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Abstract

Modern computer applications from business decision
support to scientific data analysis use visualization tech-
niques. However, visual exploration tools do not scale well
for large data sets due to screen clutter. Visualization tools
have thus been extended to support hierarchical views of
the data, with support for focusing and drilling-down using
interactive brushes. We now investigate how best to cou-
ple such a near real-time responsive visualization tool with
database support. For this, we have developed a tree la-
beling method, called MinMax tree, that allows the move-
ment of the on-line recursive processing of visual user in-
teractions on hierarchical data sets into an off-line precom-
putation step. Using MinMax tree we map the recursive
processing at the interface level to two dimensional range
queries that can be answered efficiently using spatial in-
dexes. We also employ caching and prefetching at the client
side to cope with the real-time response requirements. The
techniques have been incorporated into XmdvTool, a free
software package for multi-variate data visualization and
exploration. Our experimental results show 70% to 80%
reduction in response time latency even with limited system
resources.

1 Introduction

Whether the domain is stock data, scientific data, or the
distribution of sales, visualization is becoming a popular
technique for data exploration. Visualization tools exploit
the fact that humans can detect patterns and trends in the
underlying data by just looking at it. However, most exist-
ing techniques do not scale well with respect to the size of
the data. [10] proposed an approach for displaying and visu-
ally exploring large datasets. The idea was to present data at
different levels of detail based on clustering the initial data
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points into a hierarchy called thecluster tree. The problem
of clutter at the interface level is solved by displaying only
one level of detail at a time. Such hierarchical summariza-
tions (cluster tree) in fact increase the size of the input by
at least one order of magnitude. Hence management of data
remains an even more critical issue. While storing the data
in main memory and flat files is appropriate for moderate
sized sets, this becomes unworkable when scaling to large
data sets.

However, visual exploration operations such as the
brush-driven navigation of hierarchies are not easily sup-
ported by traditional database systems. Furthermore, tech-
niques used for main memory processing are typically not
effective if implemented directly in a database system. In
particular, the recursive processing involved when explor-
ing hierarchies in main memory is no longer appropriate
when storing those hierarchies on disk. Instead, we have
developed a hierarchy encoding technique calledMinMax
trees, which allows us to map hierarchies to a 2 dimen-
sional space called2D Hierarchy Map. This mapping in
turn allows us to represent visual navigation operations as
spatial searches. Thus the2D Hierarchy Mapis stored in a
database, where the searches are executed efficiently using
spatial indexes.

Also interactive visual exploration tools exhibit a variety
of characteristics that can be exploited to make the system
scale to huge data sets. These include locality of exploration
and data access, predictability of user’s exploratory move-
ments, and presence of idle time between user operations.
To take advantage of the above characteristics we propose
a caching strategy that buffers the recently used data items.
The cache also uses a fast look up mechanism using a mem-
ory resident spatial index. Moreover, the idle time between
user operations can be effectively utilized for predictingand
prefetching the data for future user requests. Towards this
end, we integrate prefetcher technology into our system.

We applied our proposed solution strategies to the hierar-
chical navigation tool (structure-based brush) in XmdvTool
[10]; a freeware software package for visually exploring



multi-variate data sets. However, the proposed techniques
are general and can be used for visual exploration of arbi-
trary hierarchies, a common class of navigation operations
in large scale visualization systems [9].

The main contributions of this paper are:

• A hierarchy encoding technique that maps a tree into a
2D space and visual navigation operations into spatial
range queries.

• A framework that exploits the encoding technique and
characteristics of the visual navigation environment for
efficient retrieval of online data. This includes:

1. A caching strategy to reduce fetch latencies.

2. Index structures that exploit hierarchy encoding
for efficient searches on cache and database.

3. A direction based prefetching strategy that ex-
ploits properties of visual interactive tools to pre-
dict future user requests.

• Experimental evaluation quantifies the relative effec-
tiveness of each technique towards latency reduction.
Overall, we find that the approach scales to large data
sets and even for moderate data sets reduces user re-
sponse time by 70 to 80 percent.

