
Nugget Discovery in Visual Exploration Environments by
Query Consolidation ∗

Di Yang
Worcester Polytechnic Institute

Worcester, MA, USA
diyang@wpi.edu

Elke A. Rundensteiner
Worcester Polytechnic Institute

Worcester, MA, USA
rundens@wpi.edu

Matthew O. Ward
Worcester Polytechnic Institute

Worcester, MA, USA
matt@cs.wpi.edu

ABSTRACT
Queries issued by casual users or specialists exploring a
data set often point us to important subsets of the data,
be it clusters, outliers or other features of particular im-
portance. Capturing and caching such queries (henceforth
called nuggets) has many potential benefits, including the
optimization of both the performance of the underlying sys-
tem as well as the search experience of users. Unfortu-
nately, current visual exploration systems, while facilitat-
ing data exploration by providing graphical depictions of
the data, have not yet tapped into this potential resource
of identifying and sharing important queries. In this pa-
per, we introduce a query consolidation strategy aimed at
solving the general problem of isolating important queries
from the potentially huge amount of queries submitted. Par-
ticularly, our solution clusters redundant queries caused by
exploration-style query specification, which is prevalent in
data exploration systems. Then, it generates a represen-
tative for each group of clustered queries. To measure the
similarity between queries, we design a highly effective dis-
tance metric that integrates both the query specification and
the actual query result. To overcome its high time complex-
ity when comparing queries with large result sets, we also
design an approximation method, which offers high time effi-
ciency while still providing excellent accuracy. A user study
conducted on real multivariate data sets comparing our pro-
posed technique to others in the literature confirms that the
proposed distance metric indeed matches well with users’
intuition. As proof of feasibility, we develop a prototype
Nugget Management System (NMS) based on our proposed
query consolidation solution. A second user study compar-
ing a freeware visual exploration system XMDVTool, both
with and without being supplemented by NMS, indicates
that both the efficiency and accuracy of users’ visual explo-
ration are indeed enhanced when supported by our technol-
ogy.

∗This work is supported under NSF grant IIS-0119276 and
a grant from the NSA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Keywords
Query redundancy, query consolidation, distance metrics

1. INTRODUCTION
Learning the important queries, in which users are inter-

ested, is a critical problem for information and knowledge
management community. Such queries may be good indi-
cators of users’ common interest in certain portions of the
data, or reflect “insights” from experts about the noteworthy
features in the data. Generally, figuring out these important
queries could benefit both the underlying systems and their
users. On one hand, knowing the potential queries that users
may raise in the future enables caching and optimized exe-
cution of incoming queries [13, 20]. By reusing the results of
important queries, query caching techniques can save both
the query execution time and data transmission cost. On
the other hand, being informed about the important queries
raised by other users may be helpful for the users. I.e., a
basketball fan who is searching for sports equipment from an
Internet search engine could benefit from knowing that the
current most popular query for sports equipment is about:
“T-MAC 6”, the latest version of a series of basketball shoes.
Efforts to provide users such help are called collaborative
querying [10, 18]. Collaborative querying aims to help users
to formulate queries by harnessing the collective knowledge
of other searchers.

Visualization systems [23, 19, 9] traditionally facilitate
knowledge discovery by conveying the information to users
via graphical depictions. They have paid, however, little, if
any, attention to the potential gains for visual exploration by
identifying and exploiting important queries. To symbolize
the value of such important queries, we call them “nuggets”
1. Clearly, technology must be developed to extract and
utilize these important queries submitted to visualization
systems. Here, we focus on solving a critical problem for iso-
lating “nuggets” from the potentially huge volume of queries
submitted during users’ exploration.

Query redundancy arises as users with common interest
may submit queries with similar but not identical specifi-
cations. For example, users interested in the “T-MAC 6”
basketball shoes, may submit their queries to a search en-
gine with different specifications, such as “T-MAC 6 basket-
ball shoes”, “T-MAC 6 shoes” or “T-MAC 6 shoes for bas-
ketball”. Query redundancy in visual exploration systems
tends to be caused by their exploration-style query specifi-

1We use the term “nugget” and “important queries” inter-
changeably in the remainder of this paper.

cation mechanism, rather than by ambiguous language and
semantics (demonstrated by the previous example in this
paragraph). This is because their users utilize visual inter-
action techniques, such as sliders or selecting windows, to
specify the queries that roughly express their interest, rather
than explicitly specifying exact queries as typically in SQL-
style query systems. Users are more interested in the query
results fed back by the systems, rather than the exact spec-
ification of particular queries. For example, a students at
WPI may search local restaurants through a life-guide sys-
tem by moving sliders that specify the distance and price.
Then, very similar queries, such as “in 5 miles, 20 - 30$
per person” , “in 5.3 miles, 23 - 32$ per person” or “in 5.5
miles, 18 - 31$ per person”, may be generated during her
exploration until she finds the satisfactory results.

Storing either specifications or results of such redundant
queries may not only cause unnecessary memory or disk con-
sumption, but may also make the search for queries of poten-
tial interest to become increasingly time-consuming. Previ-
ous work [25, 24] addressed the query redundancy caused
by ambiguous language expressions, mainly in the web and
search engine context. However, little effort has been put
into how to solve the redundancy caused by the exploration-
style query specification mechanism, which is general prob-
lem for information exploration system and particularly com-
mon in visual exploration systems. This now is the topic of
our work.

To solve this problem, we propose to consolidate redun-
dant queries by conducting query combination based on
their similarity. The design of distance metrics that effec-
tively measure the similarity between queries in visual en-
vironments is challenging. In this paper, our query consoli-
dation solution targets range queries over multi-dimensional
data, the major query type in current multivariate visualiza-
tion systems [23, 14]. So, the technical challenge we address
is measuring the similarities between multi-dimensional range
queries in multivariate environment .

