Mapping Nominal Values to Num

bers for Effective Visualization®

Geraldine E. Rosario, Elke A. Rundensteiner, David C. Brdwatthew O. Ward and Shiping Huarig

Computer Science Department

Abstract

Data sets with a large numbers of nominal variables, inofydi
some with large number of distinct values, are becomingemer
ingly common and need to be explored. Unfortunately, most ex
isting visual exploration tools are designed to handle maneri-
ables only. When importing data sets with nominal values $oich
visualization tools, most solutions to date are rather Bstip. Of-

ten, techniques that map nominal values to numbers do niginass
order or spacing among the values in a manner that conveyansem
tic relationships. Moreover, displays designed for nornirsai-
ables usually cannot handle high cardinality variabled.w&his
paper addresses the problem of how to display nominal Vesaiy
general-purpose visual exploration tools designed forarimvari-
ables. Specifically, we investigate (1) how to assign orddrspac-

ing among the nominal values, and (2) how to reduce the number
of distinct values to display. We propose a new techniqubecta
the Distance-Quantification-Classing (DQC) approacth prepro-
cess nominal variables before being imported into a visyploe
ration tool. In the Distance Step, we identify a set of indefent
dimensions that can be used to calculate the distance betvose-

inal values. In the Quantification Step, we use the indepardie
mensions and the distance information to assign order ascirap
among the nominal values. In the Classing Step, we use sesult
from the previous steps to determine which values withindbe
main of a variable are similar to each other and thus can hggb
together. Each step in the DQC approach can be accomplished b
a variety of techniques. We extended the XmdvTool package- to
corporate this approach. We evaluated our approach onadelega
sets using a variety of measures.
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1 Introduction

Nominal (or categorical) variables are variables whoseeasldo
not have a natural ordering or distance. High cardinalit;ino
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nal variables (i.e., those with a large number of distindties) are
common in real-world data sets. Examples of high cardinabim-
inal variables include product codes and species names.

Visualization provides an efficient and interactive way xjbler-
ing high dimensional data [LeBlanc et al. 1990]. Unfortahgt
nominal variables, especially high cardinality nominafizbles,
pose a serious challenge for data visualization tool dpezto Dif-
ficulties arise due to several reasons.

First, visualization methods specifically designed for iah
data are not as commonly used as those designed for num&ic da
[Friendly 1999]. Possible reasons include:

e They tend to be more special-purpose. For example, Mosaic
Displays [Friendly 1999] are designed for discovering asso
ations, whereas Parallel Coordinates [Inselberg and Diftasd
1990], which are for numeric variables, can be used for ex-
ploring outliers, clusters, and associations.

Methods such as the Fourfold Display [Friendly 1999] cannot
handle multiple nominal variables.

e Methods such as the Mosaic Display cannot handle high car-

dinality variables well.

e Most methods are not readily available in common visualiza-
tion software [Friendly 1999].

Second, most visualization software packages only praodisle
plays that are designed for numeric variables. Reasonsifoirt-
clude:

e Data sets have traditionally contained only numeric data.
e Numeric displays are more general-purpose.

e The inherent order and spacing among numeric values makes
it natural to convey notions such as magnitude and simylarit

One way to display nominal variables using numeric displays
to map the nominal values to numbers, i.e., assighing orddr a
spacing to the nominal values. Display methods such as-Paral
lel Coordinates (Figure 1) require both order and spacingram
values. However, care must be taken, as arbitrarily castong-
inal values into numeric displays may introduce artificiattprns
and cause errors in the interpretation of the visualizatiexisting
nominal-to-numeric mapping techniques do not always adsigh
order and spacing to the values. For example, the methodtegpo
in [Ma and Hellerstein 1999] only assigns order to the noiniak
ues, but not spacing.

As a motivating example of the need for order and spacing, re-
fer to Figures 1 and 2 which both display the quality, colod an
size information of 6550 objects (from a synthetic data. d&tjure
1 gives an example of a display where nominal values were as-
signed order and spacing using our DQC approach, whereageFig
2 shows alphabetical ordering and uniform spacing of theinaim
values. Figure 1 reveals that blue and purple objects hawiasi
underlying distributions for quality and size. Such infation is
difficult to extract from Figure 2.

This paper addresses the problem of how to display data sets
with a large number of nominal variables, some with high ireid
ity, using visual exploration tools designed for numericiables.
Specifically, we address two sub-problems:
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using DQC to assign order and
spacing to nominal variables.

Figure 2:

e How do we map nominal values to numbers such that we ef-
fectively assign order and distance among the values? @rder

used to position values along an axis, where the adjacency of

values suggests similarity. Distance is used to space theva

along that axis. The amount of spacing suggests the degree of

similarity among values, making it easier to spot clusters a
well as outliers. The assignment of order and distance must

be done in such a way that the distance between two values in

nominal space is preserved in the numeric space.

When a variable has many values, how do we group similar
values together to reduce the number of distinct valuessto di
play? Reducing the cardinality is needed for displays ssch a
Dimensional Stacking [LeBlanc et al. 1990] and Trellis Dis-
plays [Becker et al. 1996] which are limited by the number of
values they can display.

We also want our solution to have the following features:
[ )

data-driven able to work without explicit domain knowledge.

multivariate using the relationship of a nominal variable with
severalother variables to decide the ordering, spacing and
classing of the values.

scalable can work with a large number of variables with high
cardinality using limited memory.

distance-preservinghe distance between two nominal values
in nominal space is preserved in numeric space.

association-preservingnominal variables that are highly as-
sociated in nominal space are also highly correlated in nu-
meric space.

To our knowledge, no solution exists that has all these feat{ihis
is further discussed in Section 2).

To solve this problem, we propose that nominal variables be
pre-processed usingzstance-Quantification-Classing (DQC) ap-
proachbefore being imported into visual exploration tools desiin
for numeric variables. In thBistance Stepwe transform the data
and search for a set of independent dimensions that can lde use
to calculate the distance between nominal values. Thiarntistis
based on each value’s distribution across several otheinabwari-
ables. The independence among the resulting dimensioeeded
to ensure that the distance calculation is not biased bypgrodf
highly associated (i.e., correlated) variables. Analgzime vari-
able using its relationship with several other variablestgéad of
just one other variable) promotes stability in the resgltinder and
spacing of values. These all will help ensure that the déstdre-
tween two nominal values in nominal space is preserved iremiem

space. In theQuantification Stepwe assign order and spacing
among the nominal values based on the distance information.
the Classing Stepwe determine which values within a variable are
similar to each other and thus can be grouped together. Hach o
these three steps can be accomplished by more than onegeehni
as we will show in Sections 4 to 6.

