knowledge, we can predetermine (partial) top-k results
for each of these future windows based on the objects in the current
window after considering the object expiration. We call these par-
tial results as “predicted top-k results”. Thus, these predicted top-k

results need to be updated only if a new object that arrives to the
system is eligible to participate as a top-k result. Otherwise, these
predicted top-k result sets will be the actual result sets for future
windows. Figure 2 (left) shows the current window W0 and pre-

Figure 2: Predicted views of three consecutive windows at W0

dicted views of two future windows W1 and W2 with window size
win = 12 and the slide size slide = 4. The predicted view W1 con-
tains those objects from W0 those are still alive after the window
W0 slides. Likewise, predicted view of W2 contains all objects that
are still alie after window W1 slides. In Figure 2 (left), the numbers
shown in the white circles represent the objects’ scores. Figure 2
(right) shows the corresponding current and predicted top-k result
sets for windows W0, W1, and W2 respectively. Evidently, each of
these result sets contain k objects, with highest preference scores,
that are still alive.

We exploit this “predictability property” of sliding windows to
analyze the parameters of all the workload queries and finally in-
tegrate them. Next, we handle the cases where only one of the pa-
rameters among all the queries is varying. Later, we discuss more
general cases, where two or more query parameters are varying.

4.1 Varying Top-k Parameters - k

Consider the window parameters, i.e., win and slide are same for
all queries in the input workload WL, while the top-k parameter k

is different. This implies that all queries share windows and require
output at the same time, while the number of objects to be output
by each query differs.

Lemma 4.1. Given a workload WL with all member queries

having same slide size - slide and same window size - win but arbi-

trary top-k parameters k, Qi.k maintained in each of the predicted

view will be sufficient to answer each query such that Qi.k is the

query with largest top-k parameter among WL.

Proof. Lemma 4.1 holds because the predicted views built for
the different queries in the workload are overlapped as the win and
slide values are same for all the queries. This means that the life
time of an object and the output schedules for all queries are same.

Thus if objects equivalent to the largest top-k parameter are main-
tained in a predicted view , it is sufficient to answer the queries with
smaller top-k parameter as well.

Thus, the number of predicted views that need to be built for
processing full workload which might include thousands of input
queries is equal to predicted views needed to be built for processing
any one query in WL. Clearly, full sharing is achieved.

4.2 Varying Slide Sizes - slide.
Consider win and k for all queries in the workload WL are same,

while their slide sizes - slide may differ. For ease of explanation,
let us assume that all the queries start simultaneously. Since their
window sizes are equal , at any given time they are querying the
same portion of the input data stream. The only difference then is
each query needs to generate output at different moments.



Example 4.1. Given three queries Q1, Q2, Q3 such that Q1.win

= Q2.win = Q3.win = 8s; Q1.slide = 6s, Q2.slide = 2s, and Q3.slide

= 3s; and Q1.k = Q2.k = Q3.k = 3. Thus, each query requires its

output, i.e., top-k result set at every 6, 2, and 3 seconds respectively.

Figure 3: Predicted views needed for processing query Q1 (top

left), Q2 (top right), Q3 (bottom left) independently and com-

bined view for meta query Qmeta (bottom right)

As consequence, each of these queries may need to maintain dif-
ferent predicted views so as to generate output at their respective
slides. Instead, MQA builds a single meta query Qmeta that in-
tegrates all member queries in workload WL to avoid maintaining
separate set of predicted views for each query. Figure 3. shows the
predicted views that need to be maintained for each of these three
queries independently, versus those by the meta query at wall clock
time 00:00:08. Qmeta has the same window size as all the member
queries in WL while its slide size is no longer fixed but rather adap-
tive during the execution. The slide size of Qmeta at a particular
moment is the nearest moment at which at least one of the queries
need to be answered.

For three member queries, MQA builds a meta query Qmeta with
WIN = 8s. At wall clock time 00:00:08, the slide size of Qmeta

will be 2s as 00:00:10 will be the nearest time at which the mem-
ber query Q2 is to be answered. At 00:00:10, its slide sizes are
adapted to 1s, 1s and 2s so to output at 00:00:11 (Q3), at 00:00:12
(Q2), and at 00:00:14 (Q1 and Q2) respectively. Thus, we can
now build up all predicted views at 00:00:08 with distinct output
points as determined by the meta query. That is we build 6 pre-
dicted views starting at 00:00:02,:03,:04,:06, :08 respectively, most
of which sere multiple queries.

4.3 Varying Window Sizes - win

Consider the slide sizes - slide and the top-k parameter - k of all
queries are same, while their window sizes win differs. Here, we
first use the simplifying assumption that all the window sizes of the
member queries are multiples of their common slide size. We now
observe an important characteristic as below.

