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Discovery of complex patterns such as clusters, outliers, and associations from huge volumes

of streaming data has been recognized as critical for many application domains. However,

little research effort has been made toward detecting patterns within sliding window

semantics as required by real-time monitoring tasks, ranging from real time traffic

to every window is impractical due to their high algorithmic complexity and the real-time

responsiveness required by streaming applications. In this work, we develop methods for the

incremental detection of neighbor-based patterns, in particular, density-based clusters and

distance-based outliers over sliding stream windows. Incremental computation for pattern

detection queries is challenging. This is because purging of to-be-expired data from

previously formed patterns may cause birth, shrinkage, splitting or termination of these

complex patterns. To overcome this, we exploit the ‘‘predictability’’ property of sliding

windows to elegantly discount the effect of expired objects with little maintenance cost. Our

solution achieves guaranteed minimal CPU consumption, while keeping the memory

utilization linear in the number of objects in the window. To thoroughly analyze the

performance of our proposed methods, we develop a cost model characterizing the

performance of our proposed neighbor-based pattern mining strategies. We conduct an

analysis study to not only identify the key performance factors for each strategy but also

show under which conditions each of them are most efficient. Our comprehensive

experimental study, using both synthetic and real data from domains of moving object

monitoring and stock trades, demonstrates superiority of our proposed strategies over

alternate methods in both CPU processing resources and in memory utilization.

& 2012 Published by Elsevier Ltd.
1. Introduction

We present a new framework for detecting ‘‘neighbor-
based’’ patterns in streams covering two important types
of patterns, namely density-based clusters [18,17] and
distance-based outliers [24,5] applied to sliding windows
semantics [7,8]. Many applications providing monitoring
services over streaming data require this capability of
real-time pattern detection. For example, to understand
the major threats of an enemy’s airforce, a battle field
commander needs to be continuously aware of the ‘‘clusters’’
Elsevier Ltd.

pi.edu (D. Yang).
formed by enemy warcrafts based on the objects’ most
recent positions extracted from the data streams reported
from satellites or ground stations. We evaluate our techni-
ques for this class of applications by mining clusters in the
ground moving target indicator data stream [16]. As another
example, a financial analyst monitoring stock transactions
may be interested in the ‘‘outliers’’ (abnormal transactions)
in the transaction stream, as they are potential indicators for
new trends in the market. We evaluate our techniques for
this class of application by mining outliers in the NYSE
transaction stream [23].

Background on neighbor-based patterns: Neighbor-based
pattern detection techniques are distinct from global cluster-
ing methods [32,22], such as k-means clustering. Global clus-
tering methods aim to summarize the main characteristics of
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huge datasets by first partitioning them into groups (e.g., in
Fig. 1, the objects in the same circles are considered to be in
the same cluster), and then provide abstract information
about the identified clusters, such as cluster centroids, as
output. In these works, the cluster memberships of individual
objects are not of special interest and thus not determined. In
contrast, the techniques presented in this work target a
different scenario, namely when individual objects belonging
to patterns are of importance. For example, during the
battlefield monitoring scenario, the commander may need
to drill down to access the specific information about
individual objects in the clusters formed by enemy warcraft.
This is because some important characteristics of the clusters,
such as the composition of each cluster (e.g., how many
bomb carriers and fighter planes each cluster has) and the
positions of the ‘‘super threats’’ in each cluster (e.g., the bomb
carriers with nuclear bombs) can be learned from this specific
information. Similarly, specific details about each outlier in
the credit card transactions scenario may point to a credit
fraud that may cause serious loss of revenue.

Thus our techniques focus on identifying specific objects
that behave individually (for outliers) or together (for clus-
ters) in some special manner. More specifically, the neighbor-
based patterns are composed of object(s) with specific
characteristics with respect to their local neighborhoods.
Precise definitions of the patterns will be given in Section
2. Fig. 2 shows an example of two density-based clusters and
a distance-based outlier in the dataset from Fig. 1.

Motivation for sliding window scenario: Another important
characteristic distinguishing our work from previous efforts
[13,12] is that we aim to mine for neighbor-based patterns
within the sliding window scenario. The sliding window
semantics, while widely used for continuous query proces-
sing [7], have rarely been applied to neighbor-based pattern
mining. Sliding window semantics assume a fixed window
size (either a fixed time interval or a fixed number of objects),
with the pattern detection results generated based on the
most recent data falling into the current sliding window.
However, in previous clustering work [20,19,13,12], objects
with different time horizons are either treated equally or
Fig. 1. Four global clusters determined by global clustering algorithms,

such as K-means.

Fig. 2. Two density-based clusters and one distance-based outlier

determined by neighbor-based pattern detection algorithms.
assigned weights decaying as their recentness decreases.
These techniques capture the accumulative characteristics
of the full data stream seen so far, rather than isolating and
reflecting about the features in the most recent stream
portion. Using our earlier example, the position information
of the warcraft may only be valid for a certain time period
due to the movement of the monitored objects. In such cases,
the sliding window technique is necessary as it forces the
system to discard the out-of-date information and form
the patterns only based on the most recent positions of the
moving objects.

Challenges: Detecting neighbor-based patterns for slid-
ing windows is a challenging problem. Naive approaches
that run the static neighbor-based pattern detection
algorithms from scratch for each window are often not
feasible in practice, considering the conflict between the
high complexity of these algorithms and the real-time
response requirement for stream monitoring applications.
Based on our experiments (see Section 11), detecting
density-based clusters from scratch in a 50 K-object
window takes around 100 s on our experimental plat-
form, which does not meet the real-time responsiveness
requirement for many interactive applications.

A straightforward incremental approach, which relies
on incrementally maintaining the exact neighbor relation-
ships (we will henceforth use the term ‘‘neighborship’’ for
this concept) among objects, will also fail in many cases.
This is because the potentially huge number of neighbor-

ships can easily raise the memory consumption to unac-
ceptable levels. In the worst case, N2 neighborships may
exist in a single window, with N the number of data points
in the window. Our experiments confirm that this solution
consumes on average 15 times more memory compared to
the from-scratch approach when applied to real datasets
[16,23].

To overcome this serious strain on memory consump-
tion, while still enabling the incremental computation, we
introduce several neighborship abstractions that guarantee
a linear in N memory consumption. However, designing
solutions based on abstracted neighborships now come
with a new shortcoming. Namely, the absence of exact
neighborships makes discounting the effect of the expired
objects from previously detected patterns become highly
expensive in terms of CPU resources. This is because it is
difficult to track what pattern structural changes, such as
‘‘splitting’’ or ‘‘termination’’, will be triggered by objects’
expiration, without knowing which objects are directly
connected to the expired objects and thus are affected.

Proposed methods: To make the abstracted neighborships

incrementally maintainable in a computationally efficient
manner, we propose to exploit an important characteristic
of sliding windows, namely the ‘‘predictability’’ of the
objects’ expiration. Specifically, given a query window with
fixed window size and slide size, we can predetermine all
the windows in which each object can survive. A further
insight gained from this ‘‘predictability’’ property leads us to
propose the notion of the ‘‘predicted views’’. Namely given
the objects in the current window, we can predict the
pattern structures that will persist in subsequent windows
and abstract them into the ‘‘predicted view’’ of each
individual future window. The ‘‘view prediction’’ technique
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enables us to elegantly discount the effect of expired objects
and thus to incrementally maintain the abstracted neighbor-

ships efficiently.
Finally, along with ‘‘predictability’’, we propose a

hybrid neighborship maintenance mechanism incorporat-
ing two forms of neighbor abstraction and dynamically
switching between them when needed. This solution
achieves not only linear memory consumption, but now
also guarantees optimality in the number of the range
query searches. Our proposed technique is able to cluster
50 K objects in a window within 5 s, given 10% of them
are new arrivals from the stream. It is on average five
times faster than the alternative incremental algorithm
using abstract neighborships only, while it consumes only
5% of memory space compared to the alternative using
exact neighborships.

Contributions: The main contributions of this work
include: (1) We characterize the key performance bottle-
neck for incremental detection of neighbor-based patterns
over sliding windows lies in handling the expired objects. It
consumes either massive memory or CPU processing
resources, both critical resources for streaming data proces-
sing. (2) We exploit the ‘‘predictability’’ property of sliding
windows and further extend it with the notion of ‘‘predicted
views’’, which elegantly discounts the effect of expired data
from future query results. (3) We present, to the best of our
knowledge, the first algorithm that detects density-based
clusters in sliding windows. This algorithm is shown to
guarantee the minimum number of range query searches
needed at each window slide, while keeping the memory
requirement linear in the number of objects in the window.
(4) We present a new algorithm to detect distance-based
outliers for sliding windows. This algorithm covers both
count-based and time-based windows and thus is more
comprehensive than the only prior solution dealing with
count-based windows only [5]. (5) We design a cost model
for neighbor-based pattern mining algorithms in streaming
windows. (6) We use our cost model to thoroughly analyze
the strengths and weaknesses of all the alternative methods
under different conditions. (7) Our comprehensive experi-
ments on both synthetic and real streaming data from
domains of moving object monitoring and stock trades
confirm the effectiveness of our proposed algorithms and
their superiority over the existing alternative approaches.

This paper is significantly extended from a previous
conference paper [1]. The major extensions that are new
contributions include:
(1)
 We design a cost model for estimating both the CPU
and memory resource utilization for neighbor-based
pattern mining in sliding windows (Section 10) .
(2)
 We conduct a thorough cost analysis of the alternative
methods (Section 10), comparing their performance
under a broad range of parameter settings. This cost
analysis identifies the key performance factors of each
alternative algorithm, and helps us to establish under
which conditions each algorithm performs at its best.
(3)
 We discuss how our proposed techniques can be
naturally extended to handle several important out-
put models, such as incremental output and pattern
evolution across different windows (Section 9).
(4)
 We extend our experimental study section substantially
by conducting additional experiments evaluating the
scalability of our proposed algorithms (Section 11).
These experiments include the scalability test on both
the window size and dimensionality, the two key
factors affecting scalability of clustering algorithms over
streaming windows. Also, the additional test cases are
discussed in-depth to better compare and contrast
alternative approaches under different situations.
(5)
 We elaborate in more depth on the design of all
proposed algorithms. This includes the addition of
pseudo-code for each algorithm, more detailed exam-
ples and explanations, and theoretical proofs for all
lemmas and theorems (Sections 4, 6 and 8).
The remainder of this paper is organized as follows.
Section 2 introduces the preliminaries. Sections 3–7 provide
our proposed strategies for the incremental neighbor-based
pattern mining. In Section 10, we present a cost model and a
cost analysis for all alternative methods. Our experimental
studies are given in Section 11. In Section 12, we discuss the
related work, while Section 13 offers conclusions.