In our solution, we compare two queries by first comparing
their query specifications. The queries having similar selec-
tive ranges will be given a smaller distance between each
other in terms of query specification. Then considering that
even the queries with similar query specification may lead to
very different query results, we further compare the results
of queries. We propose an algorithm, which we call Exact
Transformation Measure (ETM), to measure the similarity
between the results of two queries. The main idea of ETM is
to measure the distance between two datasets by the cost of
transforming one of them to be the same as the other. Two
queries that are measured to be similar in both query spec-
ification and query results will be assigned a small distance
in our solution, while the distance between other pairs will
be set to be large. To overcome its high time complexity
of ETM when comparing queries with large result sets, we
also design an approximation method for our metric, which
we show to offer high time efficiency while still providing
excellent accuracy.

To evaluate the effectiveness of our metric, we have per-
formed a user study to compare our proposed measure with
other distance metrics. The results of our user study show
that our metric outperforms other distance metrics in terms
of matching with users’ intuition. In most cases, the dis-
tances computed by our proposed metrics are identical or
very close to those provided by the users – while other tech-

niques from the literature tend to fair worse.
As further proof of feasibility, we have incorporated our

query consolidation solution into a prototype framework,
which we call Nugget Management System (NMS). NMS
extracts, consolidates, and maintains important queries sub-
mitted to visualization systems. It is currently implemented
on XmdvTool [23], a freeware multivariate visualization sys-
tem. User studies were performed to compare the users’ effi-
ciency and accuracy of finishing tasks on real datasets, with
and without the help of NMS. Our user studies confirmed
the effectiveness of NMS and thus also our query consolida-
tion solution.

The main contributions of this work are: 1. We design
a query consolidation solution that effectively reduces the
potential redundancy among important queries collected. 2.
Since query consolidation is based on similarity of nuggets,
we develop an distance metric (QD + ETM) to capture
the distance between two nuggets. ETM can be used as a
standard similarity metrics to compare the subsets of multi-
dimensional datasets. 3. We perform user study to compare
different nugget distance metrics. The results of the user
study indicate that our metric (QD + ETM) works best in
terms of matching with users intuition. 4. We introduce a
framework that manages important queries in visualization
systems, called NMS. NMS utilizes the resulting nugget pool
to guide users exploration process. 5. We implement NMS
into XmdvTool, a freeware multivariate data visualization
tool. 6. We describe user studies evaluating the effective-
ness of NMS. The user study demonstrates that NMS is
able to enhance both the efficiency and accuracy of visual
exploration.

The remainder of this paper is organized as follows: Sec-
tion 2 gives the preliminaries. Section 3 introduces the tech-
niques used in query consolidation. Our proposed distance
metric between two queries is discussed in Section 4. In
section 5, we describe a user study comparing different dis-
tance metrics. Finally, we discuss the application of query
consolidation for exploration support in Section 6.

2. PRELIMINARIES

2.1 Queries in Visualization Systems
Query specification, one of the most important interaction

techniques for information management systems, is also be-
ing widely used in visualization systems to let users locate
and isolate the information of interest. Typical querying
techniques used in visualization systems include brushing,
filtering and dynamic querying [1]. In this work, we con-
centrate on multivariate data and thus on queries that im-
pose multi-dimensional constraints on such data (e,g., multi-
dimensional range queries). This query type is based on the
brushing technique [14], the primary interaction technique
for multivariate visualization systems. A specific query Q in
our case can be defined as:

Q = Select D.Ar, D.As, ..., D.At From D Where D.Ar =
[Ar.bl : Ar.bh], D.As = [As.bl : As.bh], ..., D.At = [At.bl :
At.bh]; {D.Ar, D.As, ..., D.At} ⊆ attributes of D, Ax.bl and
Ax.bh are the lower and the upper bound of the query ranges
on attribute Ax, [Ax.bl : Ax.bh] means “from Ax.bl to Ax.bh”;

This query type is independent from the display meth-
ods in visualization systems, such as Parallel Coordinates,
Scatterplots and Glyphs [23]. Without loss of generality, we
use Parallel Coordinates [12], which is a widely used display

method for multivariate data, to demonstrate our queries in
this paper. In Parallel Coordinates, each dimension corre-
sponds to an axis, and the N axes are organized as uniformly
spaced vertical lines. A data element in the N-dimensional
space manifests itself as a connected set of points, one on
each axis. Points lying on a common line or plane create
readily perceived structures in the image. Figure 1 shows an
example of a four dimensional dataset displayed with Par-
allel Coordinates. Figure 2 demonstrates a specific range
query over this data. Visually a range query appears as a
blue band across the axes, which represents the query’s se-
lective ranges on each dimension, and the red (highlighted)
lines that indicate the selected records (result) of the query.
Users specify different queries by adjusting the lower and
upper bounds of the blue band (selection ranges).

Figure 1: “Iris”
dataset displayed
with Parallel Coor-
dinates

Figure 2: An exam-
ple query over “Iris”
dataset in Parallel
Coordinates

2.2 Nugget Extraction
Generally, the term nugget refers to some valuable infor-

mation in the dataset, which is isolated by an important
query. For the purpose of this paper, a nugget is defined by
a range query Q (discussed in Section 2.1) over a dataset
D as well as the result of this query, dataset Q(D). A more
extensive range of nugget types will be considered in our
future work.

Similar to other visualization systems [8, 17], users of
NMS can explicitly indicate if a particular piece of informa-
tion is of interest to them. This is done by explicitly saving
the given query and labeling it by a persistent nugget name.
However, since visual exploration is generally an intensive
process that may require may continuous concentration and
response by the users. a non-intrusive nugget extraction
method would clearly be preferred. In NMS, nuggets can
also be automatically extracted by observing a user’s explo-
ration. “Visiting time” is one factor [5] used as the main
indicator of a user’s interest during visual analysis. NMS
extracts a nugget if a user spends a long time “visiting”
(querying over and looking at) a subpart of the dataset. For
example, if a subpart shown in Figure 2 has been visited for
a long time by a single user or repeatedly visited by one or
more users, NMS will conclude that it is a potential nugget.

However, nugget extraction, as the initial effort to identify
the important queries, could cause the problem of “nugget
redundancy”. Its solution, as the topic of this work, will be
discussed in Sections 3, 4 and 5.