Lemma 4.2. Given a workload WL with queries having the

same slide but arbitrary win (multiples of slides), the predicted

views maintained forQi withQi.win the largest window size among

WL will be sufficient to answer all input queries in WL.

This is because the predicted views maintained for Qi will cover
all the predicted windows that need to be maintained for all the
other queries.

Discussion. If the window sizes of the queries are not in mul-
tiples of their common slide size, the predicted views maintained
for Qi will still cover all the other queries. For example, if the

slide sizes of each of the queries are the same as above (2s) while
the window sizes are Q1.win = 6s, Q2.win = 7s, and Q3.win =
8s. The predicted views built at moment 00:00:08 will be suffi-
cient to answer all these queries. These windows will start from
00:00:00 (serving Q3), 00:00:01 (serving Q2), 00:00:02 (serving
Q1 and Q3), 00:00:03 (serving Q2), and 00:00:04 (serving Q1 and
Q3) and so on.

4.4 Varying Window sizes-win and Varying Slide
Sizes-slide

Next we consider, when both the window sizes win and the slide
sizes slide of all the member queries are arbitrary. Here, we uti-
lize a combination of previously introduced techniques and show
that a single meta query with window size equal to the largest win-
dow size amongst all the member queries and adaptive slide sizes
is sufficient to answer all such queries.

Example 4.2. Consider, Q1.win = 8s, Q2.win = 6s and Q3.win

= 4 s; Q1.slide=4s, Q2.slide=3s, Q3.slide = 2s; and Q1.k = Q3.k

= Q3.k = 2. Assuming that all the predicted views for the queries

end at the largest window size, we build a meta query Qmeta such

that Qmeta.WIN = 8 and Qmeta.SLIDE = ADAPTIVE, Qmeta.K=

2 (same for all queries).

Thus, in this meta query setup, the window size and top-k param-
eter are now fixed while the slide size of the meta query is adap-
tively adjusted. At wall clock time 00:00:08, 5 predicted views
are created, starting from 00:00:00 (serving Q1), 00:00:02 (serv-
ing Q2), 00:00:04 (serving both Q1 and Q3), 00:00:05 (serving
query Q2), and 00:00:06 (serving query Q3). Clearly, only 5 win-
dows (current and predicted) need to be maintained instead of the
9 windows that would here been needed if each query were to be
executed independently.

4.5 The Most General Case
Finally, we consider the general case with all queries with arbi-

trary parameter settings. In this case, we build a meta query with
window size Qmeta.WIN= Qi.win, the largest window size among
WL; Qmeta.SLIDE = ADAPTIVE, as explained in the previous sub-
section. Lastly, Qmeta.K = ADAPTIVE as explained below.

We now introduce an adaptive k strategy to achieve memory ef-
ficient processing. To be more precise, in a particular window we
maintain the top-k objects such that k is equal to Qi.k where Qi is
the query served by that window. In case one window serves more
than one query then k for that window is equivalent to the largest
top-k parameter among the queries served by his window.

5. THE MTOPBAND STRUCTURE
Once the single meta-query Qmeta, has been designed that logi-

cally encapsulates a full workload of queries, we instantiate a run-
time infrastructure for managing the meta data needed for execu-
tion of Qmeta. We call this infrastructure the MTopBand.

5.1 MTopBand Design
The MTopBand data structure stores only the top-k objects for

the current and those for each of the predicted views, as generated
by the meta query Qmeta. These predicted views, as discussed in
the Section III, are generated based on the meta query logic and
thus represent all the member queries in the workload WL.

For each predicted view only a list of top-k objects is maintained,
while all other objects that have no chance of participating in the
top-k results of current or any of the future views are discarded



immediately. We recall that top-k parameter Qmeta.K is adaptive
based on the query/queries that require output at the moment when
a particular window ends. Thus, for each window we maintain
only those top-k tuples eligible to be the output for one or more
queries at the time point when the window slides. This means, each
window may have different number of tuples as the top-k result
sets, depending on the the query in the workload that outputs when
the window slides. Each of these result sets are sorted based on the
object scores Fscores.

Figure 4: Physical view of MTopBand structure

Figure 4. shows the MTopBand structure based on the workload
WL of three queries Q1, Q2, and Q3 introduced in Example 4.2.

Theorem 5.1. At any time, the top-k result set maintained in

the MTopBand structure constitute the minimal object set that is

necessary and sufficient for accurate top-k monitoring.