2. Problem definition

Definition of neighbor-based patterns: We support the
detection of ‘‘neighbor-based’’ patterns, in particular,
distance-based outliers [18,17] and density-based clusters
[24]. In this work, we use the term ‘‘data point’’ to refer to
a multi-dimensional tuple in the data stream. Neighbor-
based pattern detection uses a range threshold yrange

Z0
to define the neighborship between any two data points.
For two data points pi and pj, if the distance between them is
no larger than yrange, then pi and pj are said to be neighbors.
Any distance function can be plugged into these algorithms.
We use the function NumNeighborsðpi,y

range
Þ to denote the

number of neighbors a data point pi has, given the yrange

threshold.

Definition 2.1. Distance-based outlier: Given yrange and a
fraction threshold yfra (0ryfrar1), a distance-based outlier
is a data point pi, where NumNeighborsðpi,y

range
ÞoN*yfra,

with N the number of data points in the data set.

Definition 2.2. Density-based cluster: Given yrange and a
count threshold ycnt , a density-based cluster is defined as a
group of ‘‘connected core objects’’ and the edge objects

attached to them. Any pair of core points in a cluster are
‘‘connected’’ with each other. A data point pi with
NumNeighborsðpi,y

range
ÞZycnt is defined as a core point.

Otherwise, if pi is a neighbor of any core object, pi is an
edge object. pi is a noise point if it is neither a core point nor
an edge point. Two core points c0 and cn are connected, if
they are neighbors of each other, or there exists a sequence
of core points c0,c1, . . . cn�1,cn, where for any i with 0r ir
n�1, a pair of core objects ci and ciþ1 are neighbors of
each other.

Fig. 7 shows an example of a density-based cluster
composed of three core points (black) and eight edge points

(grey).



Exact-N (�range,�cnt / � f ra)
1 At each window slide
//Purging
2 For each expired data point pexp

3 For each pi in pexp .neighbors
4 remove pexp from pi .neighbors ;
5 purge pexp ;
//Loading
6 For each new data point pnew

7 load pnew into index
//Neighborship Maintenance
8 For each new data point pnew

9 Neighbors =
RangeQuerySearch(pnew , �range )

10 For each pj in Neighbors
11 add pj to pnew .neighbors
12 add pnew to pj .neighbors
//Output
13 OutputPatterns (pattern type);

Fig. 3. Pseudo-code for Exact-N Part 1.

OutputPatterns(Distance-Based Outliers)
1 For each data point pi in the window
2 If pi .neigbhors.size () ≤ �f ra ∗ N
3 Output (pi )
OutputPatterns(Density-Based Clusters)
1 ClusterId=0;
2 For each pi with ≤ �cnt neighbors
3 If pi is unmarked;
4 OutputCore(pi , ClusterId);
5 ClusterId++;
OutputCore( pc , ClusterId)
1 mark pc with ClusterId;
2 output(pc );
3 For each data point pi on pc .neighbors
4 If pi is unmarked
5 If pi .neigbhors.size () ≤ �cnt

6 OutputCore(pi , ClusterId)
7 Else
8 mark pi with ClusterId;
9 Output(pi );

Fig. 4. Pseudo-code for Exact-N Part 2.
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Neighbor-based pattern detection in sliding windows: We
focus on periodic sliding window semantics as proposed
in CQL [7] and widely used in the literature [5,1]. These
proposed semantics can be either time-based or count-
based. In both cases, each query has a window with a
fixed window size win and a fixed slide size slide (either a
time interval or a tuple count). The query window slides
periodically either when a certain number of objects
arrive at the system or a certain amount of time has
elapsed. During each slide, the query window takes in the
new objects and purges the expired objects in the win-
dow. For each window Wi, patterns are generated only
based on all data points falling into it.

We first focus on the generation of complete pattern
detection results. In particular, for distance-based out-
liers, we output all outliers identified in a window. For
density-based clusters, we output the members of each
cluster, each with a cluster id of the clusters they belong
to. Other output formats can also be supported by our
proposed techniques (see Section 9).

3. Naive approach

The naive approach for detecting patterns over contin-
uous windows would be to run the static pattern detection
algorithms from scratch at each window. Generally, static
neighbor-based pattern detection algorithms [18,24] con-
sume one range query search for every data point in the
dataset. This in our case, they need N range query searches
at each window Wi, with N the number of data points in Wi.

Considering the expensiveness of range query searches,
this naive approach may not be applicable in practice,
specially when N is large. Obviously, without the support
of indexing, the complexity of each range query search is
O(N). The average run-time complexity of a range query
search can be improved by using index structures, for
instance an R-tree could improve it to OðlogðNÞÞ [18].
However, such complexity may still be an unacceptable
burden for streaming applications that require real-time
responsiveness, not to mention that the high-frequency of
data updating in the streaming environments makes the
index maintenance expensive. Given these limitations, such
naive approach is not the best choice for handling over-
lapping windows (Q :slideoQ :win), where the opportunity
for sharing meta-information among windows exists.

4. Exact-neighborship-based solution (Exact-N)

To avoid repeated running of range query searches and
recomputing patterns from scratch, our task thus is to
design incremental pattern computation algorithms. Now
we discuss the first incremental algorithm that detects the
neighbor-based patterns based on the exact neighborships

among data points. We call it the Exact-Neighborship-Based

Solution (Exact-N). Exact-N relieves the computational inten-
sity of processing each window by preserving the exact
neighborships discovered in the previous windows. In parti-
cular, Exact-N requires each data point pi in the window to
maintain a list of links pointing to all its neighbors.

At each window slide, the expired data points are
removed along with the exact neighborships they are involved
in, namely all the links pointing from or to them. Then Exact-
N runs one range query search for every new data point pnew

to discover the new neighborships to be established in the
new window. For distance-based outliers, Exact-N simply
outputs the data points with less than N � yfra neighbors. For
density-based clusters, Exact-N constructs the cluster struc-
tures by a Depth First Search (DFS) on all core points (with no
less than ycount neighbors) in the window. Exact-N offers the
advantage of conducting only Nnew range query searches at
each window, with Nnew equal to the number of new data
points in the window. The specific algorithm of Exact-N is
shown in Figs. 3 and 4.

Discussion: Compared with the N (total number of data
points in the window) range query searches needed by
the naive approach at each window, Exact-N offers the
advantage of conducting only Nnew range query searches
at each window, with Nnew the number of new data points
in the window.
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Lemma 4.1. For each query window Wi, the minimum number

of range query searches needed for detecting neighbor-based

patterns in Wi is Nnew.

Proof. At each new window Wi, each new data point falling
into Wi needs a range query search to discover all its
neighbors in the window, otherwise we cannot obtain all
new neighborships in Wi introduced by the participation of
the new data points. Missing neighborships between data
points may cause wrong clustering results. For example, a
missing neighborship between two core points pi and pj, may
cause a single cluster containing both of them to be identified
as two separate clusters, each containing one of them. This
proves the necessity of the Nnew range query searches. Since
we can preserve all neighborships inherited from Wi�1, we
will not miss any prior neighborships existing in Wi. This
proves its sufficiency. &

However, Exact-N suffers from a major shortcoming,
namely its huge memory consumption, as it requires
storing all exact neighborships among data points. In the
worst case, the memory requirement may be quadratic in
the number of all data points in the window. Such a
demand on the memory may make the algorithms
impractical for huge window sizes N, given that the
real-time response requirement of streaming applications
necessitates main memory resident processing. Our
experimental results in Section 11 confirm the memory-
inefficiency of Exact-N.

5. ‘‘Predictability’’ property in sliding windows

Next, we summarize the ‘‘predictability’’ property of
periodic sliding windows.

Definition 5.1. Given the slide size Q :slide of a query Q

and the starting time of current window Wn:Tstart , the life-

span pi:lifespan of a data point pi in Wn with time stamp pi:

T , is defined by pi:lifespan¼ dpi:T�Wn:Tstart=Q :slidee, indi-
cating that pi will survive in windows Wn to Wnþpi :lifespan�1

before its expiration.

This property determines the expiration of existing
data points in future windows. Thus it enables us to pre-
handle their impact on the pattern detection results in
future windows. For this basic concept of ‘‘predictability’’
to be exploitable for tackling our neighbor-based pattern
detection problem, we have developed an observation
based on it as given below.

Observation 5.2. Given the slide size Q :slide of a query Q

and the starting time of the current window Wn:Tstart , a
neighborship Neighborðpi,pjÞ between two data points pi

and pj in Wn will hold for totally Neighborðpi,pjÞ:lifespan¼

Minðdpi:T�Wn:Tstart=Q :slidee,dpj:T�Wn:Tstart=Q :slideeÞ win-
dows, namely, it will exist in all windows from Wn to
WnþNeighborðpi ,pjÞ:lifespan�1 until either pi or pj expires.

Observation 5.2 express the impact of the ‘‘predict-
ability’’ property on the bilateral relationships among
two data points, namely the neighborships between them.
Specifically, Observation 5.2 combines the basic concept
of ‘‘predictability’’ with the fact that a neighborship between
a pair of data points is guaranteed to hold as long as both of
its point participants are still valid. This observation helps us
to determine the ‘‘life span’’ of the neighborships between
any pair of data points in a window. This observation will be
used in our proposed algorithms to elegantly maintain the
neighborhood of each data point.

The two observations above allow us to ‘‘foresee’’ part
of the patterns in the future windows based on the data
points and the neighborships among them that will surely
appear in these windows. The complete patterns in these
future windows can later be decided solely by the insertion
of new data points. The key point here is that by prede-
termining the partial members of the future windows, we
can eliminate the needs for handling the impact of expired
data points on the pattern detection result when the
window slides. We call this the ‘‘View Prediction’’ technique.
This principle will be used by our proposed algorithms to
maintain neighbor-based patterns over windows.

6. Abstracted-neighborship-based solution using counts
(Abstract-C)

Different from Exact-N, Abstract-C aims to maintain a
compact summary of the neighborships, namely the count
of the neighbors for each data point.

6.1. Challenges

Maintaining the neighbor counts for each data point
appears to be not computationally cheaper than the main-
tenance of their neighbor lists. This is because, although we
can easily determine the increases of the neighbor count of
each data point, when to decrease them as their neighbors
are expired becomes a hard problem. As in Abstract-C, the
data points no longer maintain the exact neighborships they
are involved in, namely, the list pointing to their neighbors,
they cannot directly inform their neighbors to decrease their
respective neighbor count when they are expired.