This paper is organized as follows. Section 2 introduces
multi-variate hierarchical visualization. The hierarchyen-
coding andMinMaxquery processing are presented in Sec-
tion 3. Section 4 introduces the proposed framework. Sec-
tion 5 presents the performance study. Section 6 discusses
related work, while Section 7 discusses conclusions.

2 Visual Data Exploration

2.1 XmdvTool: The Motivating Application

XmdvTool is a visualization tool designed for explo-
ration and analysis of multivariate data sets, offering four
distinct yet interlinked visualization techniques [10, 11, 25].

2.2 Visual Brush-Based Exploration

Brushingis the process of interactively painting over a
subregion of the data display using a mouse, stylus, or other
input device that enables the specification of location at-
tributes [1]. The location attribute values are then used to
select subsets of the data. Brushing can be performed in
screen, in data space or in structure space.

Here we focus onstructure spacetechniques, i.e., selec-
tion based on structural relationships between data points
[11]. By structure, we mean that we recursively partition

data into related groups and identify suitable summariza-
tions for each cluster. Then we can examine the data set at
different levels of abstraction. We move down the hierarchy
(drill-down) when interesting features appear in the sum-
marizations and up the hierarchy (roll-up) after sufficient
information has been gleaned from a particular subtree.

Brushing in structure space involves two containment
criteria. The leaves of the tree are chained together, i.e.,
have a total order imposed. Given this order, nodes that fall
into a user defined interval satisfy the containment crite-
ria, called ‘horizontal selection’. We augment each node in
the hierarchy, i.e., each cluster, with a monotonic value that
controls thelevel-of-detail. The nodes at the desiredlevel-
of-detail are selected using so called ‘vertical selection’.
The level-of-detailvalue can have different semantics; e.g.,
widthof the cluster i.e., the number of leaf nodes the cluster
encompasses, or thedistanceof cluster from root. In sum-
mary, a structure-based brush is defined by a subrange of
thestructure extentsandlevel-of-detailvalues.

2.3 Structure-Based Brushing in XmdvTool

Figure 1. Clut-
tered Parallel
Coordinates.

Figure 2. Structure-
based brush in
XmdvTool.

Figure 1 shows a parallel coordinates display of a five
dimensional data set having 16,384 records. In this display
each of the N dimensions is represented by a vertical axis.
A data point in N-dimensional space is mapped to a poly-
line that traverses across all N axes; crossing each axis, at
a position proportional to its value for that dimension. As
seen from Figure 1, displaying all the data to the user at the
same time results in display clutter.

To support visual navigation of cluster trees for large
data sets, XmdvTool contains a structure-based brush (Fig-
ure 2). The triangular frame depicts the hierarchical tree.
The contour near the bottom of the tree delineates the
approximate shape formed by chaining together the leaf
nodes. To navigate the hierarchy the tool provides two main
“sliders”. The level-of-detailslider denoted by ’b’ allows
users to navigate the tree vertically and view clusters at dif-
ferent levels of detail. Thefocus extentsslider denoted by



’e’ allows users to move horizontally and focus on a subset
of clusters within the same level. The left and right extents
of the ’e’ slider can also be adjusted individually to mod-
ify the width of the focus area. Figure 3 displays the same
data set as Figure 1 but focused on a specific cluster of data
points. This is after the user narrows the width of the fo-
cus area using ’e’ and performs a drill-down operation us-
ing ’b’ as reflected in Figure 3. Figure 4 displays the same
data set as Figure 3 but showing mean and the range of the
data points in that cluster. This is after the user performs a
roll-up operation using ’b’ as seen in Figure 4.

Figure 3. After Focused Area Drilled-Down:
(a) Display, (B) Brush.

Figure 4. After Focused Area Roll-Up: (a) Dis-
play, (B) Brush.

2.4 Brush Semantics

A structure-based brush is defined as the intersection of
two independent selections, the horizontal extents of the
brushe1 and e2 and level − of − detail. In horizontal
selection, first a set of leaf nodes is selected based on the
order property “selecting all leaves between two valuese1

ande2”. This selection is propagated up towards the root
based on eitherANY orALL semantic, i.e., to select nodes
that haveANY (or ALL) of its children already selected.