We incorporated an implementation of the DQC approach into
XmdvTool, a public-domain visualization package devetbs
WPI [XmdvTool Home Page 2003]. For the Distance Step, we
implemented and evaluated two alternatives: the wellbdisteed
technique of Multiple Correspondence Analysis (MCA) [Graere
1993] from Statistics and our own Focused Correspondened- An
ysis (FCA) which we describe in this paper. FCA is our propose
alternative to MCA when memory is limited. For the Quantifica
tion Step, we used a modification of the Optimal Scaling tespis
[Greenacre 1993] to also make it work for data sets with p#sfe
associated variables. For the Classing Step, we used artliera
cal Clustering algorithm [Johnson and Wichern 1988] so we ca
performmultivariate classindusing information from several vari-
ables to guide the classing).

To test our ideas, we pre-processed several data sets hging t
DQC approach and used numeric displays such as Parallet Coor
dinates to evaluate the usefulness of the quantified vergibthe
nominal variables. We compared MCA, FCA and arbitrary quan-
tification using a wide range of evaluation measures suchves t
memory, quality of quantification, quality of classing, amahlity
of visual display.

The main contributions of this paper include:

e Distance-Quantification-Classing (DQC) approach: This is
general pre-processing approach for displaying nominé va
ables in visual exploration tools designed for numeric-vari
ables. Since most visualization tools are designed for nigme
variables only, this approach makes the exploration of romi
nal variables more accessible to data analysts. DQC is also
useful for pre-processing nominal variables for a variety o
data analysis techniques, including association rulesand

ral networks.

Focused Correspondence Analysis (FCA): FCA is a viable al-
ternative to Multiple Correspondence Analysis when memory
is limited. It processes each nominal variable indepergent
rather than simultaneously

Enhanced quantification: We improved upon the common
practice of using only the coordinates from the first princi-
pal axis from Correspondence Analysis for quantificationl a
made it work with variables with perfect association. This a
lows the analysis to be automated.

Multivariate quantification and classing: Our use of Corre-

spondence Analysis in the Distance Step and Hierarchical
Clustering in the Classing Step allowed us to group similar
nominal values together based on information from several
other variables, not just one other variable. This makes the
classing more stable.

Multifaceted evaluation: we evaluated the quality of the re
sults of our approach via user studies, statistical arglgsid
computational performance measures on a wide range of data
sets.

This paper extends the work presented in [Rosario et al.]2003
by providing a more comprehensive analysis of relatedditee,
more detailed algorithm descriptions, more extensive sasgdies,
and an example using an additional visualization techniguat-
terplots) to show the generality of the technique. The rener of
the paper is organized as follows. Section 2 describesrtiaork.



Section 3 gives an overview of the entire approach, whildiGes

child node. This process is recursively applied until earminal

4 to 6 give details for each step of the DQC approach. Section 7 node is represented by a rectangle. CatTree is an improtesnen

presents empirical results. Section 8 summarizes ourtseant
lists possible future directions.

2 Related Work

2.1 \Visualizing Nominal Variables

Several approaches to visualizing nominal variables ex@ieve
diagrams were designed to show relationships in a two-watirco
gency table [Riedwyl and Schpbach 1994; Friendly 1999]. &he
pected frequencies for any two-way contingency table caees-
sented by rectangles whose widths are proportional to théfte-
quency in each column, and whose heights are proportiortakto
total frequency in each row. The observed frequency is shmwn
the number of squares in each rectangle. For a dataset witlal& s
number of nominal variables and values, sieve diagrams seem
be good for presenting the information hidden in the dataargé
dataset with many nominal variables and values would becdiffi
to handle in this manner.

Similar to sieve diagrams, mosaic displays represent thatso
in the contingency table by tiles whose areas are propatttorthe
observed cell frequency [Friendly 1999; Valero-Mora et28i03].

It is improved by the use of text and/or color to show statati
measures such as standardized residuals.

A collection of related mosaics can be used to show the associ
ations and relations between nominal values of a multi-way c
tingency table. It can be extended to display additionadtieh-
ships among the data including marginal or conditionaltiaa
ships. In theory, the mosaic matrix is capable of accomnioglat
large datasets with large numbers of nominal variables ahges.
However, in reality it shares the shortcomings of sieve @diat - it
is difficult to scale to visualize large datasets with mudétipominal
variables and values in a limited screen space. Also it ig oséd
to visualize the contingency tables where a count is usetidw s
how many cases surveyed contain certain values of two ndmina
variables.

Correspondence Analysis Maps is a technique to visualize th
associations and relationships among nominal values [acze
1993]. In correspondence analysis maps, all nominal vieriedd-
ues are mapped to numerical values in a multiple dimensianesp
(typically two or three dimensions). The mapped numeriuesl
in the lower dimensions are used to position the nominalesln
a two or three dimensional scatterplot. The distances irstia¢-
terplots among the nominal values can be computed and used t
interpret the associations and independencies among tGeme-
spondence analysis maps are a good way to visualize thei@ssoc
tions among nominal values.

Fourfold displays are designed for the display ok 2 (or
2 x 2 x k) tables [Friendly 1999]. It allows easy visual comparison
of the pattern of association between two dichotomous bkr$a
across two or more populations. The frequency in each call of
fourfold table is presented by a quarter circle whose arpeoigor-
tional to the cell count. In the 2 x k case, the third dimension
usually is population. In this case, a series of fourfolgldigs are
plotted to see if the association between the first two viatahre
homogeneous across populations. Fourfold displays aadiye
designed to visualize datasets with only two nominal véesland
with only two nominal values for each variable.