6.2. Solution

Fortunately, the ‘‘predictability’’ property introduced
in Section 5 can help us to tackle this problem. The key
idea is that since we can exactly predict the expiration of
any data point pi, we can pre-handle the impact of p0is

expiration on its neighbors’ neighbor counts, at the time
when they are first identified to be neighbors.

Data structure: To accomplish this, we now introduce the
notion of a ‘‘lifetime neighbor counts’’ (lt_cnt). The ‘‘lifetime
neighbor count’’ of a data point pi:lt_cnt maintains a seq-
uence of ‘‘predicted neighbor counts’’, each corresponding to
the number of ‘‘predicted neighbors’’ pi has in any of the
future windows that pi will participate in. For example, at a
given window Wi, a data point pi has three neighbors, which
are p1, p2 and p3. By using the ‘‘predictability’, we could figure
out the lifespan of each of these neighbors as well as that of
pi. Let us assume p1 will expire after Wi. p2 and p3 will expire
after Wiþ1. pi will expire after Wiþ2. Then, at Wi, pi:lt_
cnt¼ ðWi : 3�Wiþ1 : 2�Wiþ2 : 0) indicates that pi currently
has 3 neighbors in Wi, while at (Wiþ1), two of these three
neighbors, namely p2, and p3 will still be its neighbors. p1 will



Abstract-C (�range ,�cnt / � f ra )
1 At each window slide
//Purge
2 For each expired data point pexp

3 purge pexp ;
//Load
5 For each new data point pnew

6 Initialize lt cnt (pnew )
7 load pnew into index
//Neighborship Maintenance
8 For each new data point pnew

9 Neighbors
= RangeQuerySearch(pnew , �range )

10 For each data point pj in Neighbors
11 Updatelt cnt (pnew , pj )
//Output
12 OutputPatterns(pattern type);
Initialize lt cnt (pi )
1 For n=1 to pi .lif espan − 1
(pi .lif espan = p i .T − W indow.Tstart

W indow.Slide )
2 pi .lt cnt [n ] = 0 ;
Updatelt cnt (pi , pj )
1 For n=1 to Len (pj .lt cnt )
2 pi .lt cnt [n ]++ ;
3 pj .lt cnt [n ]++ ;

Fig. 5. Pseudo-code for Abstract-C Part 1.

OutputPatterns(Distance-Based Outliers)
1 For each data point pi in the window
2 If pi .lt cnt [0] ≤ � f ra ∗ N

//N is num of tuples in the current window
3 Output(pi ) ;
4 remove pi .lt cnt [0] ;
OutputPatterns(Density-Based Clusters)
1 ClusterId=0;
2 For each data point pi in the window
3 If pi .lt cnt [0] ≥ �cnt

4 remove pi .lt cnt [0] ;
5 If pi is unmarked”
6 OutputCore(pi , ClusterId);
7 ClusterId++;
OutputCore(pc , ClusterId)
1 mark pc with ClusterId;
2 output(pc );
3 Neighbors =

RangeQuerySearch(pc , �range )
4 For each data point pj in pc .neighbors
5 If pj is unmarked
6 If pj has No less than �cnt neighbors
7 OutputCore(pj , ClusterId)
8 Else
9 mark pj with ClusterId;
10 output(pj );

Fig. 6. Pseudo-code for Abstract-C Part 2.

1 The length of lt_cnt for each data point is equal to a constant

number Cils ¼ dQ :win=Q :slidee.
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no longer be pi’s neighbor then as it will expire after Wi. In
other words, at Wi, pi has two ‘‘predicted neighbors’’ in Wiþ1.
The length of pi:lt_cnt is kept equal to pi:lifespan, and thus
decreases by one after each window slide by removing the
left most entry. In this example, the Wi : 3 entry will be
removed after the window slide. Here we note that all the
‘‘predicted neighbor counts’’ in pi:lt_cnt are calculated based
on pi’s neighbors in the current window and will later be
updated when new data points join its neighborhood.

Lemma 6.1. In any given window Wi, the entries in lt_cnt

obey a ‘‘monotonic’’ decreasing function pattern.

Lemma 6.1 holds because more and more data points
in the current window will expire as the window slides.

Algorithm: Now we discuss the initialization and
update of lt_cnt. For a data point pi, its lt_cnt, pi:lt_cnt, is
initialized when pi arrives at the system. In particular, the
length of pi:lt_cnt, Lenðpi:lt_cntÞ is equal to pi:lifespan

which can be determined by ‘‘predictability’’. Then we
initialize pi:lt_cnt as a vector of zeros.

At each window slide, each new data point runs a
range query search to build its own lt_cnt and update
those of its neighbors. In particular, when a new data
point pi finds a neighbor pj, pi first calculates the life-span
of their neighborship Neighborðpi,pjÞ:lifespan based on
Observation 5.2. Then we increase the corresponding
entries on pi and p0js lt_cnt s by 1, namely pi:lt_cnt½0� to
pi:lt_cnt½Neighborðpi,pjÞ:lifespan� and pj:lt_cnt½0� to pj:lt_cnt:

½Neighborðpi,pjÞ:lifespan�.
This update process pre-handles the impact of a data

point’s expiration on its neighbors’ neighbor counts, because
it is not counted as a neighbor in the windows in which it
will not participate. This finishes the establishment of the
abstracted neighborship.

Lemma 6.2. No neighborship lt_cnt maintenance effort is

needed when purging the expired data points.

Proof. For any data point pi, we pre-handle the impact of
the expiration of p0is neighbors on pi:lt_cnt by not counting
them in the windows in which they will not participate.
Thus, no maintenance effort is needed for pi:lt_cnt when
p0is neighbors expire. &

We now can update the neighbor counts for all the data
points in the current window by just running one range
query for each new data point. This single pass lookup
provides sufficient information for detecting distance-based
outliers. For each data point pi, we simply need to compare
pi:ln_cnt½0� with yfra

� N to decide whether it is an outlier or
not. Similarly, the core objects for the density-based clusters
can be found by comparing pi:lncnt½0� with ycnt .

However, lt_cnt does not provide sufficient knowledge to
generate the density-based clusters. This is because,
although we could know all the core objects in the window,
we do not know who their edge points are and which of
them are within the same cluster. Abstract-C acquires such
information by running an extra range query for each core

object in the window in a Depth First Search manner at
output stage. This is similar to the density-based clustering
algorithm for static The pseudo code of Abstract-C is shown
in Figs. 5 and 6.
Discussion: Abstract-C achieves linear1 (in the number of
data points in the window) memory consumption. This
makes it a very efficient algorithm to detect distance-based
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outliers in terms of both memory and CPU. It takes Nnew (the
minimum number) range query searches at each window.
However, since Abstract-C takes Ncore extra range query
searches (totally NnewþNcore) for detecting density-based
clusters at each window, its performance largely depends on
Ncore the number of core objects in the window, which can
vary from 0 all the way to N. This instability in CPU
performance for the cluster pattern query class is the main
shortcoming of Abstract-C, as our experiments confirm in
Section 11.

7. Abstracted-neighborship-based solution using
membership

Although Abstract-C achieves linear memory consump-
tion, the extra range query searches may make it inefficient
in terms of CPU time when detecting density-based clusters.
Hence, we now design a third solution, Abstract-M, which
aims to reduce the number of range query searches needed
for detecting density-based clusters, while still keeping the
linear memory utilization.

7.1. What abstract-C suffers from : ‘‘amnesia’’

We note that the extra range query searches needed in
Abstract-C are caused by its ‘‘amnesia’’. At every window,
Abstract-C requires each new data point to run a range
query to determine the core points in the window. Then, in
addition, it requires each core point to run an extra range
query search to produce the exact clusters. Unfortunately,
the abstracted neighborship maintenance in Abstract-C,
namely the lt_cnt, does not have the capability to preserve
the cluster structures identified in the previous window.
Repeatedly running range query searches to re-identify
the existing cluster structures is a huge waste in terms of
CPU time. So, to relieve the ‘‘amnesia’’ of Abstract-C, we
propose to enhance the abstracted neighborship mainte-
nance mechanism to capture and preserve the existing
cluster structure.

7.2. Enhanced abstracted Neighborship : cluster

membership – abstract-M

Abstract-M summarizes the neighborship among data
points using a higher level abstraction, namely by means
of the cluster membership. Specifically, Abstract-M marks
the data points found to be in the same clusters with the
same cluster IDs, and thereafter preserves such a markings
for later windows. As an abstracted neighborship mainte-
nance mechanism, such marking strategy avoids the ‘‘pair-
wise’’ style neighborship storage structure applied in Exact-N
that may require quadratic memory.

Although marking cluster memberships for data points at
the initial window is straightforward, the maintenance of
these memberships must now be carefully examined. Here
we first identify all the possible changes on density-based
cluster structures that may require updates on the cluster
memberships of data points. With the aim to make the
cluster memberships incrementally maintainable at any
single update to the window, we examine change types
based on both types of single updates, namely a removal
(expiration) of an existing data point or an addition (parti-
cipation) of a new data point. We call them negative changes

and positive changes respectively. Further update may cause
no change on the existing cluster structures.

Negative changes:
split: The members of an existing cluster now belong

to at least two different clusters.
death: An existing cluster loses all its cluster members.
shrink: An existing cluster loses cluster member(s), but

no split nor death happens.
Positive changes:
merge: The cluster members of at least two different

existing clusters now belong to a single cluster.
expand: An existing cluster gains at least one new

member, but no merge happens.
birth: A new cluster rises, but no merge happens.
These six change types cover all the possible changes that

could be caused by any single update to the window. The
negative and positive changes are mutually exclusive to each
other, meaning the removal may cause negative changes

only, while insertion may cause positive changes only.
7.3. Challenges for maintaining cluster memberships

After a careful examination of the costs of handling each
change type, we found that the most expensive operation
for incremental cluster membership maintenance lies in the
handling of negative changes. We conclude our analysis by
identifying the following challenge.

Observation 7.1. We have a dilemma on solving the problem

of determining and handling the negative changes on the

density-based cluster structures. That is to determine the specific

cluster members affected by the removal of a data point

consumes either a large of amount of memory or CPU resources.

In particular, it needs exact neighborships between the removed

data points and their neighbors, which are extremely memory-

consuming, or large numbers of range query searches, which

could be very expensive in terms of CPU consumption.

A key challenge for discounting the effect of expired data
points lies in the detection and handling of the split of a
cluster. In particular, when the expiration of data points
causes a cluster to be split, the remaining data points in this
split cluster need to be relabeled with different cluster
memberships as they then belong to different clusters. In
Fig. 7, the transaction from W0 and W1 shows an example of
a split cluster. The expiration of data point 2 causes the
cluster composed of core points, data points 6, 8 and 12 in
W0 to be split into two clusters, each containing only one
core point. The expiration of only very few data points may
cause a total break of the existing cluster structures into
many small pieces, each may continue to persist as a
smaller cluster or even may completely degrade to noise.
Such split detection is non-trivial as elaborated upon below.