Proof. We first prove the sufficiency of the objects in the pre-
dicted top-k result sets for monitoring the real time top-k results
for each of the queries in the workload WL. For each of the fu-
ture windows Wi (the ones that the life span of any object in the
current window can reach), the predicted top-k results maintain
Qmeta.Wi.K objects with the highest Fscores for each Wi based
on the objects that are in the current window and are known to
participate in Wi. This indicates that any other object in the cur-
rent window can never become a part of the top-k results in Wi, as
there are already at least Wi.K objects with larger F scores than it
in Wi. So, they donŠt need to be kept. Then, even if no new ob-
ject comes into Wi in the future or all newly arriving objects have
a lower F score, the predicted top-k results would still have suffi-
cient (Qmeta.Wi.K ) objects to answer the query Qi for Wi. This
proves the sufficiency of the predicted top-k results.

Next we prove that any object maintained in the predicted top-k
results are necessary for accurate top-k monitoring. This would im-
ply that this object set is the minimal set that any algorithm needs to
maintain for correctly answering all the top-k queries in the given
workload WL. Any object in the predicted top-k result for a win-
dow Wi may eventually be a part of its actual top-k results for one
of the queries if no new object comes into Wi or all new objects
have a lower Fscore. Thus discarding any of them may cause a
wrong result to be generated for a future window. This proves the
necessity of keeping each of these objects. Based on the sufficiency
and necessity we have just proved, the objects in the predicted top-
k results constitute namely the minimal object set that is necessary
and sufficient for accurate top-k monitoring of all queries in the
workload WL.

5.2 MTopBand Maintenance.
The dynamic maintenance of the MTopBand structure requires

updating the top-k results for each of the current and predicted
views, that include all the queries in the WL, in two scenarios. First,
when a new object arriving at the system is eligible to participate in
the top-k result sets for one or more queries being served by one or

more windows Wi . Secondly, when a window slides some of the
objects in the existing top-k result sets may expire and thus require
updating the MTopBand data structure. Next, we discuss the pro-
posed algorithms to update the MTopBand structure in the above
two scenarios. If a window slides, we update the MTopBand top-k

Figure 5: Updating the multi top-k results in MTopBand

result sets in the following two steps.
At step 1, we remove the top-k result set corresponding to the

expired window. For example, Figure 5. depicts the MTopBand
structure maintenance based on our running Example 4.2. After
time t = 8s, when current window W0 expires, top-k results of W0

are purged, and W1 is the new current window. It is easy to see
that the effect of window expiration was already taken into account
while building the predicted views/ predicted future windows.

At step 2, we create a new empty MTopBand top-k result set
corresponding to the newest predicted view (W5 in figure 5. (top
right)) for the next future window to cover the whole life span of
the incoming objects.

After the window slide is taken care of, we attempt to insert the
newly arrived object Onew in each of the current and future win-
dow. The Fscore of each Onew is compared with the object with
minimum Fscore, called as Omin henceforth, in each of the current
and predicted top-k result set. If the Fscore of Onew is larger than
Omin of any of the current and future windows, this object is in-
serted as one of the top-k results of that particular window. Before
inserting the Onew into any of these result sets, we must find the
correct position of this new object, as each top-k result sets/lists
are sorted by Fscores in the MTopBand structure. This is a simple
operation, we continue comparing the Fscore of Onew with each of
the top-k results within a particular list till we find an object with
Fscore larger than Fscore of Onew . Onew is inserted just below
this object in the top-k result list. Now, the Omin is deleted from
this particular list as Omin is no more a part of top-k results for this
window. The object immediately above the Omin in the result set/
list becomes the new Omin . Any new object arriving at the system
will now be compared with this new Omin . Every arriving object,
regardless of its Fscore, is inserted in the newly created window
Wi until the window has not reached the size of Qmeta.Wi.K.

5.3 Complexity Analysis.
Memory Costs. The memory costs of MTopBand structure de-

pend mainly on two factors, the number of top-k result sets/lists
which depends on the number of active predicted views at a given



moment and the size of each result set/list. Complexity wise, the
memory requirement of the MTopBand structure is in

O( Nact*Qmeta.Wi.K), where Nact is the number of active win-
dows at a given time and Qmeta.Wi.K is the adaptive K for a given
window in the query workload.

Lemma 5.1. MTopBand maintains expected

O(Qmeta.Wi.K*Nact)objects.