3. NUGGET CONSOLIDATION

3.1 The Nugget Redundancy Problem
Now we explain why relying on nugget extraction alone

may lead to a major problem of “nugget redundancy”. The
main reason is that in visual exploration, users utilize visual
interaction techniques, such as sliders or selecting windows,
to specify the queries while observing the impact on the
linked data display, rather than by explicitly typing exact
queries as typically done in SQL query systems. By using
these exploration-style query specification mechanism, many
similar but not identical queries may be generated even when
users are querying over the same features in the dataset, be
it a cluster or an outlier. Another reason for nugget re-
dundancy is the automatic nugget extraction. During the
visual exploration, a user may continuously yet only slightly
adjust the query specification. Extracting all of these sim-
ilar queries as different nuggets will lead to a nugget pool
with many redundant nuggets. Figure 3 shows an example
of three similar nuggets, which actually capture the same
pattern in the dataset.

Figure 3: Clustering three similar nuggets

3.2 Nugget Clustering
Now we introduce our solution of nugget consolidation,

which keeps the nugget pool in modest size yet with high rep-
resentativeness. Several different techniques, such as sam-
pling , filtering and clustering achieve this goal. In our solu-
tion, we choose clustering, a widely used techniques to com-
bine similar queries [25, 24], which groups similar nuggets to-
gether and generates a representative for each group. This is
because when constructing a representative for each group,
clustering techniques consider and combine the features of
all the group members, while filtering and sampling tech-
niques tend to just pick an group member as their represen-
tative. Since in many cases, we may hardly be able to tell
which nugget is surely more important than others (even
if we have certain mechanism to express the importance of
nuggets, nuggets with similar importance may be very com-
mon), constructing a representative which “speaks” for ev-
ery nugget in a group makes more sense than just picking
one. And since we can use importance (indicated by “vis-
iting time”) as the weight in clustering process, the repre-
sentative generated will primarily reflect the feature of the
dominant (super important) nugget, if there is any. One

example of forming a representative (clustered nugget) for
similar nuggets is shown in Figure 3.

Clustering aims to group objects based on their similari-
ties. We thus need to devise a distance measure that best
expresses the domain specific similarity between objects. In
particular, we have to develop a suitable distance metric for
our multi-dimensional nuggets. This metric will be discussed
in Sections 4 and 5.

With a proper distance metric, any generic clustering al-
gorithm [27, 11] can be applied to conduct nugget clustering.
To provide real time clustering service for our nugget pool,
incremental clustering algorithms [4] are more suitable for
our system. Further discussion on the specific clustering
algorithm used in our system can be found in [26].

4. DISTANCE METRICS BETWEEN NUGGETS

4.1 Query Distance
Nuggets are defined by both queries and their results.

So, naturally, nuggets that are defined by similar queries
should be considered to be more similar than those defined
by rather different queries. Thus our problem can be trans-
formed into the problem of how to quantify the similarity
of queries. Fortunately, previous work [24, 25] has studied
this problem. The major principle utilized for measuring
the query similarity (QS) can be summarized as Formula 1,

QS(A, B) =
QA ∩ QB

QA ∪ QB
(1)

where QS(A,B) represents the query similarity between
Nuggets A and B, and QA and QB are the qualifier of these
two queries. We adopt this basic idea as starting point for
the design of our similarity measure. However, several issues
have to be refined. First, we focus our attention on metrics
for query similarity on a single dimension. Two main types
of domains are considered as discussed below.

Discrete Domains: A discrete domain composed of nom-
inal values is easy to handle. Because of the discrete prop-
erty, a direct use of Formula 1 solves the problem. For ex-
ample, given two queries over the nominal domain, QA: se-
lect * from X where X.origin = {Japan, US, Germany},
QB: select * from X where X.origin = {Japan, US, Italy},
we just need to count the number of elements that fall
into the intersection and the union of these two sets and
then we get |QA ∩ QB| = |Japan, US| = 2, |QA ∪ QB| =
|Japan, US, Germany, Italy| = 4, and thus QS(A,B) =
2/4 = 0.5. Clearly, this strategy of counting key words can
also be used in numeric discrete domains.

Continuous Domains : Intuitively, a straightforward
variant of the previous “count method” can also be used
for continuous domains. The intersection and union of two
range queries are no longer expressed by a count of the ele-
ments, but rather by the “length” of overlap and total cover-
age. For example, given QA: select * from X where X.height
=[5.25:5.85], QB: select * from X where X.height=[5.45:6.15],
then we have QA ∩ QB = 5.85 − 5.45 = 0.40, QA ∪ QB =
6.15 − 5.25 = 0.9, QS=0.4/0.9=0.44.

However, although the major principle of Formula 4.0 still
holds for continuous domains, a more careful consideration
regarding the continuity of the domain may be needed. A
problem rises as that in a domain of size from 0 to 1000, if we
decide that two range queries over [1.00:2.00] and [1.50:2.50]

respectively have some similarities, should we assert that
two queries over [1.00:2.00] and [2.00:2.50] are totally dis-
similar just because they do not happen to overlap each
other? An example will illustrate this concern better.

Figure 4: Query 1 Figure 5: Query 2

As shown in Figures 4 and 5, queries 1 and 2 on dimen-
sion “Weight” are [3051.73:3318.68] and [3327.02:3527.23]
respectively. We note that even though they do not over-
lap, visually the nuggets defined by them are quite similar.
So, in order for our metric to capture the broader semantics
of similarity, we have developed a more general algorithm
that handles both types of domains, while still keeping the
essence of Formula 1. In this algorithm, the domain will be
divided into discrete bins. If some part of a query falls into
a bin, we call the bin an “occupied bin (ob)” of the query.
Finally, we utilize the “occupied bin count strategy” (obcs)
when comparing two queries.

Figure 6: Overlap
case

Figure 7: non-
overlap case

As demonstrated in Figures 6 and 7, now both overlap and
non-overlap cases are handled by our new algorithm. In Fig-
ure 6, QA∩QB = |QA.ob∩QB.ob| = |{b2, b3, b4, b5, b6}|QA∪
QB = |QA.ob ∪ QB.ob| = |{b1, b2, b3, b4, b5, b6, b7}| = 7,and
QS=5/7=7.1. In Figure 7, QA ∩ QB = |QA.ob ∩ QB.ob| =
|{b6}| = 1, QA ∪ QB = |QA.ob ∪ QB.ob| = |{b6}| = 1,
QS=1/1=1. In practice, we could set QS less then 1 for non-
overlap cases, because after all they are not perfect matches.