Observation 7.2. Given connection information (links)
among data points, the problem of detecting a split of a

density-based cluster can be mapped to the graph-theoretic

problem of identifying ‘‘cut-points’’ in a connected graph

[26]. The complexity of this problem is known to be Oðn2Þ,



Fig. 7. ‘‘Predicted Views’’ of four successive windows at W0. The number

on each data points indicates its time stamp. The black data points are

core points. The dashed circle around each core point denote its

neighborhood, namely any data point in the dashed circle of a core point

is its neighbor. The grey ones are edge points (dashed line) and the white

ones are noise points. The edge between any two data points denotes the

neighborship between them.

Fig. 8. Updated ‘‘Predicted Views’’ of four successive windows at W1.

The data points with time stamps 1–4 have expired and thus do not

appear in W1 and its subsequential windows. The data points 17–20 are

new data points from the input stream falling into W1.
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with n the number of vertices in the connected graph and in

our case the number of core points in a cluster.

Moreover, our problem is harder than the problem of
identifying the ‘‘cut-points’’, because we do not even have
the explicit connection information, namely the exact
neighborships among the existing data points in hand.
Without such connection information, we have to again
re-run expensive range query searches for every core point

in the window whenever the window slides. Obviously,
this will make Abstract-M no better than Abstract-C and
thus defeats the purpose of the Abstract-M design.

7.4. View prediction technique for cluster membership

maintenance

We now demonstrate how the ‘‘predictability’’ property
(Definition 5) can once again be exploited to address the
dilemma described in Observation 7.1. Specifically, by
Observation 5.1, given the data points in the current
window Wi, we always know the different subsets of them
that will participate in each future window, Wiþ1, Wiþ2

and so on. This will enable us to predetermine the cluster
structures that will surely appear in each future window
based on the data points in the current window. We call
such prediction about the characteristics of future windows
‘‘predicted views’’. Fig. 7 gives an example of the data points
falling into the current window W0. Given these data points
in W0 and the window size Q :win¼ 4 (time units), the
‘‘predicted views’’ of the subsequent windows of W0 (until
all the data points belonging to W0 expire), namely W1, W2

and W3, are also shown in this figure respectively. Here, the
number on each data point indicates its time stamp.

In particular, at time of W0 (as shown in Fig. 7), there are
16 data points in W0, namely the data points with time
stamps from 1 to 16. At this moment, as we know the
window will slide 4 time units in each of the next windows,
we know that, among these 16 data points, the data points
with time stamps 5–16 will surely be in the next window
W1 (those with time stamps 1–4 will be expired at the time
of W1). For the same reason, the data points with time
stamp 9–16 and those with time stamps 13–16 will be in
W2 and W3 respectively.

With such ‘‘predicted views’’, we can maintain the
cluster structures in each future window independently.
We call this technique ‘‘view prediction’’. This ‘‘view pre-
diction’’ technique is a general principle that can be equally
applied to many other pattern types, such as graphs, in
streaming window semantics.

For density-based clustering, in particular, we ‘‘pre-
mark’’ each of the data points with the ‘‘predicted cluster
membership’’ for each future window in its life span, if it
belongs to any cluster in the corresponding windows.
Then, at each window slide, we can simply update the
‘‘predicted views’’ by adding the new data points to each
of them and then handling the potential positive changes

caused by these additions. More specifically, for each
window Wi, we update the ‘‘predicted cluster member-
ships’’ of each data point if it is involved in any positive

change in this window caused by the participation of the
new data points.

Using the example shown in Fig. 7, at the time of W1

(as shown in Fig. 8), data points with time stamps 1–4
have already expired and thus been purged, while the
new data points with time stamps 17–20 now will join
W1. To handle the impact of the expired data points, we
simply need to discard the view of W0. No computational
effort is needed to handle such impact in W1, W2 and W3,
as these expired data points are never used to construct
these predicted views at the first place. By doing so, all the
expirations are predicted and preprocessed. Based on this
foundation provided by the view prediction technique, we
develop the following lemma.

Lemma 7.1. By using the ‘‘view prediction’’ technique to

incrementally maintain the cluster memberships for density-

based clusters, we eliminate the need to discount the effect of

expired data points to extracted clusters. Thus we simplify

the problem of incremental density-based cluster detection

to the much simpler problem of handling the addition of new

data points only on such clusters.

Proof. We pre-handle the expiration of data points by not
using them for cluster formation in the windows that they
will not participate in. Therefore, no maintenance of the
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cluster structures is needed for these windows when
those ‘‘not-used’’ objects are purged. &

To handle the impact of the new data points with time
stamps 17–20, we first create a new window W4, which is
the last window that these new data points can participate in
before they expire. Then, we insert these data points into the
predicted views of the W1, W2 and W3. Fig. 8 demonstrates
the updated views of W1, W2, W3 and W4, which are
computed when the new data points join W1. Fortunately,
handling the insertion of new data points is much easier than
removal. We will discuss the specific maintenance process
for each type of positive change after the introduction of our
proposed data structure in the later part of this work.

7.5. Abstract-M algorithm

Based on the abstract neighborship, we design the
Abstract-M algorithm. This algorithm uses both the ‘‘view
prediction’’ techniques and abstract neighborship (cluster
membership) maintenance. By maintaining the cluster
memberships of data points in predicted views, Abstract-
M avoids the expensive cost for handling negative changes

on density-based clusters. Also, since the cluster member-
ships maintained by Abstract-M indeed capture and pre-
serve the cluster structures, Abstract-M no longer needs one
extra query search for each core point at the output stage as
Abstract-C does to re-build the clusters. As a stepping-stone
algorithm, the details of Abstract-M are covered in our
previous conference version [1] but omitted here.

While a significant step forward, Abstract-M does not
completely ‘‘cure’’ the ‘‘amnesia’’ suffered by Abstract-C, as it
still requires a certain number of extra range query searches,
namely Nprmtcore (number of existing data points that are
‘‘promoted’’ as new cores) extra range query searches at each
window. This is because, as we analyzed earlier, the newly
arrived data points may promote the existing non-core points

to become core points. In such cases, the promoted core

points need to communicate with their neighbors about their
new ‘‘roles’’ and thus update the cluster memberships, such
as two clusters merged. However, as Abstract-M only main-
tains cluster membership for each data point, the promoted
core points have no direct access to their neighbors and thus
each of them needs a range query search to broadcast its
new role to its neighbors.

Considering the expensiveness of range query searches
and the fact that NnewþNprmtcore could be as large as N

even when Nnew is very small, Abstract-M does not make
the ideal solution that keeps the number of range query
searches minimal (Nnew) and the memory consumption
linear. The reason for this is that the enhanced abstracted
neighborship maintenance mechanism, namely the cluster
memberships, still cannot completely represent the neigh-

borships among the data points. The data points marked
with cluster memberships still have no knowledge about
who their neighbors are.

8. Exactþabstracted neighborship based solution (Extra-N)

By carefully analyzing the strengths and weaknesses
of prior algorithms, we finally propose an ideal solution
achieving the merits in terms of both memory and CPU
utilization based on a more capable neighborship main-
tenance mechanism.

Challenges: To achieve the minimum number of range
query searches (Nnew) at each window, we need to
completely avoid re-searching for any neighborships that
have been identified before. This indicates that we have to
give data points direct access to their neighbors whenever
communication between them is needed. However, this
leads to a dilemma in the design of the neighborship

maintenance mechanism as explained below.

Observation 8.1. On one hand, to give data points direct

access to their neighbors, we have to preserve all the exact

neighborships identified in earlier windows. On the other

hand, to keep the memory consumption linear, we cannot

afford to store the exact neighborships in the window.

Accommodating these two conflicting goals within a
single neighborship maintenance mechanism is the key
challenge that we need to address for our algorithm design.

Solution: We now propose a strategy that successfully
tackles this problem by achieving optimality in both mem-
ory and CPU consumption. We call this the Ex actþabstra
cted Neighborship based solution (Extra-N). Extra-N com-
bines the neighborship maintenance mechanisms proposed
in Exact-N, Abstract-C and Abstract-M into one integrated
solution. This solution overcomes the shortcomings of the
prior solutions while keeping their respective benefits.

We observe that different types of neighborship abstrac-
tions are most useful during different stages of a data point’s
life-span. In particular, we need to maintain the exact
neighborships for a data point in its ‘‘non-core point career’’,
while abstracted neighborships will be sufficient for its ‘‘core
point career’’. More precisely, Extra-N marks each data point
pi by a cluster membership in each window in which it is
predicted to be a core point, while it keeps the exact
neighborships (links) to all pi’s predicted neighbors for the
windows where pi is predicted to be a noise or an edge point.
Such hybrid neighborship maintenance mechanism carries
sufficient information to produce the density-based clusters.
Namely, all core points in a window Wi are marked with a
cluster membership, and all the edge points can quickly figure
out their cluster memberships by checking those of the core

points in their neighbor list. We will next demonstrate that
Extra-N employs only the minimum number of range query
searches while keeping the memory consumption linear.

Data structure: As mentioned earlier, Extra-N combines
the neighborship maintenance mechanisms used by all
previous three algorithms discussed in this work. In parti-
cular, Exact-N inherits the two ‘‘life time marks’’ from
Abstract-M, namely lt_cnt (life time neighbor counts) and
lt_type (life time types). In addition, Extra-N introduces a
new ‘‘life time mark’’ called ‘‘life time hybrid neighborship’’
(lt_hn), which stores the ‘‘predicted cluster memberships’’
and the ‘‘predicted neighbors’’ of a data point across
different windows in a compact structure. We call the
overall data structure composed of lt_cnt, lt_type and lt_hn

the Hybrid neighborship Mark (H-Mark) for a data point.
Fig. 9 depicts the H-Marks of the data points in Fig. 7.