Since an object may participate as a top-k result for its complete
life time, it usually participates in multiple subsequent active win-
dows. we maintain only one physical copy and multiple references
of any objects which participates in multiple windows. As proved
in Theorem 5.1, we maintain minimal set in the MTopBand struc-
ture.
Computational Costs. Computationally, there are two major ac-
tions that contribute to the cost of updating top-k results in the
MTopBand structure. We recall that, we first search if the newly ar-
rived object belongs to any of the top-k result sets. This a constant
cost operation, that is a total of Nact comparisons in the worst case.
Second, the cost for positioning new object in the top-k result set,
if it makes into this result set, is O(log(k)) in the best case. The cost
of inserting this object into top-k result set and deleting the smallest
score object from the existing top-k result set is in O(log(k)) again.

Thus, the overall processing costs for handling all new objects
for each window slide is O(Nnew * Nactnew * log(k)), with Nnew

the number of new objects coming to the system at this slide, and
Nactnew is the number of windows each object is predicted to make
top-k when it arrives at the system. As the object expiration process
is trivial, this constitutes the total cost for updating the top-k result
at each window slide.
Conclusion. As discussed above, MTopBand structure maintains
a minimal object set and also achieves absolute incremental com-
putation. Evidently, we do not need to hold the number of tuples
equivalent to the complete window size at any stage for computing
the top-k results, rather all the computation is done incrementally.
This is a clear win over the existing methods for top-k query com-
putation that need to recompute top-k results from scratch periodi-
cally [15, 17].

However, we observe that the resource requirements of MTop-
Band structure grows with Nact, the number of predicted views to
be maintained. More specifically, since M-MTopBand stores top-k
result sets for each of the predicted views independently/individually,
its memory and CPU consumption grows with the number of pre-
dicted top-k result sets to be maintained.

We confirm this inefficiency of MTopBand structure when the
number of predicted views grow large in the experimental study
discussed in Section 7. Next, we discuss various properties of the
MTopBand structure and utilizing these observations, we further
design the optimized integrated compact structure MTopList struc-
ture. We then discuss the maintenance and cost analysis of our
proposed structure MTopList.

6. OPTIMIZED TOP-K RESULT-SETS IN-

FRASTRUCTURE: MTOPLIST
To tackle these shortcomings, we now analyze the properties of

MTopBand to further design a data structure with resource require-
ments independent of not only the size of the workload WL and
the window size of the meta query Qmeta, but also the number of
future windows. Next, we discuss various properties of the MTop-
Band structure and utilizing these observations, we further design
the optimized integrated compact structure MTopList structure. We

then discuss the maintenance and cost analysis of our proposed
structure MTopList.

Observation 1. The MTopBand’s top-k results in adjacent pre-
dicted views tend to partially overlap, or even be completely iden-
tical.

Explanation. Top-k results for the current window are computed
based on the scores of the objects within the complete window. Yet,
the top-k results of the first predicted view are computed based on
exactly the same set of objects except for those few objects that will
expire with the first slide. This means that the subsequent predicted
views inherit subsets of top-k results from their previous windows.

The top-k result sets of the adjacent predicted views will be iden-
tical when 1. the objects that expired after the slide were never a
part of the top-k result set, Oexp.Fscore < Ocurr.Fscore; 2. All
the newly arriving object in the current window have an object
score smaller than objects that are alive from previous window,
Oexp.Fscore < Ocurr .Fscore.

Observation 2. An object may disappear first and then may
reappear later in the top-k result sets of subsequent predicted views
in its life time.

Explanation. By Theorem 5.1, top-k results for multiple queries
are maintained concomitantly in the MTopBand structure, such that
only the minimal object sets that may participate as top-k results
for one or more queries are kept. We also recall that the predicted
views in the MTopBand structure are built such that each view ends
at an output moment of one or more top-k queries.(Section 5)

Observation 3. If object oi and oj both participate in the pre-
dicted top-k result sets of more than one windows, then the relative
positions between oi and oj remains the same in each of the pre-
dicted top-k result set .

Explanation. First, the Fscore for any object is fixed. Second,
the top-k objects in any predicted view are sorted by their Fscores.
Thus, oi will always have a higher rank than oj in any window in
which they both participate, if F(oi) > F(oj).

6.1 Integrated Infrastructure: MTopList
Given these properties, we now develop an integrated data struc-

ture to represent MTopBand top-k result sets for all predicted views.
Our goal is to share the (1.) memory space among views by main-
taining by maintaining only distinct objects each of which may par-
ticipate in the predicted top-k results of possibly many queries; (2.)
computation of positioning each new object into the predicted top-
k results of all predicted views. This sharing leads us to remarkable
savings in CPU and memory resources as discussed below.

To achieve this goal, instead of maintaining Nact independent
predicted top-k result sets, namely one for each window, we pro-
pose to use a single integrated structure to represent the predicted
top-k result sets for all windows. We call this structure MTopList.