A Treemap is a space-filling technique for visualizing hiera
chical data [Johnson and Shneiderman 1991; Shneiderm&. 199
The drawing area is divided along one axis (e.g., verticabell
on the populations of the subtrees directly connected tadbe
node. Each of these rectangles is then divided along theeperp
dicular axis according to the subtrees beneath the comegmp

Treemaps with a capability of creating a hierarchy from gatie
cal data and allowing direct, interactive manipulation fedtthier-
archy [Kolatch and Weinstein 2001]. Once the initial hiehgris
built, CatTree allows the user to dynamically modify the esrdf
the nodes in the hierarchy.

All the above mentioned techniques, and others such as MANET
[Hofmann and Bernd 1996], Table Lens [Pirolli and Rao 1998] a
dimensional stacking [LeBlanc et al. 1990], were designetide-
veloped to explore the relationships and associations gmomi-
nal variable values. They employ different visualizatipp@aches
to uncover relationships that may be hidden in the origiaahset.
They come from different research communities and may or may
not map the nominal values onto numeric values. Unfortuyate
these approaches are either special-purpose, not readilglale in
common data analysis software [Friendly 1999], or cannattea
high cardinality nominal variables well.

Another research area relevant to our work is the study afrerd
ing techniques [Friendly and Kwan 2003; Valero-Mora et 803,
which order nominal values into an evenly-spaced sequds&min
promoted the idea of a "reorderable matrix” as a generahiegcie
for data exploration and visualization to highlight intstieg pat-
terns in a dataset [Bertin et al. 1982; Bertin 1983; Frieraity
Kwan 2003]. A reorderable matrix brings similar observasi@nd
variables together by permutation. Matrix reordering poto be
effective in some cases; for example, Table Lens uses mattix
ordering algorithms in support of data visualization [Rad &ard
1994].

Ma and Hellerstein proposed an algorithm for ordering aateg
cal data by constructing clusters, sequencing these ciustenin-
imize order conflicts, and ordering the values within thestdus to
eliminate pair-wise order conflicts [Ma and Hellerstein 9p9rhe
process is equivalent to a Hamilton path problem, which isisFr.

Beygelzimer et al. presented an algorithm that uses a gpectr
method to avoid the inherent intractability of the above tizered
approach [Beygelzimer et al. 2001]. They use a multi-leyel a
proach to reduce the complexity. First, the original graplap-
proximated by a sequence of increasingly coarser grapten e
spectral algorithm is applied to the coarsest instance t@ager-
dering. Finally, the ordering is propagated back by intkiiag
through the sequence of intermediate graphs. These twdtalys
provide an elegant result for displaying datasets with allsmian-
ber of nominal variables. The scalability to a large datagiét
multiple nominal variables was not reported.

o Among other ordering approaches, arbitrary ordering (&lg.
phabetical order) and ordering based on the value of angtrer
able (e.g., time) have been studied for enhancing visuaira
Unfortunately, arbitrary ordering often creates artifigiatterns
that can lead to wrong conclusions. Furthermore, equalirspac
that is often assumed in ordering algorithms does not cotivey
degree of similarity between nominal values.

2.2 Correspondence Analysis

Correspondence analysis is a descriptive technique dmbignan-
alyze two-way and multi-way tables containing some measiire
correspondence between the rows and columns [Greenacdg 199
Correspondence analysis maps the nominal values onto eagepa
dimension space which is multidimensional in the sensesthadral
scale values are obtained for each nominal value.
Correspondence analysis was independently developedvby se
eral researchers and given different names, such as ofsaalihg,
reciprocal averaging, optimal scoring, appropriate smprhomo-
geneity analysis, dual scaling, and scalogram analysisefileaus
and Young 1985]. In addition, correspondence analysis kas b



proposed many times in the literature because the analgsibe
expressed and interpreted in several apparently diffénerequiv-
alent ways. Tenenhaus and Young analyzed these differ¢hbase
and showed that they all lead to the same equations for anglyz
the data [Tenenhaus and Young 1985].

Several research efforts on Correspondence Analysis (G4) a
visualization have provided ideas for our research. Fitjesdg-
gested using the coordinates from the first CA principal &xisr-
der the values of nominal variables in mosaic displays teakthe
pattern of association [Friendly 1992]. Greenacre propageng
the coordinates from the first CA principal axis as input teate a
classing tree [Greenacre 1993]. In this tree, the nomirlakgare
grouped together using reduction in inertia to represesy &f in-
formation. Greenacre also suggested the use of quantifietbis
of nominal variables as input to statistical techniques teguire
numeric variables, such as regression. The SPSS Categarks
age uses CA to pre-process data for their Categorical R&gres
module and uses CA maps for visualizing nominal variablesyM
man and Heiser 2000]. These uses of the coordinates of thEArs
principal axis seem to be due to the theory of Optimal Scatimat
states that these coordinates provide an optimal numemiesenta-
tion of the nominal values [Greenacre 1993]. Unfortunatetyen
the nominal variable is perfectly associated with anoth@ninal
variable, such coordinates are not optimal, as we will stater!

Milanese et al. used CA and clustering to group similar insage
[Milanese et al. 1996]. They created a hierarchical treefdst
indexing into classes of images. This is similar to our apphoin
that we also use CA as a data reduction technique and userahgst
to group similar nominal values together.

For each nominal value, one can also calculate statistitsis@
existing numeric data visualization methods to displayrthéJn-
fortunately, when the variable has a large number of vathedess
frequently occurring values are often ignored. This implikat
there is a need to group similar values together, which issthee
that our 'classing’ step addresses.

2.3 Classing

There are several approaches to grouping similar nomidaesa
together. One could use expert knowledge, but this can heusd
for high cardinality nominal variables. One could use infation
about the nominal variable itself (e.g., based on the frequef
occurrence of the values, the values can be grouped intdgoppu
common or rare values). Or, one could use the relationshipeof
nominal variable with a target classification or regressianable
[Micci-Barreca 2001] (e.g., group cities based on incomelje
But using only one specific variable to guide the classbigafiate
classing may result in a classing that is believable only within the
context of that specific variable (e.g., if we group citiesdzhon in-
come level alone, we may have to regroup cities if we wantga-vi
alize their relationship with land area). A better classapproach

is to use several variables to guide the classing of a tagyéihle
(multivariate classiny One multivariate classing approach applies
clustering on a data set [Johnson and Wichern 1988], where th
records represent the nominal values and the variableaio@gum-
mary information about each nominal value. We use this eturgg
approach for our Classing Step (Section 6). For examplelagsc
similar product codes together, we can create a datasetowith
record per product code and have the variables contain stimeda
information. Applying clustering on this transformed dat will
result in grouping similar product codes together. Han aathKer
suggested using heuristics to create concept hierarcHes nd
Kamber 2001]. Milanese et al. proposed using CA and cluseri
to group similar images together based on color, textureshage
[Milanese et al. 1996].