As shown in Fig. 9, we use the columns named C, T and H



Fig. 9. The H-Marks of the data points at W0.
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to present the lt_cnt, lt_type and lt_hn of each data point
respectively. Since lt_cnt has been carefully discussed in
Section 6 and lt_type is easy to understand, here we
explain lt_hn. For example, at W0, the core point12 is
predicted to be core point also in W1. Thus it is marked by
cluster memberships in both windows (p12:lt_hn½0� ¼
‘‘c1’’, p12:lt_hn½1� ¼ ‘‘c2’’). Then, as it is predicted to be a
non-core point, more precisely, a noise point in W2, we
start to keep the predicted neighbors of p12 from this
window onwards (p12:lt_hn½2� ¼ fp13,p14g). Since the num-
ber of ‘‘predicted neighbors’’ of a data point follows a
monotonically decreasing function (discussed earlier in
Section 6), the ‘‘non core object career’’ windows of a data
point are continuous and right after its ‘‘core object
career’’ windows. Here we note that although we main-
tain the neighbor lists of each data point pi for all its ‘‘non-
core point career’’ windows, the link to each of these
neighbors is only physically stored once in lt_hn, no
matter how many times it appears in p0is neighborhood
in different windows. This means that the number of
predicted neighbors each data point pi keeps track of is
equal to the maximum number of predicted neighbors it
has among all its ‘‘non-core point career’’ windows. Given
the monotonicity property, this is equal to the number of
predicted neighbors it has in its first ‘‘non-core point
career’’ windows. For example, data point 13 in Fig. 9 has
in total 3 predicted neighbors, namely data points 2, 6,
and 12, in its first ‘‘non-core point career’’ window W0. At
the same moment, its predicted neighbors in later win-
dows are subsets of these three. For ease of expiration, a
predicted neighbor pjof the data point pi is stored in the
specific row of pi’s H-Mark corresponding to the last
window in which their neighborship will hold. The pseudo
code of Extra-N is shown in Fig. 8.

Lemma 8.1. Extra-N has a memory consumption linear in

the number of data points in the window.

Proof. Since the maximum number of predicted neighbors
of each ‘‘non core point’’ pi is less than the constant ycnt

(otherwise pi would have been classified as core point), and
we already know that pi:lt_cnt, lt_type and lt_hn all have a
constant length rCils (defined in Section 6), H-Mark of any
data point is of a constant size. This proves Lemma 8.1. &

Algorithm: Similar to Abstract-M, at each window slide,
Extra-N runs a range query search for each new data point
to update the ‘‘predicted views’’ of future windows.
However, the hybrid neighborship maintenance mechan-
ism brings the key advantage to Extra-N of eliminating
any extra range query searches from the update pro-
cesses. That is when promotions happen to the non core

points, they now have direct access to their neighbors.
Thus the promoted cores no longer need to run any range
query search to re-collect their neighbors.

Lemma 8.2. Extra-N achieves the minimum number of

range query searches needed for detecting density-based

clusters at each window.

Proof. First, since Extra-N inherits the neighborship main-
tenance mechanism from Abstract-M, it needs at most
NnewþNprmtcore range query searches at each window as
Abstract-M does. Second, we know that the Nprmtcore range
query searches are caused by the handling of promotions.
Lastly, no range query search is needed when the promo-

tions happen in Extra-N. Thus, Extra-N only needs Nnew

queries at each window. This proves Lemma 8.2. &

Conclusion: Finally, we conclude the optimalities in
terms of both CPU and memory utilization achieved by
Extra-N algorithm in the following theorem.

Theorem 8.2. For detecting density-based clusters, Extra-N

requires the minimum number of range query searches

needed by this problem at each window (by Lemma8.2),
while keeping the memory consumption linear in the number

of data points in the window (by Lemma8.1).

These properties make Extra-N a very efficient solution
for detecting density-based clusters over sliding windows
in terms of both CPU and memory resource utilization.

9. Discussion on output models

Although in this work we focus on generating complete
pattern detection results for each window, our proposed
algorithms can be easily extended to handle other output
formats. Different output models may be required by differ-
ent applications depending on the environmental con-
straints, such as potentially expensive transmission costs.
Generally, we can report pattern detection results in three
different models, namely complete output, incremental out-
put, and evolution summary. The techniques to generate the
complete output for both neighbor-based pattern types have
been carefully discussed in the previous parts of this work.
They now represent the basis for the other two output
models. The other two output models are needed when the
users are not only interested in the patterns existing in each
window, but also interested in how the patterns detected in
different windows are correlated.

Evolution summary: Instead of outputing exact pattern
members, the evolution summary aims to provide summary
information of how the patterns have changed from the last
window to the current one. It is suitable for the applications
where users are monitoring the data streams, while their
reactions are needed only if significant changes happened to
the patterns. It is also the most transmission-efficient out-
put format, as it only outputs summary information when
actual changes in the patterns arise.
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To output the evolution summary, we need to define
the evolution semantics that are able to capture all
possible changes on the patterns types. Such semantics
can be defined by comparing the patterns detected from
the current and the previous window by our proposed
algorithms. For distance-based outlier detection, since
each pattern, namely each outlier, corresponds to a single
data point, the change semantics are straightforward. We
can simply use birth of new outliers and death of existing
outliers to express all the possible changes that may
happen between two windows. However, the evolution
semantics for density-based clusters are more interesting
and complex. Namely, we have to deal with the ‘‘many-
to-many’’ relations among the extracted patterns, such as
merge and split. More details of pattern evolution detec-
tion can be found in our work [1].

Incremental output: The incremental output format
aims to provide exact pattern members to the users,
while it outputs the incremental differences between
the patterns existing in the current and the previous
window. It is suitable for situations when the users need
the precise patterns, while the transmission costs are
considerable and thus should be minimized.

For incremental output, we assume that both the users
(client side) and pattern detection system (server side) keep
the complete patterns detected from the last window,
namely all the outliers and all the cluster members with
corresponding cluster ids respectively depending on their
targeted patterns. When our system (server side) finishes the
pattern detection for the new window, instead of re-
outputing and transmitting the complete result, we deter-
mine and output the increments between the patterns
detected in the two adjacent windows. Such increments will
update the patterns stored at the client side and eventually
form the patterns in the current window. The incremental
output format is closely related to the evolution semantics,
Table 1
Symbols used in the cost models.

Average number of expired data points Nexp

Average number of new data points Nnew

Average number of ‘‘core points’’ Ncore

Average number of ‘‘promoted core points’’ Nprmtcore

Number of neighbors for a specific data point pi Npi

Average number of data points N

Average initial life-span for each data point Cils

Table 2
CPU cost of individual operations in our cost model.

CPU cost of purging a data point

CPU cost of loading a data point into index

CPU cost of removing/establishing an exact neighborship (sing

CPU cost of updating a integer attribute

CPU cost of running a range query search

CPU cost of examining a data point during the output

CPU cost of updating the lt_cnt of a data point

CPU cost of updating the M-Table of a data point

CPU cost of updating the H-Marks of a data point
especially for the density-based clusters. This is because we
may need to re-label the cluster members in the previous
windows with different cluster memberships when the
cluster structure changes. Such re-labeling mechanism has
to be decided by the evolution semantics. We leave the
design of the re-labeling and incremental output mechanism
as our future work.

10. Cost models and cost analysis

To better analyze and compare the algorithms we dis-
cussed in this work, we now design cost models for
modeling both the CPU and memory consumption in these
continuous neighbor-based pattern detection processes. We
establish a CPU cost model capturing the response time of
each algorithm to answer the query in each individual
window. Such response time includes all the time con-
sumed by the four stages of the neighbor-based pattern
detection process (discussed in Section 3), namely the
purging, loading, neighborship maintenance, and output.
The memory cost model is designed to describe the memory
space utilized by each algorithm. Such memory utilization
includes the memory space for storing both the raw data
and also the meta-information in each window.

We first define the symbols used in our cost models in
Table 1. These symbols are used to indicate the informa-
tion for a single window.

10.1. Cost of each algorithm

CPU costs: Now we define the CPU costs of primitive
operations in the neighbor-based pattern detection pro-
cesses in Table 2.

We use the average costs in the estimation of clt_cnt , cmt

and chm. This is because such cost for a specific data point
is decided by its life-span, which indicates the number of
‘‘predicted views’’ that need to be updated. We assume
the life-spans of the data points in each window are
uniformly distributed from 1 to Cils, thus we use Cils=2 to
present the average. This assumption holds for all count-
based window cases and also for time-based window
cases if the input rate is stable. The same estimation is
used for memory costs of lt_cnt, mt and hm later.

Given the costs of individual operations, we now
design models for the CPU cost of each algorithm. Again,
cp

cl

le-directional) cn

ci

crqs

co

clt_cnt ¼
Cils

2
ci

cmt ¼
3Cils

2
ci

chm ¼ Cilsncintþ
ycnt

2
ci



D. Yang et al / Information Systems 38 (2013) 331–350342
the CPU cost is the sum of the cost for the four stages of
purging, loading, neighborship maintenance and output.
We use the symbols, Cpurge, Cload, Cnei_main and Coutput to
indicate the cost of each algorithm for these stages
respectively. Also, we use superscripts to denote the cost
of a specific algorithm and the objective pattern type
along with these symbols. For example, CExact�NðcÞ

purge indi-
cates the cost of purging for Exact-N to detect density-
based clusters (c), while CAbs�CðoÞ

nei_main indicates the cost of
neighborship maintenance for Abstract-C to detect
distance-based outliers (o). For a given algorithm, if the
cost of a certain stage is the same for both of the pattern
types (density-based clusters and distance-based out-
liers), we omit the pattern type part of the superscript
and only use the stage name as well as the algorithm
name to generalize the cost for this stage. For example,
CExact-N

purge indicates the cost of purging for Exact-N to detect
either of the two pattern types. Note, algorithms Exact-N,
Abstract-C and the naive approach handle both cluster
and outlier detection, while Abstract-M and Extra-N
support clustering only. The specific costs of each alter-
native algorithm at each query processing stage are listed
in Table 3.

Naive approach: (1) Purge cost: remove all expired data
points from the window. (2) Load cost: load all new data
points into the index. (3) Neighborship maintenance cost:
for all data points in the window, run a range query
search to form the patterns. (4) Output for clusters: check
each data point in the window.

Exact-N algorithm: (1) Purge cost: remove all expired
data points. Then for each data point remaining from the
window, remove the expired neighbors from its neighbor
Table 3
CPU costs of alternative algorithms at four stages by our cost model.

CNaive
purge NexpnðcpÞ

CNaive
load Nnewncl

CNaive
nei_main

P
1r irNnew

ðcrqsÞ

CNaive
output Nnco

CExact-N
purge

P
1r irNexp

ð
P

1r jrNpi
cnþcpÞ

CExact-N
load

Nnewncl

CExact-N
nei_main

P
1r irNnew

ðcrqsþ
P

1r jrNpi
2ncnÞ

CExact-NðcÞ
output

Nncoþ
P

1r irNcore
ð
P

1r jrNpi
coÞ

CExact-NðoÞ
output

Nnco

CAbs-C
purge

NexpnðcpÞ

CAbs-C
load

Nnewncl

CAbs-C
nei_main
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list. (2) Load cost: load all new data points into the index.
(3) Neighborship maintenance cost: for each new data
point pi, run a range query search. Then for each of its
neighbor pj found, add pi and pj to each others’ neighbor
list. (4.1) Output for clusters: check each data point in the
window and run depth first search on all core points. (4.2)
Output for outliers: check each data point in the window.