Figure 6: Physical view of MTopList

MTopList is sorted by Fscores of these distinct objects. Figure



6. shows the MTopList structure based on the workload WL of the
three queries Q1, Q2, and Q3 introduced in Example 4.2. Note that
Figure 4 depicts the MTopBand structure for the same example.

MTopList shown in Figure 6 includes all the predicted top-k re-
sults in the MTopBand structure. At time stamp t = 8s, a list of only
5 distinct objects with Fscores 12, 11, 9 and 6, and 5 are maintained
instead of 5 independent top-k result sets for each of the current
and future windows with redundant objects between the windows
as maintained by MTopBand structure (Figure 4).

Clearly, in the MTopList structure an object may participate in
more than one window, and it is usually a part of the top-k results
for more than one query. Next, we tackle the problem of how to
distinguish among and maintain top-k results for multiple windows
and multiple queries in this integrated MTopList structure.

Lemma 6.1. If top-k parameter k for all queries in WL is equal,

then at the output time of the window Wi, the object with the small-

est Fscore, say Omin_topk of the predicted top-k results in any fu-

ture window Wi+n(n > 0) has a smaller than or equal Fscore

to that of any window Wi+m(0 ≤ m < n), i.e. Omin_topk ≤

Wi+m.Omin_topk.

Proof. When the top-k parameter for all queries is same, the
number of predicted top-k results maintained in each current and
future window is exactly same. After a window slides, some of the
objects from the top-k result set in the current window may expire.
The objects in the current window Wi that also participate inWi+n,
DWi+n, is a subset of those will participate in Wi+m, DWi+m (m
< n). Thus, the minimal F score of the top-k objects selected from
the object set DWi+m in Wi+n cannot be larger than the minimal
F score of the top-k objects selected from a super set of DW i+ n,
namely the object set DW i+m in Wi+m.

Based on Lemma 6.1, we now introduce the first step to distin-
guish between the objects participating in different windows and
in the top-k results of different queries. We call this as window

mark representation. More specifically, we represent two window
marks (window id) for each object in the MTopList, namely the
start window mark and the end window mark, which respectively
represent the windows in which an object makes its first and its last
occurrence to be predicted as the part of top-k result respectively.

Lemma 6.2. For given windows Wi+m serving a query Qm

with top-k parameter Qm.k = X , Wi+n with Qn.k = Y , and Wi+p

with Qp.k = X such that 0 < m < n < p and X > Y > 0;

top-k elements participating in Wi+m with rank greater that Y (

based on Fscore) will not participate in Wi+n if the objects from

rank 1 through Y in Wi+m are still alive at the time of window

Wi+n. The objects with rank greater than Y will again participate

in Wi+p if they are all still alive.

Based on the Lemma 6.2, it can be seen that an object during its life
time may participate as part of predicted top-k results in windows
Qn.k = X and disappear for windows with top-k parameter Qn.k =
Y then reappear for the windows with parameter Qn.k = X , such
that Qn.k = Y < Qn.k = X .

Thus, we observe that for all top-k results with rank greater than
the top-k parameter Qi.k such that Qi.k is the smallest k parameter
among all queries in the workload, there is a possibility of dis-
continuity in their participation as top-k results in the subsequent
windows.

Hence, simply maintaining the first occurrence (start window
mark) and the last occurrence (end window mark) would be in-
sufficient to track in which windows among that range, a particular

object actually participates. To tackle this, we maintain a separate
pointer for each window at the lowest top-k object in the top-k re-
sult set so as to identify the actual top-k results in any particular
window. We now introduce a minimum Fscore pointer, FPmin

for each window in the MTopList. The FPmin mark points to the
object with smallest Fscore in a particular window. Thus the num-
ber of FPmin marks maintained within MTopList is equal to Nact,
namely one for each active window. We further utilize this pointer
for updating the MTopList with each newly arriving object in the
data stream as discussed in the next subsection.

Lemma 6.3. At any given time, utilizing the start window mark

and the end window mark of an object in the MTopList structure

along with the FPmin mark for each window is sufficient to gener-

ate the top-k result for any query Qi in the workload WL.

6.2 The MTopList Maintenance

Figure 7: Updating the multi top-k results in integrated struc-

ture MTopList

Updating MTopList after expiration of existing objects. A
careful mechanism is needed for updating MTopList every time a
window slides. As discussed before, each object in the integrated
structure may participate as a top-k result in more than one active
window. So, if the oldest window W0 expires the corresponding
objects in W0 cannot simply be deleted from the list. We develop a
strategy that uses the starting and ending window marks to decide
if an object needs to be physically removed from the MTopList
altogether after the window slides.