For vertical selection we use thelevel-of-detailvalue
that has been associated with each node in the hierarchy.
This can be any montonically increasing or decreasing value
from the root towards the leaves. The Algorithm 1 explains
the process of vertical selection. We assume thatlevel-of-
detailvalues are monotonically decreasing from the root to-
wards the leaves. The functionlod(x) returnslevel-of-detail

of nodex. At end,W contains the nodes that satisfy the ver-
tical selection criteria. The set of nodes that satisfy boththe
selection criteria forms the final set of nodes in the brush.

Algorithm 1 Vertical Selection
1: Let S andW be two sets of nodes.
2: Let S contain only root node andW be empty.
3: while S is not emptydo
4: Remove noden from S

5: if lod(n) ≤ lod(brush) then
6: Insertn into W

7: else
8: Insert descendants ofn into S

9: end if
10: end while

The brush operations, as described above, are inherently
recursive. Thus, in Section 3 we develop equivalent but
non-recursive computation methods for setting structure-
based brushes based on assigning precomputed values to
the nodes that recast retrievals as range queries.

3 MinMax Trees: Translating Navigation
Operations

3.1 Labeling the Nodes

To map the recursive process of selection to a non-
recursive one we augment each node in the cluster tree with
horizontal and vertical extents. Each of these extents forms
an interval. We call this tree a MinMax tree. A MinMax
tree is an-ary tree. The horizontal extents of the nodes cor-
respond to open intervals defined over a totally ordered set,
called aninitial set. The horizontal extents of the leaf nodes
in the tree form a sequence of non-overlapping intervals.
The non-leaf nodes are unions of intervals corresponding to
their children.

It is always possible to draw the tree such that all leaf
nodes are horizontally ordered. Leaf nodes are then labeled
with pairs of values corresponding to the extents of their in-
terval. The intervals of non-leaf nodes are unions of their
children intervals. A non-leaf node will be labeled with the
minimum extent of its first interval and the maximum ex-
tent of its last interval. A noden having two children with
intervalsc1 = (α, β) and c2 = (γ, δ) such thatα < γ,
will be labeled asn = (α, δ). Figure 5 gives an example of
a labeled cluster tree. For the tree in Figure 5 the process
of assigning the horizontal extents started at the leaf nodes.
The interval between 0 to 1 was divided equally between all
leaf nodes. These intervals were propagated up towards the
root. (See Figure 5).

Given a MinMax treeT and two nodesx andy of T

whose horizontal extent values are (x1, x2) and (y1, y2) re-



spectively, nodex is an ancestor of nodey if and only if its
horizontal extentsx1 ≤ y1 andx2 ≥ y2. The containment
property is based on the intuition that each node in the tree
is included in its parent’s interval.
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Figure 5. Labeled Minmax Tree

The horizontal extents of the brush and each node in the
MinMax tree both define a horizontal interval. Using Min-
Max trees we can reduce this process of selecting nodes
in the ANY brush to searching for nodes in the MinMax
tree whose interval intersects with the interval of the brush.
Similarly, the process for theALL brush maps to select-
ing nodes whose intervals are fully contained in the brush
interval.

For selection of thelevel-of-detail(vertical selection),
the MinMax tree augments each node in the cluster tree
with a vertical extent value. Given the brush semantics in
Section 2.4, the vertical extent of a nodeA is the interval
(v1, v2) where(v1 = lod(A), v2 = lod(parent(A)) where
the functionparent(n) returns the parent node of noden.
The noden with vertical extents(v1, v2) lies in the brush
if v1 ≤ lod(brush) < v2 is true. The show the vertical
extents for each node in cluster tree.

Essentially, the process of labeling the nodes is a recur-
sive one. The intervals are computed and assigned off-line
at the time the hierarchy is created.

3.2 2-D Hierarchy Maps

Note that the labels assigned by the MinMax procedure
can be viewed as giving each node a spatial representation.
The complete cluster tree can thus be mapped to a 2 dimen-
sional space, what we call the2-D hierarchy map. Figure
6 shows a2-D hierarchy mapfor the MinMax tree in Fig-
ure 5. All the leaf nodes are shaded in grey. A noden

with horizontal extents(hmin, hmax) and vertical extents
(vmin, vmax) maps to a rectangular region in the2-D hier-
archy mapwith the bottom left corner at(hmin, vmin) and
the upper right corner at(hmax, vmax).