The “occupied bin count strategy” can be used as a uni-
form query similarity metric for range queries on a single
dimension. The discrete domain uses each discrete value as
its bin, while the continuous domain divides the continuous
domain into bins first.

In most cases, datasets are multi-dimensional, and so are
the queries defining our nuggets. Thus, we have to extend
the previous metric defined for a single dimension to now be
applicable for multiple dimensions. In this work, we adopt
minimum single–dimensional query similarity among all the
dimensions of two multi-dimensional queries to represent the

query similarity between them. The reason why We choose
“Minimum” rather than Manhattan Distance or Euclidean
Distance is because “Minimum” best capture the “visual
similarity” of two nuggets. More detail discussion on this
choice can be found in [26].

Finally, when we’ve successfully acquired normalized query
similarities (between 0-1), we can now easily calculate the
query distances (QD) as shown in Formula 2.

QD(A,B) = 1 − QS(A,B) (2)

4.2 Data Distance
Nuggets are not only characterized by their queries (pro-

file), but also by the results of the queries obtained when
applying the queries to a particular dataset (content). As

Figure 8: A nugget cap-
turing a cluster in the
“Iris” dataset

Figure 9: A nugget with
no data record included

shown in Figures 8 and 9, two nuggets generated by very
similar queries may be rather different in terms of actual
data content. The former contains a cluster , while the lat-
ter is empty. Clearly, we need to enhance the capability
of our metrics by comparing the “contents” of the nuggets.
Now, the problem we must solve can be viewed as a gen-
eral date analysis problem. That is, given two subsets of
a multi-dimensional dataset, how could we measure the dis-
tance between them. Previous works to tackle such problems
[2, 7, 16, 6] can be generally classified into two main cate-
gories, statistical and transform-cost approaches. Below, we
explain why we choose the latter, and then introduce a pro-
posed algorithm extending a basic transform cost algorithm.

4.2.1 Statistical Approaches
Since traditional statistic methods, such as average and

deviation, cannot fully capture the characteristics of two
subsets, a more sophisticated method based on histograms,
Histogram Difference Measures (HDM), has been developed.
HDM is used in data abstraction quality measure [7], ap-
proximate query processing of databases [2]. It compares
the histograms of two sets of data, meaning the distribu-
tions of data points.

However multi-dimensional histograms surfers the num-
ber of bins grows exponentially when the number of di-
mensions increases, thus the complexity can easily reach
an unaffordable level even with a modest number of bins
and dimensions. For example, if we have 10 dimensions and
divide each dimension into 10 bins, we need 1010 compar-
isons. As a much cheaper alternative, the integration of
single-dimensional histograms first compares histograms on
each dimension separately and then integrates the results
into a normalized result. But such integration cannot truly
reflect the distribution of data points in many cases. For

example, dataset A{a1(length = 1, width1), a2(length =
10, width = 10)} and dataset B{b1(length = 1, width =
10), b2(length = 10, width = 1)} will be measured to be ex-
actly the same by this method, since they have the same
distribution on each individual dimension. Even though,
these two datasets actually have very different data records.

4.2.2 Transform Cost Approaches
As a general notion, Transform Cost methods have been

shown to be effective in a wide range of different areas, such
as “Edit Distance” in string matching [16], and “DIFF”
in change detection to HTML and XML files [6]. In the
Transform Cost Approaches, distance between two objects
is expressed as the minimum cost of transforming one ob-
ject to another. A well known algorithm that relies on
Transform Cost is the Nearest Neighbor Measure (NNM).
When comparing two datasets, NNM aims to move each
data point (record) in one set to its nearest neighbor in the
other set. It then calculates the accumulative distance that
all the data points have moved. Generally, it is more pre-
cise than the Statistic Approach, because it deals with each
data point rather than only general statistics of datasets.
But NNM appears to work better for measuring the qual-
ity of representativeness due its n to 1 mapping strategy,
meaning a data point in one dataset may be mapped as
nearest neighbor for more than one data point in another.
For example, given two dataset: dataset A{a1(length =
1), a2(length = 100), a3(length = 100), ..., a99(length =
100), a100(length = 100)} and dataset B{b1(length = 1),
b2(length = 100)} would be measured to be exactly same,
for each element in set A finds a 0 distance nearest neighbor
in set B. In short, NNM is a population-insensitive algo-
rithm. It may lead to bad comparison results in our case,
because comparing nuggets with different populations is go-
ing to be the norm in our work .

4.3 The proposed ETM measure
To solve this problem, we propose a new algorithm called

Exact Transformation Measure (ETM). ETM not only over-
comes the population-insensitivity but also is more effective
in capturing visual similarity of two datasets.

Before discussing the specific algorithm, let us first formu-
late the problem: Given dataset O, |O| = m, and datasets
A and B, A ⊆ O, B ⊆ O, |A| = a, |B| = b, 0 ≤ a ≤ b ≤
m, |A ∩ B| = l, |B| − |A ∩ B| = n, data points in O can be
viewed as geometrically distributed in the value space based
on their values in different dimensions, we transform A to
be exactly equal to B with minimum cost.

To solve such a problem, simply moving data points in
A to their nearest neighbors in B will fail in many cases,
because it is neither globally optimal nor sensitive to pop-
ulation. Thus, in order to achieve the transformation with
minimum cost, we define the following operations:

• Move(x, y): given x ∈ A, y ∈ B, move x to the position
where y lies.

• Add(x, y): given y ∈ B, add a new data point x to A
at the same position where y lies.

By using “Move” and “Add”, we are guaranteed to always
be able to transform A to B, since A always has a smaller
or equal sized population to that of B. However, simply re-
lying on “Move” and ”Add” will impose “forced matches”,

which may not always lead to capture of the real distance
between two datasets. Figure 10 shows an example of two
2-dimensional datasets where moving and adding are not
sufficient to make a cost effective transformation plan.

Figure 10: Trasforming
A to B with moving and
adding operation only

Figure 11: Transform-
ing A to B with, mov-
ing, adding and deleting

As shown in Figure 10, given dataset A (shown as white
points) and B (shown as black points), by using “Move” and
“Add” only, we have to match some data points in A with
data points in B that are far away from them. While the
“Delete” operation would help us to achieve a more cost-
effective transformation, as shown in Figure 11.