We observe that, the top-k objects of the current-to-be expired
window are the first Qmeta.K objects in the MTopList. We re-
call(Section 4) that Qmeta.K is equivalent to Qi.k where Qi is the
query that needs output when the current window expires. If the
window serves more than one member query then Qmeta.K is the
maximum top-k-parameter of all the queries served by any win-
dow. The MTopList is sorted by objects’ Fscore. So, the current-
to-expired window being the oldest window will contain Qmeta.K
objects with highest Fscore as compared to the other objects in the
list.

After the window expires, we increment the starting window
mark of all objects in that window by 1. This indicates that window
has expired as none of the objects in the list participate in that par-
ticular window. After incrementing the starting window marks if
any of the objects in the list has a starting window mark larger than
the ending window mark then we physically delete this object from
the list because this object was participating only in the window
that already expired and thus is not needed any more.



Updating MTopList after inserting newly arriving objects.

Every time a new object, namely onew is eligible to participate as
a top-k result(decided based on onew’s Fscore ) we take the fol-
lowing steps to update MTopList. At step 1, we find the correct
position of onew in MTopList. At step 2, we update onew’s starting
and ending window mark. Finally, we remove the object with the
smallest Fscore from the windows that the new object is predicted
to be part of their top-k results.

For positioning each object into the MTopList, if the predicted
top-k result set of any future window represented by the MTopList
has not reached the size of k yet, or if its F score is larger than
that of any object in the MTopList, we insert it into the MTopList.
Otherwise it will be discarded immediately.

The position of Onew is easy to find utilizing the minFP marks.
Onew .Fscore (Fscore of the new object Onew ) is compared each
of the minFP starting from the lowest until an object with Fscore

greater than Onew is found.
If Onew is inserted at its correct position in the MTopList, it is

in the predicted top-k results of at least the one window in its life
span, its ending window mark is set to be the newest window Id
the MTopList such that Oi.minFP .Fscore <Onew . Fscore, where
Oi.minFP .Fscore is the Fscore of the object marked by minFP .
The starting window mark of a new object is simply the oldest win-
dow on the MTopList, Oi.minFP .Fscore < Onew Fscore.

Once we have Onew’s updated the starting window mark and
ending window mark, we remove the objects pointed by minFP

marks from all those windows in which Onew is predicted to partic-
ipate. We note that, here is that Onew may not participate as a top-k
result in all windows from starting window mark to ending window
mark(Observation 2). Thus, only those objects are removed whose
Oi.minFP .Fscore is smaller than Onew Fscore; Oi.startmark is
greater than or equal to Onew .startmark and Oi.startmark is smaller
than or equal to Onew .endmark.

7. EXPERIMENTAL STUDY
Our experiments are conducted on a Sony VIAO laptop with

Intel Centrino Duo 2.6GHz processor and 1GB memory, running
Windows Vista. All the algorithms are implemented in Eclipse IDE
using C++.

Real Datasets. We used two real streaming data sets. The
first data set, GMTI (Ground Moving Target Indicator) data [18],
records the real-time information of moving objects gathered by
24 different data ground stations or aircrafts in 6 hours from Joint
STARS. It has around 100,000 records regarding the information
of vehicles and helicopters (speed ranging from 0-200 mph) mov-
ing in a certain geographic region. The second dataset is the Stock
Trading Traces data (STT) from [19], which has one million trans-
action records throughout the trading hours of a day.

Alternative Algorithms. We compare our proposed algorithm
MTopLists performance with two alternative methods, namely, 1.
state-of-the-art single top-k query solution MinTopK [16] that pro-
cesses each query independently in the workload WL. 2. MTop-
Band, the basic algorithm we first presented in this work (Section
5.).

Experimental Methodologies. We measure two common met-
rics for stream processing algorithms, namely average processing
time for each tuple (CPU time) and memory footprint.

We perform the scalability tests to verify the performance of the
proposed algorithms with the increasing number of queries in the
input workload. We first evaluate at a time two test cases, each
varying on only one of the three query parameters. Then, we test
the more general cases of varying two parameters, and finally all

three query parameters are set to be arbitrary. For each experiment,
we vary win in the range of 100K to 1 M, slide between 10K to
100K, and k in the range of 10-1000.

7.1 Scalability Evaluation
Scalability tests with one arbitrary parameter. For each test

case, we prepare three workloads with 10, 100, and 1000 queries
respectively by randomly generating one input parameter (in a cer-
tain range) for each member query, while using common parameter
settings for the other two query parameters.

Fixed win, Fixed slide, and Arbitrary k. In this experiment,
we evaluate performance of our proposed algorithms as compared
to the state-of-art algorithm [16]. We use fixed win = 1M and slide

= 100K, while varying k from 10 to 1000. We randomly generate k

between the range 10 - 1000 for each query.