3 Overview of Proposed Approach

Our proposed approach, the Distance-Quantification-Glg.sp-
proach, consists of three steps (Figure 3). Each step carcbena
plished by more than one technique. In this section, we destire
input, output and purpose of each step. In the succeedirtigpsec
we discuss possible techniques for each step.

Target variable &
data set with nominal variables

| DISTANCE STEP|

\j

(Target variable * independent dimensions)
table for distance calculation

/\

| QUANTIFICATION STEP | < =*P| CLASSING STEP |

Nominal-to-numeric
mapping

Classing tree

Figure 3: DQC Approach

Step 1: Distance Step -— Given a data set with nominal vari-
ables, one of which is the nominal variable to be quantified an
classed. The purpose of this step is to create a table wherews
represent the values of the nominal variable and the coluems
resent information about the other variables in the data Ber
this table to be useful for the Quantification and Classiegstwe
should be able to calculate the distance between two nowveahas
from this table.

To better explain this, consider a data set that containbtgua
color and size information for 6550 objects. Quality hag¢hpos-
sible values — good, ok, bad; color has six values — blue ngiae
ange, purple, red, white; and size has ten values —'a’ t&l{jppose
we want to analyze color (which we shall call aarget variablg
using quality and size (which we shall call camalysis variables
To analyze color, we look at the distribution of its valuesharie-
spect to the analysis variables using a contingency or sdabte
(Figure 4). From the counts table, we can calculate row perce
ages (Figure 5) and get a glimpse of which colors are similar t
each other based on row profiles; Figure 5 shows that blue @and p
ple have similar row profiles. From the row percentage tabke,
may be tempted to calculate the distance between two rowg asi
euclidean distance formula; however, there are two rowgrtage
tables for color (color by quality and color by size). Thetteique
to be used for this step must have a way to combine all the g@dum
of all tables for color, extract new dimensions that are preshelent
of each other, and transform the counts table into a tabteudes
the independent dimensions (Figure 6). These independaend
sions would then be the basis of distance calculations eiedbe
succeeding steps. Using independent dimensions ensuatethéh
distance calculation is not biased by groups of highly assed
columns. This argument is similar to performing PrincipainG
ponent Analysis prior to Cluster Analysis to ensure thatdineen-
sions are independent of each other as required by the eanlid
distance calculations [Johnson and Wichern 1988]. Eachrrdiae
output table (Figure 6) can be thought of as a point in p-dsieTal
space defined by the p independent dimensions.

Often the number of analysis variables is large, althoughra¢
may be highly associated with each other. This suggestshbat



number of independent dimensions to keep in the output {&ide
ure 6) can be reduced while still maintaining a high accufacthe
distance calculation. This Distance Step must also deterindow
many of the independent dimensions to keep. This step is s m
important step as it dictates the accuracy of the distariceletion
needed in the Quantification and Classing Steps. It is alsonbst
memory hungry and computationally intensive step as itlire®
transformations of the original (large) data sets and dzdaation.

COLOR by QUALITY Counts Row Percentages
Good___Ok _ Bad
Ble €13 50 379100
Green | 23 46 31 |100

Orange| 31 22 1100

Purple €_16 46 38_2100
Red 30 32 38 |100

White | 40 3228 [100

Good Ok Bad
Blue 187 727 546 | 1460
Green | 267 538 356 |1161
Orange | 276 411 191 | 878
Purple | 155 436 361 | 952
Red 283 307 357 | 947
White | 459 366 327 | 1152
Total [1627 2785 2138 | 6550

Total

Figure 5: Row Percentage Ta-

Figure 4: Counts Table ble Showing Row Profiles

Step 2: Quantification Step - Given a table with rows repre-
senting the values of the target variable and columns reptieg)
independent dimensions extracted from the analysis Vagdbig-
ure 6), this step uses the distance information to assiger @nad
spacing to the values of the target variable. The output naimal-
to-numeric mapping (Figure 7). The goal of this step is tame
that mapping in a way that is distance-preserving and aatoei
preserving.

Coordinates for
Independent Dimensions
Nominal | Numeric

Dim1 Dim?2 Blue -0.02
Blue <002 -028> (C)};:;;e %552
Green Purple 0
Orange Red -0.50
Purple ¢ White 0.57
Red
White Figure 7: Nominal-to-Numeric

Mapping
Figure 6: Transformed Table
with Independent Dimensions

Step 3: Classing Step — This step uses the distance informa-
tion derived in the Distance Step to determine which valdahe
target variable are similar to each other and thus can bepgrbu
together with minimal loss of information. Ideally, the put is

a hierarchical classing tree showing which values can bepgd
together successively and the information lost with eactuging
(Figure 8). Note that the Quantification and Classing stepg on

may not be dependent on each other, as suggested by the dashed Xj = { 1

line between them in Figure 3.

The DQC approach has several advantages. First, it is denera

purpose. It provides a pre-processing approach that isiluset
only for visualization purposes but also for other techejthat
cannot handle high-cardinality nominal variables (e.fustering
algorithms, association rules) or can only handle numexiables.
Second, it provides a hierarchical classing tree that gigess the
flexibility to decide how many value-groups to use in visue-d
plays, depending on their specific analysis goals. Thirenébles

Classing 100
Tree

for
COLOR

—l —— 1 0
blue purple green red orange white JGIOSS

Figure 8: Classing Tree with Information Loss Measure

multivariate quantification and classing (i.e., determinthe dis-
tance between the values based on their profiles asevgsalother
variables) which we believe provides more robust results.