Abstract-C algorithm: (1) Purge cost: remove all expired
data points from the window. (2) Load cost: load all new
data points into the index. (3) Neighborship maintenance
cost: for each new data point pi, run a range query search.
Then for each of pi’s neighbor pj found, update pi and pj’s
lt_cnt. (4.1) Output for clusters: check each data point in
the window and run one range query search for each core

point to form clusters. (4.2) Output for outliers: check
each data point in the window.

Abstract-M algorithm: (1) Purge cost: remove all
expired data points from the window. (2) Load cost: load
all new data points into the index. (3) Neighborship

maintenance cost: for each new data point pi, run a range
query search. Then for each of pi’s neighbor pj found,
update pi and pj’s lt_mt. Also, for each promoted core

point, run a range query search and update its lt_mt. (4)
Output for clusters: check each data point in the window.

Extra-N Algorithm: (1) Purge cost: remove all expired
data points from the window. (2) Load Cost: load all new
data points into the index. (3) Neighborship maintenance
cost: for each new data point pi, run a range query search.
Then for each of p0is neighbor pj found, update pi and p0js H-
Marks. (4) Output for clusters: check each data point in
the window.

Memory costs: Similarly, we define the memory cost of
individual data structures in Table 4 before we discuss the
memory cost of each algorithm.

Again, we use Cils=2 to represent the average length of
each data point’s life-span, namely the number of ‘‘predicted
views’’ that the data point needs to be maintained in. Since
lt_cnt for each point is simply composed by Cils=2 neighbor
counts (integers), thus it memory cost is ðCils=2Þmi. For mt, as
each data point needs to maintain three integers, namely a
neighbor counter (integer), a type indicator (integer) and a
cluster membership (integer), for one ‘‘predicted view’’ its
memory cost is ð3Cils=2Þmi. For hm of each data point, it
needs to maintain two integers, namely a neighbor counter
(integer) and type indicator (integer) for one ‘‘predicted
view’’. Also, it needs to maintain a certain numbers of cluster
memberships (between 0 and Cils=2) and exact neighbors
(between 0 and ycnt). We use half of the maximum numbers
Table 4
Memory costs of individual data structures in our cost model.

Memory cost of a data point mp

Memory cost of an exact neighborship

(single-directional)

mn

Memory cost of an integer attribute mi

Memory cost of the lt_cnt of a data point

(used by Abstract-C)
mlt_cnt ¼

Cils

2
mi

Memory cost of the M-Table (mt) of a data

point (used by Abstract-M)
mmt ¼

3Cils

2
mi

Memory cost of the H-Marks (hm) of a data

point (used by Extra-N) mhm ¼
5Cils

4
miþ

ycnt

2
mn
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for both of their estimations, which would be the case when
the time stamps of the input data are uniformly distributed
or queries are using count-based windows. Thus its memory
cost is ð5Cils=4Þmiþðy

cnt=2Þmn.
The memory costs of each algorithm are listed in Table 5.

Here we note that since the three algorithms, namely the
Exact-N, the Abstract-C, and the naive solution have the
same memory costs when detecting density-based clusters
and distance- based outliers, we do not distinguish them in
our cost model. We put a (c) after each algorithm designed
to detect density-based clusters only. Basically, the memory
cost of each algorithm are composed of the utilization for
storing the raw data Nnmp and the utilization for storing the
corresponding meta-data about each data point.

10.2. Cost analysis

Analysis for density-based clusters algorithms: We first
analyze the costs of the algorithms for detecting density-
based clusters in Table 6. There are several observations that
can be made through our analysis shown in Table 6. (1)
There are two major factors affecting the performance of all
algorithms, namely N ðpiÞ

the average number of neighbors
each data point has and Nnew the average number of new
data points in each window (except that the performance of
the naive solution depends on N instead of Nnew). N ðpiÞ

has a
great influence on the cost for neighborship maintenance, as
it determines the number of neighborships exist in each
window. The increase of N ðpiÞ

will cause increases in the
costs for all algorithms, as the range query searches become
more expensive and each data point needs to communicate
with more neighbors to update the meta-data. Nnew is the
proven lower bound for the minimum number of range
query searches needed at each window for neighbor-based
pattern detection (see Section 4). Obviously, the larger Nnew

is, the more range query searches are needed for all
algorithms. The only exception is the naive solution that
needs N range query searches in all cases.

(2) Only Exact-N and Extra-N guarantee Nnew the
minimal number of range query searches at each window
and thus avoid from the most expensive operations to the
Table 5
Memory costs of each algorithm in our cost model.

Memory cost of the Naive Solution NnðmpþmintÞ

Memory cost of Exact-N
P

1r irNðmpþ
P

1r jrNpi
mnÞ

Memory cost of Abstract-C Nnðmpþmlt_cntÞ

Memory cost of Abstract-M(c) NnðmpþmmtÞ

Memory cost of Extra-N(c) NnðmpþmhmÞ

Table 6
Cost analysis of each algorithm. (k means when the specific factor is small. +

minor.)

Exact-N Abstract-C Ab

Num of rqs Nnew NnewþNcore Nn

Worst case memory overhead N2
nmn Nn

Cils

2
nmint Nn

Performance factors N ðpi Þ
Nnew N ðpi Þ

Nnew Ncore (Cils) N ð

More efficient if Nðpi Þ
+ Nnewk Nðpi Þ

kNnewkNcorekðCilskÞ Nð
best level. All the other alternative algorithms may need
extra range query searches depending on the character-
istics of the input data.

(3) The performance of Exact-N is very sensitive to
N ðpiÞ

, namely its memory overhead becomes quadratic in
N when N ðpiÞ

approaches N. This makes it work well only
when NðpiÞ

+, meaning N ðpiÞ
is very small. All three

predictability-based solutions, Abstract-C, Abstract-M,
and Extra-N, have linear memory overhead in all cases.

(4) The performance of Abstract-M is largely decided
by Nprmtcore, which may significantly increase the number
of range query searches that Abstract-M needs to run at
each window. As Nprmtcore can potentially be as large as
the size of all data points inherited from the previous
window N�Nnew, it makes Abstract-M suffer from the risk
of having an even worst performance than the Naive
solution. The same problem may happen to Abstract-C
as well, when Ncore approaches N.

(5) The cost of the predictability-based solutions drops
even lower as the constant Cils decreases, because it decides
upon the number of ‘‘predicted views’’ to be stored and
updated. Besides Cils, the performance of Extra-N is also
affected by another constant ycnt , which works as the upper
bound for the number of exact neighborships each data point
stores. Although we list these two factors for the complete-
ness of our analysis, they are not the key factors deciding
the algorithms’ performance. This is because they are
unrelated to the number of range query searches needed
and are usually very small constants compared with N.

Analysis for distance-Based outlier algorithms: For detect-
ing distance-based outliers in sliding windows, Abstract-C
achieves both the minimal number of range query searches
and linear memory requirement, while Exact-N suffers from
a potentially quadratic memory overhead. The naive solu-
tion does not take advantage of incremental computation.

Conclusion: Based on our cost analysis, we conclude
that Extra-N and Abstract-C are the best solutions for
detecting density-based clusters and distance-based out-
liers over sliding windows respectively. To validate our
claims derived from this analytical evaluation, a thorough
experimental study is presented in Section 11.
11. Experimental study

A thorough experimental study evaluating the continuous
neighbor-based pattern detection algorithms is presented in
this section. In our experiments, for each algorithm we first
utilize synthetic data to observe its scope of applicability for
a wide range of parameter settings. Our experiments cover
means very small. m means large. We use () on a factor if its impact is

stract-M Extra-N Naive

ewþNprmtcore Nnew N

3Cils

2
nmint

NnðCilsnmintþy
cnt

nmnÞ Nnmi

pi Þ
Nnew Nprmtcore (Cils) N ðpi Þ

Nnew (Cils y
cnt) N ðpi Þ

N

pi Þ
kNnewkNprmtcorekðCilskÞ Nðpi Þ

kNnewkðCilskÞðy
cnt

kÞ Nðpi Þ
kNkðNnewmÞ
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all major combinations of the important cost factors as
identified in our cost analysis (Section 9). Then, for a closer
comparison, we zoom into the parameter space and focus on
the cases in which their performance showed noticeable
differences. Last but not least, to confirm the superiority of
our proposed methods in real applications, we also evaluate
them along with other alternative methods using real
streaming datasets.

11.1. Experiment setup and data sets

All experiments are conducted on a HP Pavilion
dv4000 laptop with Intel Centrino 1.6 GHz processor
and 1GB memory, which runs Windows XP professional
operating system. The algorithms are implemented with
VCþþ 6.0.

Real datasets: We use two real streaming datasets in
our experiments. The first dataset GMTI (Ground Moving
Target Indicator) [16] records the real-time information of
the moving ground vehicles and helicopters that would be
gathered by both ground stations and dedicated aircraft.
In particular, the GMTI dataset we use, which is provided
by MITRE Corporation, has around 100,000 records
regarding the information of vehicles and helicopters
(speed ranging from 0 to 200 miles per hour) moving in
a certain area. These records are gathered by 24 different
data ground stations or aircraft in 6 h. GMTI has 14
dimensions, including the latitude and longitude of each
target’s position. In our experiment, we detect clusters
and outliers based on the targets’ position information.

The second real dataset we use is the Stock Trading
Traces data (STT) from [23]. This dataset has about one
million transaction records throughout the trading hours
of a day. Each transaction contains the name of the stock,
time of sale, matched price, matched volume, and trading
type. We use all the five attributes in our experiments
while detecting the clusters based on the matched price,
volume and trading type.

Synthetic datasets: For a thorough evaluation of density-
based clustering algorithms, we built a synthetic data
generator to create a variety of controlled datasets contain-
ing clusters with different characteristics, along with noise.
For each synthetic dataset with NumOfDim dimensions, the
data generator first creates NumOfClu non-overlapping clus-
ters sized CluSize, each following a Gaussian Distribution but
with different randomly selected mean and variance para-
meter values. Then, it scatters NumOfClu�CluSize�Noise-

Rate random noise data points into the data space. These
two steps generate the first portion data of a synthetic
dataset. Then the data generator repeats these two steps up
to 1 K times to reach the size of the data we desire. During
the repetitions, all input parameters (denoted in italics)
remain the same except mean and variance of each cluster,
which are randomly varied.