Figure 8: CPU time used by

three algorithms with differ-

ent k values

Figure 9: Memory space

used by three algorithms

with different k values

Figures 8 and 9 show the CPU time and memory space, on loga-
rithmic scale, used by the three algorithms. Clearly, performance of
our proposed methods is in order of magnitude better than MinTopK
algorithm. Amongst all three compared algorithms , MinTopK’s
[16] CPU time increases as a direct multiple of the size of work-
load. The increase in the CPU time is around 100 times when the
number of queries increases from 10 to 1000. Put differently, it
does not scale well with the cardinality of the workload.

For the memory space used, MTopList has even better perfor-
mance as its utilization of memory space only increases 2.5 times
when the number of queries increases from 10 to 1000, while such
increase for MTopBand and MinTopK are 6 times and 99 times
respectively.

We note that in this case only top-k parameter k is arbitrary.
Thus, this is the best possible case for our proposed algorithm as
maximum sharing is achieved here. Next, we discuss the experi-
mental evaluation for the cases when k is fixed, while other query
parameters, win or slide are varying.

Varying slide sizes. In this experiment, we use win = 1M and k =
1000 , while we randomly generate slide values between the range
100K - 1M.

As shown in Figures 10 and 11, both the CPU and memory us-
age of MTopList is still significantly less than those utilized by the
state-of-the-art algorithm MinTopK [16]. In particular, for process-
ing 100 queries , MTopList only takes 0.0066 s to process each
object on average, while MinTopK needs 0.712 s for each object.
This is as expected and can be explained by the same reasons as in
the previous test cases.

However, an important observation made from this experiment
is that the performance of of our basic algorithm MTopBand can be
affected by the win/slide ratio. We recall that MTopBand main-
tains the predicted top-k results for each future window indepen-



Figure 10: CPU time used by

three algorithms with differ-

ent slide values

Figure 11: Memory space

used by three algorithms

with different slide values

dently, thus its resource utilization is expected to increase with the
number of future windows maintained, which is equal towin/slide.

In this experiment, win is fixed to 1M while slide is randomly
picked, resulting in a large value of win/slide ratio for some of
the queries in the workload. On the other hand, the performance
of MTopList remains unaffected with increase in the win/slide ra-
tio. This is because MTopList only maintains distinct top-k objects
which are not dependent on number of predicted views maintained
at a given time.

Scalability tests with more than one arbitrary query param-

eters For each test case, we prepare three workloads with 10, 100,
and 1000 queries respectively by first randomly generating two in-
put parameters (in a certain range) for each member query, while
using common parameter settings for just one query parameters.
Finally, we evaluate the most general case by randomly generating
all three query parameters.

Arbitrary win, Arbitrary slide, and fixed k.
In this case, we use k = 100, while varying win from 100K to 1M

and slide from 10K to 100K.

Figure 12: CPU time used by

three algorithms with differ-

ent win and slide values

Figure 13: Memory space

consumed by three algo-

rithms with different win
and slide values

As shown in Figures 12 and 13, the CPU time consumed by
MTopList per tuple increases 4.1 times, when the number of queries
increase from 10 to 100 and it further increases around 2.3 times
when number of queries increase from 100 to 1000. Whereas for
the basic proposed algorithm MTopBand, the CPU time increases
around 7 times from 10 to 100 queries and around 4.5 times from
100 to 1000 queries. MinTopK utilizes 99 and 91 times more CPU
and memory respectiely when number of queries are increase from
10 to 1000. Clearly, this increase in CPU consumption time of the
proposed algorithm with increase in the number of queries is mod-
est as compared to the alternative algorithms.

The ratio of increased CPU consumption time is 1.5 times more
as compared to the previous only one arbitrary parameter case. This
is because two arbitrary query parameters lead to decrease in the
sharing amongst different queries, and thus increases the mainte-
nance costs of both MTopList and MTopBand.

General case: All Arbitrary Parameters. Finally, we evaluate
the general case with all three parameters win, slide, and k being
varied arbitrarily.

Figure 14: CPU time used by

three algorithms with arbi-

trary win and slide param-

eters

Figure 15: Memory space

consumed by three algo-

rithms with arbitrary win
an

Figures 14 and 15 show the performance of the three algorithms
in terms of CPU and memory utilization. Clearly, MTopList wins
over the other two algorithms for both CPU and memory utilization
in this case too. MTopList takes around 30-40 times less CPU time
to process 1000 queries as compared to MTopBand. Also, MTo-
pList takes around 330 times less CPU time as compared to the
state-of-art algorithm MinTopK. This saving is less as compared to
the previous cases where only one or at the most two parameters
are arbitrary. This is caused by too large variations on the param-
eter settings. The important observation here is MTopList never
performs worse than MTopBand for any workload.