4 Distance Step

A well-known family of techniques from Statistics suitalite the
Distance Step is Correspondence Analysis (CA)[Greeng2e8;1
SAS Institute Inc 2000; StatSoft Inc 2002]. Its simplestsian,
calledSimple Correspondence Analy$®&CA), is designed to ana-
lyze the relationship of two nominal variables. SCA takemasit

a 2-way counts table (Figure 4). The rows of the counts tafte c
be thought of as data points in a p-dimensional coordinadeesp
defined by the p columns. As such, there is a distance between t
data points. CA eliminates the dependencies among the oslum
by extracting a reduced set of new columns that are indepénde
of each other, while still preserving all or most of the infation
about the differences between the rows. Figure 6 shows anpea
output from CA. CA is similar to Principal Component Analysi
(PCA) except that CA is for nominal variables while PCA is for
numeric variables. Just like PCA, each successive indepert-
mension (called a principal axis) explains less and ledseobverall
information.

In its general form, CA can analyze n-way tables that contain
some measure of correspondence between the rows and columns
(not just counts). In this Distance Step, one can use anyoveos
Correspondence Analysis, as long as it can analyze théoretaip
of more than two variables and it can provide as output thedioo
nates of the top independent dimensions for each value tatpet
nominal variable (as in Figure 6). In the following subsecs, we
describe two versions of CA suitable for the Distance Step.

4.1 Definition

Let a population E of n elements be described by a sétazte-
gorical variablesA1, Ay, ..., Ay, each withpy, po, . . ., px categories.
The total number of categoriesis= le(:1 pj. Theith element can
be represented aspatuple

<Xi11,%i12,--- :Xi1p1:Xi217xi227 s >Xi2p27 <o Xik1, Xik2, - - - :Xikpk >.

where,
if jth variable of ith element= category |
0 : otherwise

an n-element binary indicator vectoK ji = [Xi,Xaji -, Xnji]’,
is associated with categohof each variablg. The p; vectors for
variablej form a matrix associated with variablg,

Xj:[le_,ng,...,ijj]. .

The matrixX for all elements is:

X = [X1,X2,....Xi.

The scale valug is a numeric value associated with category
| of variable j. The value of variableX; for elementi is Xjj =



leil Xiji mji - This is the scaling value of the category of variaple
chosen by element

4.2 Problem Formulation

Consider therf x k) scaling value matri¥X, correspondence analy-
sis can be transformed into an optimization problem of méaiimg
the variance [Tenenhaus and Young 1985]:

n k

33 (i-x*
i=1lj=1

under the constraints that me¥n= 0, varianceX = 1, and where
X is the overall mean.

Since the variance of scale values for categories have bagh m
mized, the results of this algorithm would be that the catiegare
separated as much as possible. This is one potential sokatite
problem of ordering categorical values.

4.3 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) extends SCA to gpal
more than two nominal variables [Greenacre 1993; SAS Lrstit
Inc 2000; StatSoft Inc 2002]. To perform MCA, simply create a
Burt Table (Figure 9) and use that as input to SCA. If a colatitet
is a cross between two nominal variables, a Burt Table is sscro
of all variables by all variables. If V is the total number ofigue
values across all variables, then the size of the Burt Tabley V.

The Burt Table structure allows MCA to simultaneously araly
all variables. That is, for every target variable, it canldubw
profiles using information frorall other variables. This simultane-
ous analysis is efficient in terms of processing time becaegain
calculations can be reused, though wasteful in memory. Wnen
number of nominal variables to analyze is large and some highe
cardinality, MCA could run out of memory, depending on hovsit
implemented.

The coordinates of the first principal axis from MCA follow an
optimal scaling property [Greenacre 1993]. This meansshah
coordinates represent a quantification of all nominal \alweall
variables. Note, however, that this quantification is spbroal
when the target variable has a perfect 1-to-many or manmggoy
association with another variable, as we show in Section 7.

QUALITY COLOR SIZE
Quality by Quality] Quality by Color |Quality by Size
QUALITY Counts Table Counts Table Counts Table
coLor| Celor by Quality | Color by Color [ Color by Size
Counts Table Counts Table Counts Table
SIZE|  Size by Quality Size by Color Size by Size
Counts Table Counts Table Counts Table

Figure 9: Example MCA Input Table (Burt Table)

QUALITY SIZE
coLor | Celor by Quality | Color by Size
Counts Table Counts Table

Figure 10: Example FCA Input Table (Compressed Burt Table)

4.4 Focused Correspondence Analysis

Due to the memory-intensive nature of MCA, we have desigmed a
alternative solution, which we call Focused Correspondéxaly-

sis (FCA), aimed at processing a large number of nominahistes,
some possibly having high cardinality.

Unlike MCA which analyzes all variables simultaneously,A~C
analyzes one variable at a time, making FCA less computgtion
efficient than MCA. The memory savings in FCA come from this
key idea: instead of comparing value profiles across allratben-
inal variables, just compare value profiles across the sebwiinal
variables most associated (i.e., correlated) with theetargriable.
For example, to analyze one nominal variable (e.g., colga)ret
its most associated variables, say quality and size, we gsena
pressed Burt table such as Figure 10 as input to SCA. This tabl
a concatenation of counts tables of color*quality and csiae.

We now discuss why such a table would be a valid input for
SCA. In Section 4, we mentioned that the basic version of SCA
uses a counts table as input. In Section 4.3, we indicatéd/thean
perform MCA by using a Burt Table as input to SCA. In general,
SCA can use as input any table that has the following prageerti
[Greenacre 1984]: (1) the table must use the same physiitalam
measurements, and (2) the values in the table must be natireeg
If the input table does not meet these assumptions, theraidebe
transformed before performing SCA. The table in Figure 1@¥es
these properties.

Two pre-processing steps are needed for FCA: (1) Measure the
pairwise association between nominal variables, and (8rene
the top k associated variables for each nominal variable.