The 2-D hierarchy map exhibits the following:
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Figure 6. 2-D Hierarchy Map of MinMax Tree
in Figure 5.

• The space between(0, 0) to (1, 1) is completely filled,
i.e., given any point(0, 0) and(1, 1) there exists a node
that contains the point.

• Interiors of no two nodesoverlap in 2-D hierarchy
map.

3.3 Using 2-D Hierarchy Maps to Implement
Structure-Based Brushes
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Figure 7. 2-D Brush Selection with bmin=0.4,
bmax=0.9 and lod=0.35

From the 2-D hierarchy map, we can implementANY

andALL structure-based brushes as non-recursive opera-
tions. The containment criteria for theANY structure-
based brush can be defined as follows. Given the brush’s
horizontal extents (bmin,bmax) and thelevel-of -detail=lod,
any noden having horizontal extents(hmin, hmax) and ver-
tical extents(vmin, vmax) lies in the brush iff:

• The extents(hmin, hmax) intersect the brush interval
(bmin, bmax), and



• vmin < lod ≤ vmax.

A noden lies in theALL structure-based brush iff:

• (hmin, hmax) ∩ (bmin, bmax) = (hmin, hmax), and

• vmin < lod ≤ vmax.

This definition can also be stated differently. If we map
the brush to a line segment with end points at(bmin, lod)
and(bmax, lod) in the 2-D hierarchy map, a noden lies in
theANY (ALL) structure-based brush if its representation
in the 2-D hierarchy map intersects with that of the brush
(brush segment intersects both the right and left edge of the
node). Our reformulation maps the process of searching for
nodes inALL andANY brush into spatial queries.

Figure 7 gives an example of the selection forANY

brush wherebmin=0.4, bmax=0.9 andlod=0.35. Figure 7
shows the brush in black and all selected nodes (i.e., active
set) in dark grey.

3.4 Translating Structure-Based Brushes into
SQL

The 2-D hierarchy map technique reduces the contain-
ment criterion from initially recursive semantics to an inclu-
sion test in the horizontal and vertical direction. One scan
of the hierarchy is hence sufficient to form the selection.

Let H be the relational table that stores the nodes in the
hierarchy. Each tuple in H models one node in the clus-
ter tree and has horizontal and vertical extents of the node,
besides the node information. We have:

H (emin,emax,vmin,vmax, ... )
An ANY structure-based brushhaving horizontal ex-

tents (bmin, bmax) and level-of-detail (lod) can be ex-
pressed as a range query as follows.

select * from H
whereemin ≤ bmax andemax ≥ bmin

andvmin ≤ lod andvmax > lod

An ALL structure-based brush query for the same pa-
rameters is specified by:

select * from H
whereemin ≥ bmin andemax ≤ bmax

andvmin ≤ lod andvmax > lod

This range query requires only a linear processing time
for computing brushing results.

4 XmdvTool Backend Framework: Indexing,
Caching and Prefetching

We now describe the components in our framework (Fig-
ure 8). The cache is used to buffer the recently used data
items. The prefetcher predicts user requests and fetches data
into the cache. For each user request the cache is searched
to find the requested objects. The cache may contain all the
requested nodes, or only a subset. In the latter case the delta
calculator computes a remainder query to fetch the subset
of nodes not in the cache. The loader fetches the result of
the remainder query into the cache. Once all the requested
nodes are in the cache they are delivered to the front-end.
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Figure 8. XmdvTool Backend.

4.1 Spatial Index

For each request from the front end we need to quickly
search the contents of the cache, compute the difference
query and fetch the data from the database. We thus need a
fast search mechanism both for the cache and the database.
The front-end passes a queryq to the back-end to search for
objects that lie within the brush. This brush maps to a seg-
ment in the2-D hierarchy map(Section 3.2). The answer
is a set of clusters that intersect this segment. Therefore
the queryq is a 2 dimensional spatial range query (Section
3.4). To execute this query efficiently we thus propose to
use a spatial index.