In the worst case, the existence of a few “outlier” data
points that do not have a “near neighbor” close to them
will deprive opportunities for many of other data points to
be matched with their real nearest neighbors. To deal with
this disadvantage of “forced matches”, we introduce another
type of operation, namely, “Delete”.

• Delete(x) x ∈ A, delete x from A.

With the help of the “Delete” operation, we no longer need
to suffer from “forced matches”. We choose to “Delete”, if
moving a data point brings too much global cost.

4.3.1 Cost Models
To make an optimal transformation plan, which has the

minimum cost, we need to study the cost model of each
operation first.

• Cost of Move(x,y) –Cost(M [x, y])

Cost of moving a data point x to y is equal to the distance
between x and y. Here, we adopt the Euclidean Distance
(normalized, between 0-1), which is the most widely used
distance measure between objects in a multi-dimensional
space.

• Cost of Add(x,y) –Cost(A[x, y])

Since Cost(A[x,y]) is usually an estimated value rather
than any physical distance, in most of the Transform Cost
works, a single COA (cost of adding, which is independent
from the position where the point will be added) is used
for each transformation. In this work, we adopt this single
COA strategy, while developing a new method of estima-
tion. Considering that a point is directly added to a certain
position, the adding process is composed of two steps: gener-
ation (generating a point at a random position) and moving
(moving the point to a certain position). Thus, COA can
be expressed in the following way:

COA = GC + MC (3)

a) Generating Cost (GC): It is not hard to see that
generating a new element for A would cause a greater “mu-
tation” to it, when A is small. For instance, when |A| = 0,
generating a new data point for A will thoroughly change
it, while if —A—=100,000, such a generation can hardly
make a noticeable difference. So, we correlate GC with the
cardinality of A:

GM =
MPD

a + 1
(4)

With MPD: the maximum possible distance between two
datasets is equal to 1. We add 1 to the divider to handle
the case that a=0.)

b) Moving Cost (MC): When a new data point is gen-
erated for A, it has a random position. Thus, since we can-
not truly calculate its distance from the position it should be
moved to, we use the average distance between two datasets
(centroid to centroid) to estimate the MC needed for moving
it to this certain position.

Generally, COA as an estimated value has a positive asso-
ciation with the average distance between two datasets and
negative association with the cardinality of A. It should be
more expensive than most of the Cost(M[x,y]) in a transfor-
mation. For normalization, we set the upper limit to 1.

• Cost of Delete(x)– Cost(D[x])

Similar to GC, the change cost of deleting is associated with
the cardinality of A and unrelated to the position where the
deleted data point lies. The difference here is that we do not
need to handle the cases where a=0, because we can delete
a data point only if it exists. So, we use Cost Of Delete
(COD) to express all the Cost [D(x)] in a transformation:

COD =
MPD

a
(5)

4.3.2 Making Transformation Plan
Having defined the cost models, we now establish our so-

lution for finding an optimal (most cost-effective) transfor-
mation plan. We observe that the Hungarian Assignment
Method[22, 15] which was designed for finding minimum
cost bipartite matches, provides a good approach to solve
this NP- hard-like problem in polynomial time. The algo-
rithm takes a n×n matrix as input. Each row in the matrix
represents a data point in A, and each column represents
a data point in B. Then each entry is filled with the dis-
tance between the row and the column it belongs to. The
algorithm returns a minimum cost match in O(n3) time.

Let us see a simple example of how it works. Given a 2D
dataset A{a1(0, 1), a2(0, 4), a3(0, 7)} , a dataset B{b1(0, 3), b2

(0, 6), b3(9, 9)}. We know the domain for both dimensions is
(0-10), then the input matrix will be as shown in Figure 12.
After a series of matrix manipulations, the output matrix
will have exact one “0” in each row and each column, which
stands for the “match” of two data points. For example, in
the output matrix below, since there’s a “0” appearing at
the entry[a1, b1], data point a1 should be moved to b1 (Fig-
ure 13). Further details of Hungarian Assignment Method
can be found in [22, 15].

Figure 12: Input matrix Figure 13: Output ma-
trix

To be able to use Hungarian Assignment Method in all the
cases, we still have to tackle two issues: 1) two subsets to
be compared do not necessarily have the same population.
2) We need to incorporate the adding and deleting actions
into the transformation plan. For this, two modifications to
the input matrix are needed.

1) Dummy Points: When two subsets have different
numbers of members (a < b), an input matrix with distances
between points only would not be a squared matrix required
by Hungarian Assignment Method as input. To deal with
this, we add dummy points to A to produce a squared input
matrix. The distance between a dummy point di and any
real data point in B should be equal to COA, because when
the algorithm eventually makes a match between di and bi,
then this means a new point will be added to A at the same
position where bi lies, and thus it costs COA.

2) Incorporating Adding and Deleting: When mov-
ing ai to bi is more expensive then deleting it and adding a
new data point to where bi lies, we choose the latter “delet-
ing + adding” strategy instead of moving. In the input
matrix, if the original value of an entry Cost(M [ai, bi]) >
COA + COD, we use COA+COD to replace the original
value.

Once the output matrix has been produced, by simply
summing all the values in the input matrix entries, which
match entry location with a “0” in its output matrix, and
dividing the sum by population of B, we get the Data Dis-
tance (DD[X, Y]), between two nuggets X and Y, where A
and B are the datasets contained by them.

Finally, we combine the Query Distance (QD[X, Y]) and
Data Distance (DD[X, Y]) to present the Nugget Distance
(ND[X, Y]) between any pair of nuggets X and Y.

ND[X, Y] = α·QD[X, Y]+β·DD[X, Y] (α+β = 1) (7)

Since QD and DD are both normalized (between 0 to 1),
ND will be normalized as well.

5. USER STUDY ON DISTANCE METRICS
Now, we discuss several experimental studies conducted

to show the effectiveness of the proposed distance metric.

5.1 Experimental Setup
Users: This user study was carried out in a web-based

environment. A web page which carried the instructions
and all the questions was posted on the Internet. The users
engaged in this user study were volunteers that are WPI
students, faculties or staff.