4.4.1 Measure the pairwise association between nominal
variables

Given the counts table of two nominal variables, we can dtate
closely related the variables are with each other usirgasures
of nominal associatiofAgresti 1990]. These measures are anal-
ogous to measures of correlation between numeric varialeg-
eral measures of nominal association exist. The choicendispan
factors such as the size and shape of the counts table andcettie p
ence of low counts [Agresti 1990]. For our purpose, we want a
measure of association that is valid for counts tables tlst be
large, non-square and may contain low cell counts — all ptigse

of counts tables from high cardinality variables. We alsowa
measure of association that has a bounded range of valuiss so
easy to compare two values. One such measure igticertainty
Coefficient Asymmetric measut§R|C) [SAS Institute Inc 2000].
U(R|C) gives the proportion of uncertainty in the row variable R
that can be explained by the column variable C. If lGR= 1, the
value of the row variable can be known precisely given thae/alf
the column variable.

4.4.2 Determine top k associated variables for each nom-
inal variable

For now, we select some k greater than 2, depending on the rgemo
space available. Since there may be variables that are adklw
associated with other variables, we cannot use a threshmottieo
measure of association chosen in Section 4.4.1. By sefgctmbe
greater than 2, we ensure that we use at least one analyisiblear
for each target variable.

In summary, FCA has its own strengths and weaknesses. With
FCA, memory usage is reduced and, in fact, controllable.oAls
we empirically show in Section 7 that FCA provides bettessiag
trees compared to MCA for some data sets. FCA however needs a
longer run time compared to MCA. This is due to the one-atret
analysis as well as the need for pre-processing. In the xioofe



visualization tools, intelligently mapping nominal vatue® num-
bers is a pre-processing step that can be run in batch modeeHe
the run time may not be as important compared to memory space i
some situations.

4.5 Reduce Number of Dimensions to Keep

The CA family of techniques uses forms of decomposition.(e.g
Singular Value Decomposition, Eigenvalue Analysis) toraot
the set of independent dimensions. By default, all forms Af C
will keep all independent dimensions calculated [Greemd&93]
which, for high dimensional high cardinality data sets,uieg a

lot of space. These independent dimensions are orderedrig-di
ishing importance. Part of the CA output is the set of eigkrea
(principal inertia) that indicate the importance of eadffeipendent
dimension. The first dimension, which is the most important d
mension, will have the highest eigenvalue. We plot the eiglele

by dimension number (called a Scree Plot) and find the 'elbow’
the point at which the change in consecutive eigenvaluesls
We keep only the dimensions up to the 'elbow’. This is a common
technique used in Factor Analysis [SAS Institute Inc 200Dhis
technique is independent of the particular version of CA sefor

the Distance Step.

| In summary, the MCA-based Distance Step algorithm is as fol-
ows:

1. BurtTable(rawdataMatrix) -> burtMatrix
2. SCA(burtMatrix) -> coordMatrix, evaluesVector
3. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

while the FCA-based Distance Step algorithm is as follows:

. PairwiseAssociation(rawdataMatrix) -> assocMatrix

. Set k

. FCATable(rawdataMatrix, k, assocMatrix) -> fcalnputMatrix

. SCA(fcaInputMatrix) -> coordMatrix, evaluesVector

. ReduceNumberDim(coordMatrix, evaluesVector) -> coordMatrixSubset

g W

5 Quantification Step

Quantification is the process of assigning order and spdoirige
nominal values. For this step, we want a technique that dem ta
as input the independent dimensions from the Distance Stdp a
produce a nominal-to-numeric mapping for each nominakwde

As mentioned in Section 2, a popular technique used for dfisant
cation is based on the theory of Optimal Scaling [Greenagé3]L
Based on Optimal Scaling, we can use the coordinates frofirshe
CA independent dimension as the quantified version of thei-nom
nal values. Unfortunately, when a nominal variable is plyeas-
sociated with another variable (e.g., one-to-many assoniaone
state has many zip codes, or many-to-many association:ifispec
products are only sold in specific regions), we have founduin o
experiments that this technique fails (see Section 7).

Since we want our technique to work without the need for do-
main knowledge, we want it to automatically handle caseseof p
fect associations.
timal Scaling approach: If the first n CA eigenvalues are 1.0,
let scale = y_, coordinate j, wherecoordinate; is the coor-
dinate of the jth independent dimension for row i. Otherwgsé
scale = coordinate (coordinate of the first independent dimen-
sion). Scaleis the term used in Optimal Scaling for the quantified
version of a nominal variable. In Section 7, we show that pies
posed adjustment gives more effective results for caséspeitfect
association.

By using independent dimensions extracted via CA to crémte t
quantified versions of nominal values, we have essentiaifyned

distance function used in CA [Greenacre 1993]. It is the Weid
euclidean distance between a row profile and the averagex{or e
pected) row profile. Put differently, the quantified versofia nom-
inal value depends on how different its profile is from therage
profile. This implies that even if the nominal variable hasuan
derlying order (i.e., even if it is actually a discretizedmeric vari-
able), that order may not be recreated in the quantifiedomrgin
example of this can be seen in section 7.2.3.

An alternative to our modified optimal scaling is to use aroalg
rithm similar to that described in [Ankerst et al. 1998] fearrang-
ing dimensions for a visualization. We search for an ordgaithe
rows of Figure 6 that minimizes the sum of the distances batwe
all pairs of adjacent rows. This defines the order of the namin
values. The spacing between values can be defined usingsthe di
tance between the row values. Our Optimal Scaling quantiifica
is faster than this algorithm because Optimal Scaling tireses
output from CA at no extra cost.

6 Classing Step

Classing (or intra-dimension clustering) is the proceséirafing
which values within a nominal variable are similar to eadieond
thus can be grouped together. For this step, we want a taghttigt
can take as input a table with rows representing the valugiseof
target variable and columns representing independentrdiioes
extracted from the analysis variables, and produce a leieica
classing tree showing value groupings and the amount ofrirde
tion lost with each grouping (shown in Figure 8). One methmd f
solving this is to apply a hierarchical clustering algamitbn the CA
output table (Figure 6), where each value (row point) is Wwitg
by its counts.