For the evaluations of distance-based outlier detection
algorithms, we use the Gauss dataset, which is a synthe-
tically generated time sequence of 35,000 one dimen-
sional observations. It consists of a mixture of three
Gaussian distributions with uniform noise. This is the
dataset used by the only previous work [5] on detecting
distance-based outliers in continuous windows.
11.2. Experimental methodologies

We run all experiments using both synthetic and real
data for 10 K windows. For the experiments that involve
data sets larger than the sizes of the real datasets, we
append multiple rounds of the original data varied by
setting random differences on all attributes, until the data
stream reaches the desired size.

We measure two key metrics for stream processing
algorithms, namely response time and memory footprint.
Those two metrics are also evaluated by our cost models
in Section 10. In particular, we measure the average
response time (referred as CPU time henceforth) it takes
to answer a pattern detection query at each window. This
response time includes the time consumed by all four
stages of pattern detection at each window. The response
time is averaged over all windows in each experiment.
The memory footprint indicates the peak memory space
consumed by an algorithm is record over all the windows.

11.3. Evaluations for density-based cluster detection

methods

Overall evaluation: To compare the performance of all
five algorithms discussed in this work, namely Exact-N,
Abstract-C, Abstract-M, Extra-N and the naive solution,
we conduct a comprehensive experiment with a wide
range of the synthetic data created by our generator.
These experiments cover all important combinations of
the two major cost factors identified in our cost analysis
(Section 10), namely N ðpiÞ

and Nnew.
To avoid the performance fluctuations caused by differ-

ent base sizes, namely different number of data points in the
window, we use count-based windows (equal in concept to
time-based windows with uniform data rates). Thus, Nnew is
equal to the slide size Q :slide, and N ðpiÞ

is controlled by
adjusting two input parameters of the data generator. More
specifically, we can increase N ðpiÞ

by expanding the size of
each cluster CluSize while decreasing the variance of its
Gaussian Distribution (Fig. 10).

To cover all the major combinations of these two factors,
we vary N ðpiÞ

from 1% to 50%, and Q :Slide from 10% to 100%,
both in terms of the percentage to window size Q :win and
both with 7 different settings. In particular, the seven
different N ðpiÞ

settings represent the data from ‘‘very sparse’’
(NðpiÞ

¼ 1%), ‘‘medium dense’’ (NðpiÞ
¼ 20%) and finally to

‘‘very dense’’ (NðpiÞ
¼ 50%). The 7 different Q :Slide settings,

which are 10% to 50% with 10% increments plus 80% and
100%, cover all the increments from ‘‘mostly remaining’’
(Q :Slide¼ 10%), ‘‘half-half’’ (Q :Slide¼ 50%), ‘‘mostly new’’
(Q :Slide¼ 80%) and finally to ‘‘all new’’ (Q :Slide¼ 100%).
We measure the CPU time (shown in Fig. 11) as well as the
memory footprint (shown in Fig. 12) of the five algorithms
for all 7� 7¼ 49 combinations. Other settings of this
experiment include window size Q :win¼ 5 K, yrange

¼ 0:003
and ycnt

¼Q :win� 5%¼ 250.
From Figs. 11 (CPU) and 12 (memory), we observe that

Abstract-M and Extra-N clearly outperform the other three
algorithms, namely the Exact-N, Abstract-C and the naive
solution, in most of the test cases. Besides the naive solution
which does not take advantage of incremental computation,
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Fig. 11. Comparison of CPU perfo
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the other two incremental algorithms Exact-N and Abstract-
C suffer from a huge consumption of either memory space
or CPU time in many cases.

In particular, as shown in Fig. 12, the memory con-
sumption of Exact-N is at least 80% higher than the naive
solution as the latter can be considered as having no
memory overhead. More importantly, this 80% gap only
happens when the data is very sparse (NðpiÞ

¼ 1% of
Q :win). It increases to more than 4000 percent when
N ðpiÞ

reaches 50% of the window size, indicating that the
data stream contains very dense sub-regions. Such results
agree with our earlier analysis, considering the large
number of links each data point has to store. This experi-
ment confirms that Exact-N is not an efficient algorithm
in terms of memory consumption. In addition, the CPU
time it uses in all 49 cases is on average 25 present higher
than that used by Extra-N. This is calculated by summing
the difference percentage in all 49 cases and dividing it
by 49. This fact eliminates it from the set of plausible
candidates even in terms of CPU-efficiency.

Abstract-C, an incremental algorithm which does not
maintain the exact neighborships, has good memory effi-
ciency. However, since the time efficiency of Abstract-C
is highly sensitive to the number of core points Ncore in
the window, the performance of Abstract-C is largely
decided by the interrelationship between two variables,
namely N ðpiÞ

and ycnt . More specifically, when N ðpiÞ
is far

below ycnt and thus there exist very few or no core points

in the window, Abstract-C is an efficient algorithms in
terms of both CPU and memory. As shown in Fig. 11, it is
even faster than Abstract-M and Extra-N for NðpiÞ

¼ 1%
cases in terms of CPU time. However, as N ðpiÞ

increases
and eventually surpasses ycnt , indicating that more and
more data points become core points, the time efficiency of
Abstract-C drops dramatically. In many cases shown in
Fig. 11, it is not only much slower than our proposed
algorithms, Abstract-M and Extra-N, but also slower even
than the naive solution. This experiment illustrates that
Abstract-C is very inconsistent in terms of CPU time and it
performs well only if Ncore is very low. Given the limited
scope of applicability, Abstract-C is not an attractive solu-
tion in general.

Our proposed algorithms, namely Abstract-M and
Extra-N, take advantage of incremental computations
while successfully avoiding the huge overhead on both
rmances of five algorithms.



Fig. 12. Comparison of memory performances of five algorithms.

Fig. 13. Comparison on CPU time of Abstract-M and MPS in Nðpi Þ
¼ 5%

cases.

Fig. 14. Comparison on memory usage of Abstract-M and MPS in Nðpi Þ
¼

5% cases.
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memory and CPU. Compared with the naive solution, both
Abstract-M and Extra-N need more memory space as they
need to maintain a certain amount of meta-information
for future windows. However, such overhead is much
smaller than that of Exact-N and in fact it is always being
kept at very acceptable levels. In particular, for Abstract-
M the memory consumption in all 49 cases is on average
33% higher than that of the naive solution. This is calcu-
lated in the same way as we compared the CPU time of
Exact-N and Extra-N earlier. For Extra-N, this number
becomes 36%, which is slightly higher but still quite
modest. These facts confirm that our proposed algorithms,
Abstract-M and Extra-N, have very good and consistent
memory-efficiency.

The negligible CPU overhead of our proposed algo-
rithms is also confirmed by this experiment. As shown in
Fig. 11, Abstract-M and Extra-N saved CPU time substan-
tially compared to the naive solution in all the cases
where Q :Slider50%� Q :win. Even in the cases when
Q :Slide is very close (80%) or even equal to Q :win (typi-
cally the limit of the incremental algorithms), Abstract-M
and Extra-N exhibit comparable performances with those
of the naive solution. Actually, both Abstract-M and Extra-
N can be taken as variances of the naive solution when the
windows are non-overlapping, because they only detect
the patterns based on the ‘‘view’’ of the current window
and no ‘‘predicted view’’ would be generated nor main-
tained. This indicates that our proposed algorithms have
very small CPU overhead in all cases and thus are viable
candidates for a system’s only implementation, regardless
of the input data and queries.

Abstract-M versus Extra-N: We first discuss the similar
performances of Abstract-M and Extra-N shown in many
of our above test cases, which on first sight does not
appear as one would have expected in our cost analysis.
The main reason for this is that the number of promoted

core points Nprmtcore stayed small in many cases and thus
did not affect the performance of Abstract-M. Actually, we
found that Nprmtcore tends to be small, unless a large
number of data points, which have a ‘‘boundary’’ (close
to ycnt) number of neighbors, exists. However, such situa-
tions are not found to be frequent in our experiments for
both the synthetic and the real data.

Although Abstract-M and Extra-N work equally well
in many of our test cases, they do behave quite differently
when Nprmtcore turns to be an non-ignorable factor. To better
understand their performance in these special cases, we
zoom into the cases with NðpiÞ

¼ 5% in our comprehensive
experiment (Figs. 11 and 12). Figs. 13 and 14 show the
zoomed in subparts of the same experiment results dis-
cussed in the earlier part of this subsection.

In the cases shown in Figs. 13 and 14, Abstract-M tends
to use more CPU time while Extra-N consumes more
memory space. This is as expected because of the exis-
tence of a large number of promoted core points in each
window. In particular, since in the NðpiÞ

¼ 5% cases, the
number of neighbors each data point has is quite close to
the population threshold, ycnt

¼ 5% of the window size,
many core points may be demoted to become edge points

or even noise points after losing some of their neighbors as
the window slides. For the same reason, the non-core

points have a good chance to be promoted to become
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promoted core points after gaining some new neighbors at
the window slide. Corresponding to our analysis in
Sections 7 and 8, each promoted core point charges an
extra range query search from Abstract-M, while it
charges Extra-N for the memory space to store the links
to its neighbors in its ‘‘non core point career’’ before its
promotion. On the one hand, Extra-N guarantees the
minimum number of range query searches and thus time
efficiency in all cases, but it may consume more memory,
especially when N ðpiÞ

and ycnt are both large and close to
each other. In the other hand, Abstract-M never stores the
exact neighborships and thus is more memory-efficient.
However, it usually takes extra range query searches and
thus consumes more CPU time. Such preferences of
Abstract-M and Extra-N for CPU time versus memory
space utilization can be observed in most of the test
cases, although they are most apparent in the cases we
zoomed into. Thus, in general, a system can choose to
implement Abstract-M when the memory space is its key
limit, while implementing Extra-N if CPU time is its major
resource concern.

Scalability analysis: We now look at the scalability in
terms of the base size, meaning that how many data
points the algorithms can cluster at each window. So, in
this experiment, we test count-based windows sized from
10 K to 50 K with a fixed slide size 5 K. Other settings of
this experiment are equal to those from the previous
comprehensive one, except that we fixed N ðpiÞ

at 1 K.
As shown in Figs. 15 and 16 both our algorithms,

Abstract-M and Extra-N exhibit very good scalability in
window sizes in terms of both CPU and memory, while
others failed in either or both of them. In particular, both
Abstract-M and Extra-N only need 5 s to cluster 50 K data
points at each window given 5 K new data points. On the
other words, both algorithms can comfortably handle a
Fig. 15. Comparison of CPU scalability on base (Window) size.

Fig. 16. Comparison of memory scalability on base (Window) size.
data rate of 1 K per second with a 50 K window. Also, the
memory usage of both algorithms increases very mod-
estly with the growth of the window size.