A spatial index utilizes spatial relationships to organize
data entries with each key value seen as a point or a region in
a k-dimensional space. Many spatial index structures have
been proposed, each of which has its pros and cons. For
our purpose we require a spatial index that works for spatial
range queries and supports high update rates because the
contents of the cache are continuously changing.



In our current implementation we use an R-Tree index
[12]. It is a simple multi-dimensional index structure, while
its performance is comparable to the more complex index
structures available. To support fast insertions we use the
linear spitmethod [12] when splitting nodes.

4.2 Delta Calculator

Each time the front end submits a queryq, the backend
searches the cache to find all the objects that lie in the brush.
Given this list the backend computes the remainder query
(q∆) to fetch the objects not in the cache.
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Figure 9. Computing ∆ queries. The line
segment represents the brush. (bmin =
0.3, bmax = 0.78, lod = 0.6)

Let {b1} represent the set of nodes contained in brushb1

having horizontal extents(bmin, bmax) and level − of −
detail = lod. A noden with horizontal extents(α, β) in
the brushb1 can be used to divide the brush into two disjoint
brushesb2 andb3 such that the{b2} ∪ n ∪ {b3} = {b1},
whereb2 has horizontal extents(bmin, α), level − of −
detail = lod and b3 has horizontal extents(β, bmax),
level−of −detail = lod. This property is based on the in-
tuition that the horizontal extents of the brush and the node
n both define an interval. Therefore we can divide the inter-
val of brushb1 into two disjoint intervals such that the result
of the union of these two intervalsb2 andb3 with interval
of n gives us the interval of brushb1. Thus, to compute the
remainder query we need to find the nodes in the cache that
belong to the current brush. We can then check to see what
parts of the brush interval are not occupied by the nodes
in the cache. Each of these unoccupied intervals forms a
remainder brush and a part ofq∆.

Figure 9 gives an example of above for the brush
(bmin = 0.3, bmax = 0.78, lod = 0.6). The figure shows
the 2D hierarchy map of the contents of the cache. The bold
part of the brush illustrates the remainder brushes.

4.3 Cache

Using main memory (cache) to store frequently used
data items to reduce fetch latencies from secondary storage
devices is a proven technique. We employ caching to reduce
latency and to avoid database fetches. The cache in Xmdv-
Tool is a contiguous chunk of main memory. Each cache
entry contains a cluster (node) from the cluster tree and a
descriptor that describes the position of the node in the 2-
D hierarchy map (Section 3.2). Analysis of real user traces
of our visualization environment done in [8] has shown that
user traces exhibit characteristics like:

1. Locality of Exploration: Users doing data exploration
explore one area of display at a time before moving to
another area.

2. Contiguous queries have similar answers: Exploration
using visual navigation tools such as sliders and knobs
translate to consecutive queries and the answers to
these queries have a significant number of objects that
are common.

3. Presence of idle time: Users usually pause to under-
stand the display and look for patterns in the data, so
there is idle time between queries to the database.

Note the properties (1) and (2) correspond to the con-
cept of spatial and temporal locality respectively. For pro-
gram reference streams that exhibit similar characteristics
the LRU [23] replacement policy performs very close to the
optimal replacement policy. We thus implement the LRU
replacement policy.

4.4 Direction-based Prefetching

To further improve the performance of subsequent user
operations, XmdvTool incorporates prefetching technology
[19, 20]. The prefetcher exploits the third user trace char-
acteristic given in Section 4.3, namely, the idle time in
between user operations, to predict and fetch future user
requests. In particular, our current study focusses on
direction-based style prefetchers; which are analogous to
sequential prefetching proposed in other prefetching works
[5, 18, 8]. The strategy predicts the most likely direction of
the next brush movement. For interactive navigation tools
like sliders and knobs it is intuitive that the user will con-
tinue to use the same navigation tool for a while before
changing to another one. Based on the user’s past explo-
rations, the predictor assigns probabilities to the four direc-
tions. The strategy then is to prefetch data in the direction
with highest probability.