Datasets: Three real datasets are employed in our user
study. They are the “Iris” dataset (4 dimensions, 150 records);

the “Cars” dataset (7 dimensions, 392 records); and the
“Aaup” dataset (14 dimensions, 1161 records).

Nuggets: We have designed twenty pairs of nuggets based
on the three real datasets we mentioned above. In particu-
lar, seven nuggets each are based on “Iris” and “Cars”, and
the other six are extracted from “Aaup”. These designed
nuggets are good examples of real nuggets which users could
make in their navigations, because they covered all the pat-
tern types we discussed in this work and have varying sizes.
Specifically, the smallest nugget we used in this user study
was based on “Iris” dataset. It had very short selective
range on all the four dimensions and contained only two
data records. In contrast, the largest one, which was based
on “Aaup” dataset, had large selective range on all 14 di-
mensions and contained 543 data records.

Questions: The user study consisted of 20 questions.
Each of them requires users to indicate a distance between
a pair of nuggets. Particularly, all the distances were scaled
by the integers from 0 to 10 presented by eleven radius but-
tons. The suggestive semantics of each integer were also
shown under the radius buttons. Specifically, 0-1 means
“very similar”, 2-4 means “similar”, 5-7 means “unsimilar”
and 8-10 means “totally different”, initially selected. The
sequence of the questions was randomly arranged, but once
it was arranged , it was kept identical for all users.

Experimental Methodology: A brief instruction for
the user study was given before the specific questions were
presented to the user. During the user study, users could go
back to reanswer any previously answered question and they
could answer questions in any order. However, they had to
answer all the twenty questions before they could submit
their answers.

Experimental Strategy:We applied each individual dis-
tance metric (one query distance metric QD and three data
distances HDM, NNM and ETM) and all the combined dis-
tance metrics to compute the distances between the same
20 pairs of nuggets 1. Finally, we compare the distances
given by the users with those computed by each of the
metrics. For this, we introduce a function “Dif” to ex-
press the difference between the distances given by a met-
ric versus by a user. For each user U , each distance met-
ric M and a certain pair of nuggets Nx, Ny , we compute
Dif=|DU (Nx, Ny)−DM (Nx, Ny)|. For each pair of nuggets,
we assign different amount of credit, called accurate credit,
to each metric based on the difference between the distances
given by this metric and by the user. Concretely, we give
3 credits to a metric if Dif=0, 2 credits, if Dif = 1 and 1
credit if Dif = 2. If Dif > 2, no credit will be given to
the metric, meaning that the distance metric fails to match
with the user’s intuition. For all 20 pairs of nuggets and
all 20 users (totally 400 distances given), we calculate these
accumulative credits for each of the metrics. We also use pie
graphs, which we call “Dif Distribution Graph” to show us
the exact number and percentage of each “match category”
(Dif=0, Dif=1, and so on).

5.2 Experimental Results

1In this section, we use “QD + ETM (HA)” to present our
original QD + ETM solution, which employs the Hungar-
ian Assignment Method. We use “QD + ETM (CC)” to
present another version of our QD + ETM solution (we’ll
discuss later in this section), which is implemented by an
approximation algorithm to Hungarian Assignment Method

Figure 14 shows the accumulative credits earned by each
metric. Our accurate credit strategy counts all the “matches”

Figure 14: Accumulative credits earned by each dis-
tance metrics for all 400 cases

and sums up the Accurate Credit earned by each distance
metric for all the 400 cases. Generally, a metric that matches
well with more users in more questions will earn higher accu-
mulative credit. As shown in Figure 14 2, QD+ETM (HA)
earns much higher accumulative credit than any other met-
ric. This indicates that it matches the users intuition best
among all distance metrics.

Figure 15: Distances given by 20 users for 20 ques-
tions

Figure 16: Dif distribution of QD, QD+ETM (HA)
and QD+ETM (CC)

Figures 16 shows the distribution of “Dif”s for several
distance metrics. We observe that QD + ETM (HA) has
128 (32%) “perfect matches” (Dif = 0) with users’ rat-
ings for the 400 distances. It also has 196 (49%) Dif = 1
matches, 44 (11%) Dif = 2 matches, while only 32 (8%)
“non- matches” (Dif > 2). It is much better than any
other distance metric in terms of more “good matches” and
less “non-matches”, even when compared with the second

2please temporarily ignore QD + ETM (CC) metric which
will be discussed later

best one, QD only, which has 88 (22%) Dif = 0 matches,
132 (32%) Dif = 1 matches, 136 (34%) Dif = 2 matches,
and 44 (11%) “non=matches” (Dif > 2). Based on the
comparison results above, we learn that QD + ETM (HA)
captures the distances between nuggets best among all the
metrics we discussed in this work.

5.3 Approximation to Hungarian Assignment
Algorithm

The best quality usually comes at the price of the highest
cost. Since the Hungarian Assignment (HA) Method used
in ETM has O(n3) complexity, where n is the number of
points that appear in the larger subset but not in the smaller
subset, it is not always practical performance-wise when we
try to compare the nuggets with huge populations. Figure 17
shows the CPU time used by all the distance metrics when
measuring distances for the 20 pairs of nuggets we mentioned
earlier. We can see that QD+ETM (HA) has highest cost in
terms of maximum, minimum and average CPU time used,
which means the metric is best at capturing users’ intuition
but worst in terms of time efficiency.

Figure 17: CPU time by different distance metrics

To address this, we now propose to employ a much cheaper
approximation algorithm of HA instead of the full-fledged
HA. It is Coupon Collection (CC) Algorithm, which has
O(nln(m)) complexity, where n has the same meaning with
that in HA and m is the size of the original dataset. By
using CC, we do not construct a global optimal transforma-
tion plan by conducting complicated matrix operations as
we did with HA. Instead, we “move” each non-overlapping
data point in one nugget to its nearest neighbor in another.
Once a data point from one nugget has been moved to a
data point in the other nugget, the later data point is “oc-
cupied” and can no longer “accept” moved from any other
data point. Thus if the nearest neighbor of a data point
is “occupied”, this data point has to be moved to its sec-
ond nearest neighbor, etc. This continues until a data point
finds an unoccpupied neighbor, or the data point has to be
“deleted” in the transformation plan.