8. RELATED WORK
Top-k queries on a static data set have been well studied in the

literature. The top-k algorithms, Onion [2] and Prefer [8], based
on preprocessing techniques, require the complete data set to be
available in memory for computing the top-k objects.

[10] presents algorithms that reduce the storage and maintenance
costs of materialized top-k views in the presence of deletions and
updates. Other works in relational databases like [11,12] focus on
multidimensional histograms and sampling-based technique to map
top-k queries into traditional ranges. [3,4,5] study top-k queries in
distributed data repositories. In general, they minimize the commu-
nication cost for retrieving the top-k objects from distributed data
repositories.

Fagin et al. [13] introduce two methods for processing ranked
queries. The TA algorithm is optimal for repositories that support
random access, while the NRA algorithm assumes that only sorted
access is available. Chang and Hwang [7] introduce MPro, a gen-
eral algorithm that optimizes the execution of expensive predicates
for a variety of top-k queries.

All the above methods are based on the assumption that the rel-
evant data set is available at the compilation stage of query execu-
tion either locally or in distributed servers. Also they are designed
to report the top-k results only once. Thus these techniques are not
suitable for streaming environments where the data are not known



in advance, rather they keep changing as new tuples arrive and old
ones expire.

More recently researchers have started to look at the problem of
top-k queries in streaming environments. Most of this work is fo-
cused on single top-k query processing where the assumption is that
at a time only one top-k query is registered in the system [6,14,16]
. Among these works, [16] presents an optimal technique for top-
k query processing both computationally and memory wise. Al-
though optimal for single top-k query processing, this technique
does not handle multiple queries simultaneously registered in the
system. Our experiments show that our proposed sharing strategy
by many orders of magnitude outperforms the solution of executing
top-k queries independently for multiple queries.

To the best of our knowledge, [15] and [17] are the only two
works that handle simultaneously registered multiple top-k queries
in streaming scenario. [15] tackles the problem of exact continu-
ous multiple top-k queries monitoring over a single stream. The
proposed techniques share only the indices among different reg-
istered queries by maintaining index and bookkeeping structures.
They introduce two algorithms. First, the TMA algorithm com-
putes the new answer for a query whenever some of the current
top-k points expire. Second, the SMA algorithm maintains a Şsky-
band structure" that aims to contain sufficient number of objects so
that it need not go back to the full data stream window.

However, unfortunately, neither of these two algorithms elimi-
nates the recomputation bottleneck from the top-k monitoring pro-
cess. Thus, they both require full storage of all objects in the query
window. Furthermore, they both need to conduct expensive top-k
recomputation from scratch in certain cases, though SMA conducts
recomputation less frequently than TMA. While our proposed algo-
rithm eliminates the recomputation bottleneck altogether thus real-
ize complete incremental computation and minimal memory usage.

Experiments conducted by the optimal technique for top-k query
processing [16] shows a significant CPU and memory resource sav-
ing over [15]. Our experimental results confirm the improvements
by many orders of magnitude achieved by our proposed algorithm
over [16] for any workload with a size of 2 queries and greater.
Thus, our proposed algorithm achieves a clear win over each the
state-of-art techniques.

[17] handles multiple top-k queries, but based on the probabilis-
tic top-k model in data streams. While we work with a complete
and non-probabilistic model. Also their focus is to achieve shar-
ing among the queries on the preference function while we focus
on other important parameters of a continuous top-k query, namely
window size, slide size and K. In short, they in large target different
problems from ours. In particular, the key fact affecting the top-k
monitoring algorithm design is the meta information maintained
for real-time top-k ranking and the corresponding update methods
, which vary fundamentally by these respective top-k models.

9. CONCLUSION AND FUTURE WORK
In this work, we present the MTopS framework for efficient shared

processing of a large number of top-k queries over streaming win-
dows. MTopS achieves significant resource sharing at the query
level by analyzing the parameter settings. MTopS further optimizes
the shared processing by identifying and maintaining only the min-
imal object set from the data stream that is both necessary and suf-
ficient for top-k monitoring of all queries in the workload. Our ex-
perimental studies based on both real and synthetic streaming data
confirm the clear superiority of MTopS to the state-of-the-art solu-
tion. We confirm that MTopS exhibits excellent scalability in terms
of being able to handle thousands of queries under high speed in-

put streams in our experiments. As future work, this framework can
be used to scale-up considering multiple machines and grouping of
workloads into sub-workloads to be assigned to different machines.
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