5 Experimental Results

5.1 Experimental Setup and Metrics

All of our experiments were run on a Pentium 3 windows
XP machine with 128 MB of memory. The complete system
was implemented in C++. We used the OTL oracle-odbc
template library to access data on an oracle server running
Oracle 9i. We used the oracle spatial extension to construct
the R-Tree index at the database. For the main memory R-
Tree index we used the spatial index library developed at
University of California Riverside.

To test the scalability of the system we used two real
data sets obtained from online repositories. Data set D1
had 20,000 data points we call it the out5d data set. It is
a five dimensional remote sensed data (SPOT, magnetics,
and three radiometrics channels - potassium, thorium, and
uranium). Data set D2 had 195,000 data points and 6 di-
mensions. It contains flow simulation data. We ran exper-
iments over data set D1 with a set of real user traces. We
used a set of four real user traces each of half hour duration,
collected as a part of the study performed in [8]. For exper-
iments over data set D2 we used a set of four synthetic user
traces. However, these traces were modeled based on the
characteristics exhibited by the real user traces. [8] presents
details of modeling user traces. All the results reported in
this section are an average taken over four runs.

The main metric used to evaluate the performance of the
cache islatency. The latencyfor a single user request is
the time taken for the backend to serve the data once the
request is submitted. To compute the latency for a complete
user trace, we use the following formula:

latency =

∑N

i=1
Li

∑N

i=1
Ti

(1)

WhereN is the total number of requests,Ti is the num-
ber of objects (tuples) fetched in requesti andLi is the la-
tency for requesti. Equation 1 gives us the latency per ob-
ject fetched. It gives us a common ground to compare and
combine the latency measures for different user traces. A
measure derived from latency is theLatency Reduction Ra-
tio (lrr ). Thelatency reduction ratiofor a particular system
configuration is the ratio of the decrease in latency to the
latency obtained when running the same experiment using
the base configuration. In the base configuration the cache,
prefetcher and the secondary index structure all are turned
off so the user requests are sent directly to the database.

lrr =
Latencybase − Latencyoutput

Latencybase

(2)

Equation 2 gives us the fraction of the latency reduced
by a particular system configuration. This helps to evaluate

the relative usefulness of each configuration. In addition
we also useobject hit ratioevaluated using Equation 3 to
measure the usefulness of the prefetecher.

hitratio =
TotalNumberOfObjectHits

T otalNumberOfObjectsRequested.
(3)

5.2 Database Index

To show the usefulness of the R-Tree index structure in
our context, we ran two experiments. In the first experiment
we ran four user traces over data sets D1 and D2. The cache
was turned off, so each user request was sent directly to the
database. We record the latency for each user trace with
database index on and off. Database index off implies that
system configuration is same as base configuration. Figures
10 and 11 show the latency and alsolrr for data sets D1
and D2 respectively. For data set D1 the latency reduction
ratio on average is approximately 33%, while for D2 it is
70%. Search time for sequential scan increases linearly rel-
ative to the size of the data set, whereas with an index the
search time increases almost logarithmically with the data
set size. As the size of the data set increases, the benefits of
the database index become more significant.

No-Index Index lrr

User1 2.0253 1.5 0.25
User2 0.6444 0.35 0.45
User3 0.751336 0.5 0.33
User4 0.8855 0.6 0.32

Figure 10. Latency in msec, Data Set D1

No-Index Index lrr

User1 3.90 0.94 0.75
User2 6.09 1.75 0.71
User3 2.05 0.71 0.65
User4 5.42 1.09 0.80

Figure 11. Latency in msec, Data Set D2

In the second experiment we measure the effectiveness
of the index with the cache turned on. The cache size set
to 10% of the size of the data set for D1 and to 2% for D2.
Note that D2 is around 10 times larger than D1. Figures 12
and 13 show thelatency reduction ratio (llr) for four user
traces using data sets D1 and D2 respectively.∆ lrr is sig-
nificant, illustrating that the database index is beneficial. On
average for D1 we gain approximately 14% and for D2 we
gain approximately 17.25%. As the size of the data set in-
creases∆ lrr increases. difference in the amount of time it
takes to search for remainder queries for the two approaches



will increase as the size of the data set increases. This shows
that the database index makes our system scalable.

lrr lrr ∆lrr

no-index index

User1 0.50 0.68 0.18
User2 0.52 0.58 0.05
User3 0.25 0.49 0.23
User4 0.36 0.48 0.11