To compare the CPU time cost of QD+ETM (CC) with
the costs by other distance metrics and also its performance
in terms of matching users’ intuition, we use QD+ETM(CC)
to measure the distances between the same 20 pairs of nuggets
we used in the earlier user study.

As shown in Figure 17, from the maximum, minimum, av-
erage and also standard deviation of CPU time cost, we learn
that QD+ETM(CC) is the second fastest distance metric
among all those we have discussed and only slightly slower
than the cheapest metric (QD). Here, we also need to point
out that, although QD+ETM (CC) saves much CPU time

in average case compared with QD+ETM (HA), QD+ETM
(CC) is not guaranteed to be faster than QD+ETM (HA) in
all cases. This is because the complexity of CC, O(nln(m)),
is related to the size of the original datasets, but the com-
plexity of HA, O(n3), is only related to the non-overlap pop-
ulation in the larger nugget. CC can be slower than HA
when m is extremely large, while n is extremely small, al-
though this is not likely to happen in most of the cases. So,
one could choose to use either of these two metrics based
on comparing ln(m) and n2. If the former wins, we pick
QD+ETM (CC), or we pick QD+ETM (HA).

When comes to the performance of QD+ETM (CC) in
terms of matching users’ intuition, we found that among all
the 20 pairs of nuggets we used in our user study, QD+ETM
(CC) gave the exactly same answer with QD+ETM (HA)
in 18 pairs of them. For the remained 2 pairs of nuggets,
QD+ETM (CC) versus QD+ETM (HA) has a difference
equal to 1 and another has a difference equal to 2.

As shown in Figure 14, the accumulative credits earned by
QD+ETM (CC) are very close to those of QD+ETM (HA)
and much higher than any other metrics. From figure 16,
we observe that QD+ETM has 110 (28%) “perfect matches”
(Dif = 0) with users’ ratings for the 400 distances. It also
has 210 (52%) Dif = 1 matches, 49 (12%) Dif = 2 matches,
while only 32 (8%) “non- matches” (Dif > 2).

5.4 Conclusions on Distance Metrics
Based on the above experimental studies we conclude:
1) QD+ETM (HA) agrees well with users’ intuition on

distances between nuggets. It is thus the best distance met-
rics in terms of capturing nugget distance.

2) Coupon Selection (CC) algorithm has been shown to
be a good approximation to Hungarian Assignment (HA)
algorithm used for computing ETM. It has almost the same
accuracy with HA, and it costs significantly less on average
(80%) CPU time than HA for the nuggets on three real
datasets we employed.

3) Query Distance (QD) only, as a cheap metrics, works
well in many cases. When picking the distance metric, QD
can always be carried out before conducting any data com-
parison. If two nuggets have huge query distance then the
data comparison is on longer necessary, because the two
nuggets will be surely dissimilar. If two nuggets have a small
query distance and we aim to form as precise clusters as pos-
sible, we have to consider data distance. This choice can be
made by comparing ln(m) and n2. If the former wins, we
pick QD+ETM (CC), otherwise we pick QD+ETM (HA).

6. APPLICATION OF NUGGET CONSOLI-
DATION FOR EXPLORATION SUPPORT

To verify the usefulness of the proposed solution, we have
integrated Nugget Consolidation into our NMS framework
and then evaluated its effectiveness in aiding users during
data exploration. More precisely, we have extended XMDV-
tool, a freeware multivariate visualization system [23], with
the services of nugget extraction, consolidation, and main-
tenance to provide nugget support during visual data ex-
ploration. In our system, nugget consolidation first removes
the redundant nuggets generated during nugget extraction.
Then, the “nugget representatives” produced by nugget con-
solidation can be retrieved by the users and feed into the
nugget maintenance stage. Nugget maintenance expels the

out-of-date nuggets or those extracted by misinterpreting
users interest from our system. While we provide auto-
mated algorithm for these services, we also offer interfaces
that enable users to manipulate each individual nugget. For
example, a user can modify the query specification of a
nugget or attach her own understanding as annotation to
a nugget. By doing so, NMS may form a nugget pool that
well presents users’ discoveries, interest and expertise. This
well-organized nugget pool will be used in nugget-guided ex-
ploration, which can guide users exploration in both user-
and system-initiated modes. Figure 18 shows a screen shot
of our prototype system. More details of our prototype NMS
system can be found in [26].

Figure 18: A screen shot from our NMS prototype
when looking for clusters hidden in the dataset

To compare users’ efficiency and accuracy when solving
tasks with and without the help of NMS. Specifically, we
randomly divided 12 users, all WPI students, into 4 groups,
3 users per group (all different from the subjects in user
study for distance metrics). All the 4 groups were asked
to finish the same 5 knowledge discovery tasks, which were
based 3 real datasets. In this user study, users were not
allowed to communicate information about the user study
through any other channel except NMS at any time before,
during, or after the user study. This is to make sure that
users can only solve the tasks based on their own exploration
and the help from NMS (if available). A uniform training
process was designed to give the basic idea of how NMS
works and made familiar with the interfaces of NMS. All
the users were encouraged to finish the tasks as quickly and
correctly as possible. Figure 19 shows time used by each
individual user and also each group.

Figure 19: Comparison of users’ efficiency in differ-
ent groups

As shown in Figure 19, groups 2, 3, and 4 (with NMS)
spent noticeable less time (around 50 percent) than group 1
(without NMS). Such time savings due to the second and the
third users, given that the first users all worked from scratch.
Although NMS did facilitate their job, managing discover-
ies needed time. However, once the nuggets were extracted
during the exploration by the first users, the exploration
processes of the second and the third users largely benefited
from the nugget pool. Thus, we showed that NMS may
greatly improve users time efficiency when solving knowl-
edge discovery tasks. Our preliminary evaluation also shows
that NMS enhances users’ accuracy of finishing these tasks.
More details of these user studies to NMS can be found in
[26].