Classing is a data reduction technique, thus it results ivsa |
of information. In this step, we also want to show the amount o
information lost whenever two values are grouped togethed
display this alongside the classing tree. To approximageldls
of information incurred in classing the nominal variablewe fol-
low four steps (inspired by [Greenacre 1993]): (1) Detemrtine
variable V with the highest association with X. (2) Createoa-c
tingency table between variables X and V. (3) Calculate ttal t
table measure of association (e.g., Uncertainty Coefficie(4)
Starting from the bottom of the classing tree and going &l th
way to the top, for every pair of nodes merged together, ealcu
late the loss of information incurred, defined by the cunivgat
percentage loss of informatidn foLoss= 100« (A(fullTable) —
A(afterMerging)/A(fullTable), where A(t) is the association
measure for table t. An alternative measure of informatass lis
the R-squared measure that can be calculated with Clustdy#ia
[SAS Institute Inc 2000].

7 Experimental Evaluation

In this section, we compare the MCA-based implementati@A+

Hence, we propose an adjustment to the Op based implementation, and the common approach of arbijrsy-

tification (arbitrary ordering and uniform spacing) usingvie
range of evaluation measures. We focus our evaluationseoDit
tance Step (MCA vs. FCA) because it is the most important step
in the DQC approach. All implementations and evaluationsewe
done within XmdvTool [XmdvTool Home Page 2003].

7.1 Setup

We used real as well as synthetic data sets, as listed ind=igur
Most of the real data sets used are popular benchmark data set

the order and spacing of two nominal values to be a function of taken from [Blake and Merz 1998]. We have used only the nomi-

the chi-squared distance between them. Chi-squared déstaithe

nal variables for most of these data sets. The NOTPERF symthe
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Figure 11: Evaluation Data Sets
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data set has three variables (quality, color, size) andténded to
simulate varying degrees of association. This is the datases
in all examples given in earlier sections. The PERF synttddia
set has three variables (region, country and product codgjsdn-
tended to simulate perfect associations (1-to-many: regauntry,
many-to-many: specific set of products are only sold in djpeci
countries).

7.2 Quality of Visual Display

Intuitively, quantification A is better than quantificati@nf the vi-
sual display resulting from A allows the data analyst to comfor
discover (true) patterns in the data that are otherwisegnandim-
possible to learn using B. The quality of a visual display isren

Figure 12: Automobile Data, MCA-Based Quantification
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difficult to measure and quantify. One alternative is to aad e

. . . . L johcy “
user studies and have subjects answer questions usingetisifars L) e i
which they have some domain knowledge. Example questiens in onta 3 a po progon— ot ont et

clude: Based on your domain knowledge, are the values taatear
sitioned close together for the most part similar to eackrétiAre
the values that are positioned far from the rest of the othkres
for the most part that different? Is the perceived strucitugoved
by the ordering plus spacing? Did you discover any new pater
(e.g., outliers, clusters, strength of association betvie® nomi-
nal variables)? In general, which quantification do you feéktter
(easier to understand, more believable ordering and spacin

7.2.1 Automobile Data Set Case Study

We chose the Automobile Data Set as an initial test because it
easy to interpret. Figures 12, 13 and 14 display the quashtifée-
sions of selected variables in a Parallel Coordinates alysjph Par-
allel Coordinates, each vertical line represents one bijaand
each polyline cutting across the vertical axes represemsio-
stance in the data set. Parallel Coordinates is one typespfayi
that requires ordering and spacing of values and it canalisggv-
eral variables compactly. In these figures, we have ordéeedri-
ables such that the vertical axes of highly associated hiasaare
adjacent to each other for easier interpretation.

The MCA-based display (Figure 12) and the FCA-based dis-
play (Figure 13) present alternative notions of similadtyiong

Figure 13: Automobile Data, FCA-Based Quantification
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Figure 14: Automobile Data, Arbitrary Quantification

the values. Some results are similar (Peugot/Mercedesaaie p
tioned away from Honda/Mazda), some are different (theisgac
between Convertible/Hardtop/Hatchback and Sedan/WagBun) Figures 15 and 16 display the quantified versions of the blsa
both MCA and FCA displays tend to agree with our domain knowl- in the PERF Data Set. Recall that the region-country pairéhas
edge. Which is better depends on the user's preference., Also 1-to-many association while the country-product code pas a
both MCA and FCA-based displays have fewer line crossings (1  many-to-many association. These perfect associationeesaled
and 120 respectively) than the Arbitrary Quantificationptiy in all CA-based quantifications but are hidden in the arhjtopuan-
(208)(Figure 14), which we believe improves interpretiapil tification.

7.2.2 PERF Data Set Case Study



Region Country Product

NORTH AM MEX,CAN,USA MED.BOO,GAD

EUROPE FRA,UUK,SPA JEW,ART,ANT

SOUTH AM ARG, BRA,CHI FRU.VEG.CLO

ASIA JAPSIN,LAL COM,TV,RAD

AFRICA ZIMKEN,NIG GOT,TRO,STT,

Figure 15: Perfect Association Data, FCA-Based Quantitinat

Region Country

SOUTH AM

NORTH AM

EUROPE

o FRUITS

ASIA A | COMPUTERS

AFRICA

Figure 16: Perfect Association Data, Arbitrary Quantificat

7.2.3 AIDSPIDS Data Set Case Study

The AIDSPIDS data set contains information abstracted faom
quired immunodeficiency syndrome (AIDS) cases reportedhén t

input table (Figure 9) requiregsumof_cardinality)? while the
FCA input table (Figure 10) requires at masbxcardinality
(sumof_cardinality— maxcardinality) for each nominal variable
to be processed. These formulas and the example tables Babw t
MCA uses more memory than FCA.

Figure 20 shows the percentage of time the FCA-based agproac
runs longer than MCA-based using the formula £0®tal_time—
MCA.total_time)/(MCA.total_time). For each MCA bar, we show
the actual number of seconds that the MCA-based approacoan
although the gap between FCA and MCA run times seems large, th
actual run time of the FCA-based approach is still fast.

80

60

40

20

Normalized RunTime

T T T
NOTPERF PERF Mushroom Auto Census

Figure 20: Total Run Time of Entire DQC Approach

7.4 Quality of Quantification

Intuitively, a given quantification is good if (a) instancbst are
close to each other in nominal space are also close togethaan-

United States from 1981 to 2000 [United States Department of tified space, and (b) if two variables are highly associatitd @ach

Health 2001]. Two variables, DxDate and RepDate, contaén th
year and month. Variable MSA is the metropolitan area code.