Figure 12. Latency Reduction Ratio (llr) with
Relative Cache Size 10 % for Data Set D1

lrr lrr ∆lrr

no-index index

User1 0.73 0.91 0.18
User2 0.74 0.92 0.18
User3 0.70 0.90 0.20
User4 0.79 0.92 0.13

Figure 13. Latency Reduction Ratio with Rel-
ative Cache Size 2% for Data Set D2

5.3 Cache Size

Here we show the effect of the cache size on thelrr for
data sets D1 and D2. For this experiment we turn on the
cache and the index structure in the database.
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Figure 14. Comparison of Cache size vs. La-
tency. (a) Data D1, (b) Data D2.

We ran the same 4 user traces. We plot theaverage la-
tency vs. relative cache size in Figure 14. As seen in the
results, thelatency decreases at a high rate for smaller cache
sizes. However, the curve flattens out and we get less gains
for bigger cache sizes.

Latency is inversely correlated with hit ratio. For the
user traces used in this experiment it appears that for big
cache sizes the only misses we get arecompulsory misses.
Compulsory missesoccur when the cluster is accessed for
the first time by the user trace.Compulsory missesare in-
dependent of the cache size, at least until the prefetcher is

inactive. Thus we can see that increasing the relative cache
size from 20 percent to 40 percent for data set D1 results
only in little improvement in latency. The curve flattens out
much earlier for data set D2 when compared to data set D1.
This demonstrates the size of the cache does not have to
scale with the size of the data set. This property makes the
system scalable for large data sets.

5.4 R-Tree Cache Index

To show the effectiveness of the R-Tree main memory
index over the cache, we ran experiments with the R-Tree
main memory index structure turned on and also off. When
the R-Tree main memory index is turned off we use sequen-
tial scanning to find the requested objects.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50

Relative Cache Size %

A
v
g

.
L

a
te

n
c
y

(m
s
e
c
)

Seq. Scan

RTree

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50
Relative Cache Size %

A
v
g

.
H

it
R

a
ti

o

Hit Ratio

Figure 15. Comparison of Cache Size for Data
set D1. With (a) Latency and (b) Hit Ratio.

Figure 15 shows the average latency for the 4 user traces
for Data Set D1. The cache index performs worse than
the sequential scan for small cache sizes. The main rea-
son being, for small cache sizes the hit ratio is low. This
means that cache contents are changing frequently. Thus,
the R-Tree index has to be updated very frequently. How-
ever, for bigger cache sizes the R-Tree curve does cross-
over and gives lower latency values. Figure 15 also shows
the hit ratio for the same experiment. Note there is only one
curve because the hit ratio for both the R-Tree index and se-
quential scan is the same, the only difference really is in the
cache look up latency. If we compare the charts in Figure 14
we see that around the 80% hit ratio mark the R-Tree starts
performing better than sequential scan. We also get similar
results for data set D2. Thus, we see that the index structure
can be helpful in certain situations. However, to make the
index work for smaller cache sizes and lower hit ratios we
may develop an index like the LR-Tree [2] that supports not
only high query rates but also high update rates.

5.5 Prefetcher

Now we set out to show the effectiveness of the direc-
tional prefetcher. Our experiments are based on the 4 user
traces over D1 and D2, with and without the prefetcher.

Figure 16 shows thelrr with and without the prefetcher
for user3. Here we can see that the prefetch curve is above
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Figure 16. Prefetch vs. Not, User3, Data set
D1: (a) lrr and (b) Hit Ratio.
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Figure 17. Average lrr for 4 user traces,
Prefetch vs. Not; Data Sets (a) D1; (b) D2.

the no prefetch curve for practically all cache sizes. This
shows that the prefetcher generally improves the perfor-
mance of the cache (in our case, in particular, by around
8% on average). This can be directly attributed to the im-
provement in hit ratio.

Figure 16 shows the hit ratio for the same user trace with
and without the prefetcher. The curves for the remaining
user traces also show the same trend. Figure 17 shows the
averagelrr for the four user traces for data sets D1 and D2.
We can see that enabling the prefetcher increases the aver-
agelrr significantly also as the input data set gets larger the
increase in thelrr gets larger.