Second, we investigate the effect of dimensionality on
the performance of our algorithms. As shown in Fig. 17,
the CPU time of both our proposed algorithms, especially
Extra-N, increases only modestly with the number of
dimensions. This demonstrates that our algorithms have
an even better than linear scalability in the dimension-
ality. This is because the number of dimensions will only
affect the CPU time needed for the range query searches
but has no impact on the neighborship maintenance costs.
As we have already largely reduced the number of range
query searches needed in these two algorithms, and even
achieved the minimal for Extra-N (see our cost analysis in
Section 10), they both are expected to have excellent
scalability in the number of dimensions. Our experimen-
tal results confirmed this.

Evaluation with real data and queries: We first evaluate
the performance of all five competitors with the GMTI
data, which is a representative for moving object mon-
itoring applications. We varied the slide size Q :Slide from
10% to 100% of the Q :win. Given these query parameters,
we find there are 6–11 clusters in the window at different
time horizons, and N ðpiÞ

in the windows varies from 9% to
11% of the number data points in the windows.

As depicted in Figs. 18 and 19, Extra-N has the best time
efficiency compared with all other methods. The memory
usage of Extra-N is on average 16% higher than the naive
solution in the five cases. This memory overhead is a little
bit higher than that of Abstract-M (11% higher than the
naive solution) but still very acceptable.

For the STT data, by using the query parameters learned
from our pre-analysis of the data, the number of clusters
Fig. 17. Comparison of CPU scalability on dimensionality.

Fig. 18. Comparison on CPU time with GMTI data.



Fig. 19. Comparison on memory usage with GMTI data.

Fig. 20. Comparison on CPU time with STT data.
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Fig. 21. Comparison on memory usage with STT data.
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existing in the windows ranges from 17 to 26, and the
number N ðpiÞ

in the windows varies from 6% to 9% to the
number data points in the windows. Similar behaviors can
be observed using the STT data (Figs. 20 and 21).

Generally, our experiments on real data confirm that
our proposed algorithms Abstract-M and Extra-N outper-
form all other alternative methods and thus are the
preferred solutions for density-based cluster detection in
sliding windows.

11.4. Evaluation of distance-based outlier detection

methods

We compare the performance of our outlier algorithm
Abstract-C with two alternatives, namely the naive solu-
tion and the exact-STORM [5], which is the only previous
work in the literature we are aware of that detects
distance-based outliers in sliding windows. Exact-STORM
is designed to incrementally detect distance-based outliers
over count-based windows. Similar to Abstract-C, exact-
STORM requires one range query search for every new data
point in each window. However, it uses a different neigh-

borship maintenance mechanism. In particular, the exact-
STORM algorithm requires every data point pi in the
window to maintain two data structures. The first one,
called pi:nn_before, is a list containing the identifiers of the
most recent preceding neighbors of pi. pi:nn_before is
similar with the ‘‘neighbor list’’ we use in Exact-N that
gives pi direct access to its neighbors. However, it has two
special characteristics. First, pi:nn_before only stores the
preceding neighbors of pi, whose arrival and expiration are
earlier than those of pi. Second, for ‘‘count- based’’ based
windows, the length of pi:nn_before has an upper bound
k¼N � yrange, which equals the number of neighbors pi

needs to be a ‘‘safe inlier’’. This is because the number of
data points in the count-based window is fixed. So, if a data
point already has k¼N � yrange neighbors, it cannot be an
outlier in the current and future windows until any of
them expire. The second data structure pi:count_after is a
counter of the number of succeeding neighbors of pi. The
succeeding neighbors denote the neighbors of pi whose
arrival and expiration are later than that of pi. At each
window slide, exact-STORM runs one range query search
for every new data point, and updates nn_before and
count_after for each of them and their neighbors. At the
output stage, exact-STORM outputs the outliers based on the
information in each data point’s nn_before and count_after.

In count-based windows, since exact-STORM achieves
both the minimum number of range query searches and
also the linear memory consumption (it stores at most k

neighbors for each data point), it is equivalent to our
proposed algorithm Abstract-C, while using different
neighborship maintenance mechanisms. However, being
designed specifically for the count-based window sce-
nario, exact-STORM would tend to perform badly in the
time-based window scenario. This is because the ‘‘safe
inlier’’ property, which it relies on to limit the length of
nn_before in the count-based scenario, no longer holds for
time-based windows. In particular, for time-based win-
dows, since the number of data points in the window is
not fixed, the number of neighbors a data point needs to
be an ‘‘inlier’’ may change as well. So, no matter how
many neighbors a data point already has, it can never be
viewed as a ‘‘safe inlier’’ in future windows and has to
keep the ‘‘identifiers’’ of all its ‘‘preceding’’ neighbors. So
in the time-based window, exact-STORM would suffer
from the same problem as Exact-N does, namely the huge
number of exact neighborships (links) that must be stored.

In our experiments, we compare the performance of
exact-STORM and Abstract-C in both count- and time-
based window scenarios using the Gauss Dataset. In both
scenarios, we strictly follow the implementation of exact-
STORM presented in [5], except for breaking the upper
bound on the length of nn_before as required in the time-
based window scenario.

As shown in Figs. 22 and 23, for count-based windows,
exact-STORM and Abstract-C perform equivalently well and
clearly outperform the naive solution in terms of CPU time.

However, as shown in Figs. 24 and 25, Abstract-C
clearly outperforms both the naive solution and exact-
STORM in time-based window scenarios. This is because the
naive solution does not take any advantage of incremental



Fig. 22. Comparison on CPU time for count-based window scenario.

Fig. 23. Comparison on memory usage for count-based window scenario.

Fig. 24. Comparison on CPU time for time-based window scenario.

Fig. 25. Comparison on memory usage for time-based window scenario.
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computation and Exact-STORM suffers from the huge
memory overhead caused by storing the neighbors in
time-based windows. In contrast, Abstract-C does not
have either of these two problems and thus shows a
much better performance.
12. Related work

Traditionally, the pattern detection techniques are
designed for static environments, where large amounts of
data are being collected. Well-known clustering algorithms
for static data include [32,22,21,18,6]. Previous works on
detecting outliers include [27,29,11,24,25]. In this literature,
both clusters and outliers can either be global patterns
[32,22,21] that are defined by global characteristics of all
data or local patterns [27,29] that are defined by the
characteristics of a subset of the data. In this work, our
target pattern types are density-based clusters [18,17] and
distance-based outliers [24,25]. Both are popular pattern
types defined by local neighborhood properties.

More recently, pattern detection on streaming data began
to be studied. The earlier clustering algorithms applied to
data streams [20,19] are global clustering algorithms
adapted from the static k-means algorithm. They treat the
data stream clustering problem as a continuous version of
static data clustering. They treat objects with different time
horizons (recentness) equally and thus do not reflect the
temporal features of data streams. Later, [3] presented a
framework for clustering streaming data using a two stage
process. At the first stage, the online component works on
the streaming data to summarize it into micro-clusters. At
the second stage, an offline component clusters the micro-
clusters formed earlier to form final clustering results using a
static k-means algorithm. In this framework, a subtraction
function is used to discount the effect of the earlier data on
the clustering results. Several extensions have been made to
this work, focusing respectively on clustering distributed
data streams [9], multiple data streams [14], and parallel
data streams [10]. None of these works deals with the
arbitrarily shaped local clusters, nor do they support sliding
window semantics. Ref. [8] is the only work we are aware of
that discusses the clustering problem with sliding windows.
However, it again is a global clustering algorithm maintain-
ing approximated cluster centers only.

Ref. [17] presented techniques to incrementally update
density-based clusters in data warehouse environments.
Since all optimizations in this work are designed for a
single update (a single deletion or insertion) to the data
warehouse, this fits well for the relatively stable (data
warehouse) environments but is not scalable for sustain-
able environments. Refs. [13,12] also studied the problem
of detecting density-based clusters over streaming data.
However, Refs. [13,12] do not identify individual mem-
bers in the clusters as required by the application scenar-
ios described earlier in the introduction. Also, to capture
the dynamicity of the evolving data, they both use decaying
factors derived from the ‘‘age’’ information of the objects.
These decaying factors put lighter weights on older objects
during the clustering processes. This approach emphasizes
the recent stream portion more compared to the older data,
still it does not enforce the discounting the impact of expired
data from the pattern detection results. So, they are not
suitable for applications requiring sliding window scenarios
discussed in this work.

The problem of detecting outliers in streams has been
studied in [31,2,30,5,28,15,4]. Among these works, Refs.
[31,2,28,15,4] work with outliers with different definitions
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from ours. Thus, these techniques cannot be applied to
detect distance-based outlier as targeted by our method.
Ref. [30] study the detection of distance- and MEDF-based
outliers in hierarchically structured sensor networks. Also,
the outlier detection is based on approximated data dis-
tributions. So, their work has a different goal from us. Most
similar to our work, Ref. [5] introduced an algorithm to
detect the distance-based outliers within sliding windows.
However, this work only deals with count-based windows,
where the number of objects in the window is a priori
known and fixed. Both our analytical and experimental
studies reveal that this method is not suitable for answering
queries with time-based windows, where each window
may have different numbers of objects.

13. Conclusions

In this work, we study the problem of detecting neighbor-
based patterns for sliding windows over streaming data. The
major difficulty for incremental detection of the neighbor-
based patterns exists in handling the impact of expired
objects. To solve this, we propose the ‘‘view prediction’’
technique, which elegantly handles the negative changes on
patterns caused by objects’ expiration with very limited CPU
and memory overheads. Based on this technique, we design
our proposed algorithm, Abstract-C, for distance-based out-
lier detection in sliding windows. Second, we propose a
hybrid neighborship maintenance mechanism, which allows
us to preserve progressive cluster structures with only linear
memory consumption. The combination of these two tech-
niques leads to our proposed algorithm, Extra-N, for density-
based cluster detection over sliding windows. To compare
our proposed algorithms with other alternatives, we build
cost models to measure the algorithms’ performance in
terms of CPU and memory efficiency. Based on the cost
models, we identify the key performance factors for each
alternative algorithm and analyze the situations in which
each of them would have good versus poor performance. Our
experimental studies using both synthetic and real streaming
data confirm the clear superiority of our proposed algorithm

The future work directions of this work include: (1)
studying other output formats for neighbor-based patterns
in streaming window semantics as we discussed in Section
9, (2) designing efficient pattern mining algorithm for other
pattern types in streaming data, such as graphs and associa-
tion rules, (3) building advanced user interfaces which allow
users to interactively explore the streaming patterns.

Our experimental studies using both synthetic and real
streaming data confirm the clear superiority of our proposed
algorithms to all other alternatives.
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