7. RELATED WORK
[3] introduces a technique for mining a collection of user

transactions with an Internet search engine to discover clus-
ters of similar queries and similar URLs. [10] describes a col-
laborative query system that helps users with query formula-
tion by finding previously submitted similar queries through
mining web logs. Similar works include [24, 25]. These
works which aim to mine important queries from query logs
have similar goal to us. However, they focus on keyword-
based queries in web searches, which is different from our
work in terms of both the query type and the visual speci-
fication context.

Although these studies on keyword-based queries in web
searches cannot be directly applied to our context, their
efforts to measure the similarity between queries parallel
ours. As pointed out by [10], when measuring the sim-
ilarity between two queries, we should not only compare
their “terms”, which means the query specifications, but
also compare the results of them. We use the same princi-
ple to measure the similarity between queries in our work,
although the specific methods we designed to conduct com-
parisons are different. Previous studies on similar queries
[24] also provides us the basic idea of comparing the query
specification, which is that the specifications with a large
“overlap” should be more similar to each other. We ex-
tended this basic idea to handle different types of domains
and to guarantee the “visual simialirty” between queries in
our context.

Our work is also closely related to visualization and inter-
action techniques [23, 19, 9], because our NMS framework
is designed to facilitate visual exploration. The query type
we target is based on a major querying mechanism for mul-
tivariate visualization systems, called brush [14]. Finally,
the framework of NMS has good potential to support visual
analytics as also targeted in [21, 17].

8. CONCLUSIONS
As the main contribution of this work, we present a query

consolidation solution, which consolidates redundant queries
caused by exploration-style query specification, which is com-
monly found in visual exploration systems. Our solution
clusters queries based on their similarity. To solve the chal-
lenge of measuring the similarity between queries, we have
developed a collaborative distance metric, which compares
both specifications and results of two queries. Our user
study conducted on visual queries over real datasets shows
that our distance metric matches well with users’ intuition.

Further, we outline our effort in realizing some nugget sup-
port by incorporating query consolidation into a freeware
visual exploration system. Our preliminary evaluation indi-
cates that it indeed greatly enhance both the efficiency and
accuracy of users’ visual exploration.

9. REFERENCES
[1] C. Ahlberg and B. Shneiderman. Visual information

seeking: tight coupling of dynamic query filters with
starfield displays. In CHI Conference Companion,
page 222, 1994.

[2] B. Babcock, S. Chaudhuri, and G. Das. Dynamic
sample selection for approximate query processing. In
ACM SIGMOD, pages 539–550, 2003.

[3] D. Beeferman and A. L. Berger. Agglomerative
clustering of a search engine query log. In KDD, pages
407–416, 2000.

[4] F. Can. Incremental clustering for dynamic
information processing. ACM Trans. Inf. Syst.,
11(2):143–164, 1993.

[5] M. Claypool, P. Le, M. Wased, and D. Brown.
Implicit interest indicators. In Intelligent User
Interfaces, pages 33–40, 2001.

[6] G. Cobena, S. Abiteboul, and A. Marian. Detecting
changes in xml documents. In ICDE, pages 41–52,
2002.

[7] Q. Cui, M. O. Ward, E. A. Rundensteiner, and
J. Yang. Measuring data abstraction quality in
multiresolution visualization. IEEE InfoVis, pages
183–190, 2006.

[8] G. D, Z. M.X, and A. V. Interactive visual synthesis of
analytic knowledge. IEEE VAST, pages 51–58, 2006.

[9] Deborah F. Swayne, Dianne Cook and A. Buja.
XGobi: Interactive dynamic data visualization in the
X Window System. Journal of Computational and
Graphical Statistics, 7(1):113–130, 1998.

[10] L. Fu, D. H.-L. Goh, S. S.-B. Foo, and J.-C. Na.
Collaborative querying through a hybrid query
clustering approach. In ICADL, pages 111–122, 2003.

[11] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient
clustering algorithm for large databases. In ACM
SIGMOD, pages 73–84.

[12] A. Inselberg and B. Dimsdale. Parallel coordinates: A
tool for visualizing multidimensional geometry. Proc.
of Visualization ’90, p. 361-78, 1990.

[13] D. Lee and W. W. Chu. Semantic caching via query
matching for web sources. In CIKM, pages 77–85,
1999.

[14] A. Martin and M. Ward. High dimensional brushing
for interactive exploration of multivariate data. Proc.
of Visualization, pages 271–278, 1995.

[15] J. Munkres. Algorithms for the assignment and
transportation problems. Journal of the Society of
Industrial and Applied Mathematics, 37(1).

[16] C.-C. Pan, K.-H. Yang, and T.-L. Lee. Approximate
string matching in ldap based on edit distance. In
IPDPS, 2002.

[17] K. P.E. Collaborative visual analytics: Inferring from
the spatial organization and collaborative use of
information. IEEE VAST, pages 137–144, 2006.

[18] Z. W. Ras. The role of support and confidence in

collaborative query answering. In Intelligent
Information Systems, pages 221–226, 2001.

[19] B. Shneiderman. Tree visualization with tree-maps: A
2d space-filling approach. ACM Transactions on
Graphics, Vol. 11(1), p. 92-99, Jan. 1992.

[20] G. Soundararajan and C. Amza. Using semantic
information to improve transparent query caching for
dynamic content web sites. In DEEC, pages 132–138,
2005.

[21] J. J. Thomas and K. A. Cook. Illuminating the Path:
The Research and Development Agenda for Visual
Analytics. IEEE Computer Society, Los Alamitos CA,
2005.

[22] K. Tranbarger and F. P. Schoenberg. The hungarian
method for the assignment problem. Naval Research
Logistic Quarterly, (2).

[23] M. Ward. Xmdvtool: Integrating multiple methods for
visualizing multivariate data. Proc. of Visualization
’94, p. 326-33, 1994.

[24] J. Wen, J. Nie, and H. Zhang. Clustering user queries
of a search engine. In World Wide Web, pages
162–168, 2001.

[25] J.-R. Wen and H. Zhang. Query clustering in the web
context. In Clustering and Information Retrieval,
pages 195–226. 2003.

[26] D. Yang. Analysis-guided exploration of multivariate
data. Master’s thesis, Worcester Polytehnic Institute,
2007.

[27] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH:
an efficient data clustering method for very large
databases. In ACM SIGMOD, pages 103–114.