5.6 Discussion

The experiments have demonstrated that each compo-
nent of the framework plays a significant part in reducing
the response time of the system. Also each of the methods
scales, i.e., performs relatively better with bigger data sets.
Thus our proposed framework has indeed the critical com-
ponents for serving visualization applications. Due to this
success, our framework is scheduled to be released with the
next version of the freeware XmdvTool.

6 Related Work

Visualization-database integration. Database support
systems for visualization systems such as Tioga [22], USD

[14], GODVIA [17] and IDEA [21] represent work closely
related to ours in the sense that all of them work towards
making visualization systems run over large persistent data.
However, many of the detailed techniques used are rather
different in each of these systems. USD [14] proposes a se-
mantic net model to store and retrieve unstructured data. I
Tioga [22] implements a multiple browser architecture for
visual queries. The problem of query translation is not stud-
ied. IDEA [21] is an integrated set of tools to support in-
teractive data analysis and exploration. The issues of on-
line query translation and memory management are not ad-
dressed.

Other systems that have a visual interface and a database
back-end include dynamic query histograms [6] and di-
rect manipulation histograms [13]. However, the operations
translate differently: to dynamic range queries in [6] and
to temporal queries in [13]. Neither deals with hierarchy
exploration support, nor with caching or prefetching.

Special techniques for hierarchy encoding.Our ap-
proach towards hierarchy labeling is related to the nested
interval method [3, 26]. The labels assigned to the node by
the nested interval approach are similar to the horizontal ex-
tents. We augment this labeling scheme with labels for ver-
tical extents to incorporate the vertical selection brush se-
mantics. Our work goes beyond hierarchy encoding. Ciac-
cia et al. [4] used the mathematical properties ofsimple
continued fractionsfor encoding tree hierarchies. However,
given a noden, this method cannot efficiently provide the
list of descendants ofn. Teuhola [24] used a so calledsig-
naturefor encoding the ancestor path. Given a noden, the
code ofn is obtained by applying a hash function to it and
by concatenating the resulting value with the code of its par-
ent. The non-unique code can make the quantity of data
retrieved be much larger than needed. Moreover, the code
obtained by the concatenation of all ancestor codes could
exceed the available precision for deep trees.

Recently, there has been considerable work in the area
of hierarchy representation for XML. [16] extends the idea
proposed in Dietzs numbering scheme [7] to support dy-
namic insertions with recomputation of labels. In our case
the data is assumed to be static. The main idea in [7]
was to use tree traversal order to determine the ancestor-
descendant relationship between any pair of tree nodes.
Each node is labeled with a pair of preorder and postorder
numbers. This scheme does not incorporate the vertical se-
lection semantics of the ALL and the ANY brush. More-
over, unlike the labels assigned by our scheme, the labels
assigned to the nodes do not easily map to a 2D space. Thus
the structure-based brush selection cannot be expressed as
simple spatial intersection operations as in our framework.
Similarly, [15] compares two main approaches for hierar-
chy encoding namely nested interval method and the prefix
based encoding scheme.



7 Conclusions

With the increasing amount of data being accumulated
nowadays, the need for visually exploring large datasets be-
comes imperative. A viable way to achieve scalability for
visualization tools is to integrate them with database sys-
tems. Such integrations raise two problems: query transla-
tion (i.e., how do visualization operations map to queries in
the database?) and memory management (i.e., how can we
manage the memory to achieve fast response times?). This
paper presents a solution that addresses both these aspects.
The approach involves mapping the cluster hierarchy into
a spatial representation namely2-D Hierarchy Maps. This
allows us to translate visual brushing operations into spa-
tial queries. These spatial queries can then be efficiently
executed using spatial index structures such as R-Trees.
The solution also develops a caching strategy and uses a
prefetching policy to improve upon the response time of the
system. To show the effectiveness of the methodology we
implemented our idea in a freeware visualization tool for
data exploration called Xmdv. In the process we coupled
Xmdv with an Oracle 9i database management system. Ex-
periments for assessing the method quantify the effective-
ness of each component in our system.
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