After the DQC analysis process presented in the above ssctio
a parallel coordinate plot is generated to show the diffeasroci-
ations between nominal values. By brushing a cluster asslow
Figure 17, we can find that the cities with MSA code of 6780,200
2880 6520 and 7320 present similar behaviors in these AlB&sca
(Figure 17). The careful examination of the contingencyetaif
the original data supports this result.

From the scatterplot between Age and MSA, several similar pa

other, we expect their quantified versions to also have ad¢ogte-
lation measure.

[Greenacre 1993] suggests the use of Average Squared Cor-
relation to measure the quality of a quantification. Giver th
original dataset, replace each nominal variajewith its quan-
tified versionQ; (i.e. scale). For each instance i, calculate
scorg = averaggQj) for all variables j. For each quantified vari-
able Qj, calculate the correlation o®; and score for the en-
tire data set. Then calculate theeragesquaredcorrelation =
averagé(correlation(Q;, score)?) across allQj. The higher the

terns can be found (Figure 18). The age group of 1 and 0 appearaverage squared correlation, the better the quantificatilmu-

very close in all AIDS cases reported in the past twenty yeBnss

itively, if two variables are highly associated with eachest we

makes sense if we look back into the data set. Age ranges 0 and lexpect their quantified versions to also have a high coroelanea-
represenk 1 year and between 1 and 12. The AIDS cases in young sure. If all nominal variables are highly associated wittheather,

children only occurred in a small number of areas of the aguitt
is not difficult to find that several regional groups presentilar
patterns in several age groups.

then the score of each observation should be highly coechaith
each individual quantified variable. This further impligat if two
observations are close together in nominal space, thervibaid

A close look of the zoomed-in view of the scatterplot between also be close together in quantified space; so the scoreesé th

Age and MSA shows that certain nominal values have been gbup
together because they present similar patterns in the dthran-

sions (Figure 19). For example, age classes 8 and 6 are groupe

together because these two groups show similar cases dloeg a
gions. Similarly, age classes 9 and 4 are mapped very closely
gether.

7.3 Memory Space and Processing Time

The most memory-intensive part of our implementation isube

observations would be close to each other.

Figure 21 shows the Average Squared Correlation for MCA-
based, FCA-based, and arbitrary quantifications. It shbastioth
CA-based quantifications are better than arbitrary quaatitin.
The figure also verifies the Optimal Scaling theory, naméait the
quantification based on the coordinates of the first MCA exéeh
dimension is optimal [Greenacre 1993]. Figure 22 shows Hosec
the FCA scales are to the MCA scales. This figure uses boxots
show, for the real data sets, the distribution of the coti@tabe-
tween MCA and FCA scales. These boxplots show the minimum

of CA in the Distance Step, so we only focus on the memory and maximum values as well as the 25th, 50th and 75th peleenti

needed there. Ignoring any specific memory optimization ey

values of each set of correlation values. Correlation satlese to

be employed by some CA implementations, in general, the MCA 1.0 mean the FCA scales closely agree with the MCA scales.
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Figure 17: AIDSPIDS data visualized using parallel cooatis. The highlighted cluster corresponds to MSA codes,62@T0, 2880 and
7320 that were grouped together by our algorithm. They ptesienilar patterns in the AIDS cases reported. Some labetle Wiltered to
reduce clutter.
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Figure 18: AIDSPIDS data scatterplot of Age and MSA code.isinpatterns can be found in several age groups and regitusters. Note
that only a subset of labels are shown along the horizontaltevavoid clutter.
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Figure 19: A zoomed-in view of AIDSPIDS data set. Age classaad 6 are grouped together because these two groups shibar sases
along most regions of the country. Similarly, age groups @ 4rmre mapped very closely. Similar patterns are visibldéndustering of

MSA codes.
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Figure 21: Average Squared Correlation

way of calculating information loss is given in Section 6.

Figure 23 compares the rate of information loss of MCA com-
pared to FCA for one variable. Each line shows the cumulative
information loss incurred at each merging of nodes. The ftowe
the line, the slower is the information loss, the better tlasss
ing. The gap between the lineMCA_cumulativeloss minus
FCA_cumulativelosg can be calculated for all variables. Its distri-
bution has been summarized in Figure 24. This plot showstlileat
FCA-based classing is better than MCA-based for some dtta se
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Figure 22: Correlation between MCA Scales and FCA Scales

8 Conclusions
7.5 Quality of Classing In this paper, we proposed the Distance-Quantificatiors<htey
(DQC) approach which enables the exploration of data seis co
taining nominal variables using visualization tools thavé been

Intuitively, classing A is better than classing B if, givertlassing
tree, the rate of information loss with each merging is slov@ne



designed exclusively for numeric variables. To make the@ggh
accessible to data analysts, we implemented it in XmdvTaol,
public-domain multivariate data visualization packager. &ur im-
plementation, we used Multiple Correspondence Analysi€AW
and our own Focused Correspondence Analysis (FCA) for tke Di
tance Step, a modification of the Optimal Scaling formulather
Quantification Step, and Hierarchical Clustering for theassing

Step. We evaluated our approach in terms of memory space re-

quirement, run time, quality of quantification, quality dassing,
and quality of visual display. MCA-based and FCA-based guan
tifications are clearly better than the common practice bitaary
quantification. In terms of the quality of classing and qifeoat-
tion, MCA seems to perform better than FCA but in terms of the
quality of the visual displays, which one is better dependdhe
eye of the beholder. When memory space is limited, FCA pesvid
a viable alternative to MCA for the Distance Step. The adestt
made to the quantification function to make it work for vaheeb
with perfect association improves upon the existing tempinaiof
taking only the coordinates of the top CA dimension. Proagci
classing trees further allows users to reduce the data §plajis
requiring low cardinality nominal variables.

The DQC approach is a general-purpose pre-processing
which can also be used for other techniques that require &ow c
dinality nominal variables as input (e.g., such as clustgalgo-
rithms, association rules, neural networks), or requiraeic vari-
ables as input (e.g., regression). Possible future workdies al-
lowing the user to interactively modify the ordering, spacand
classing of the nominal values, conducting formal evaturetj and
trying other alternatives for each step.
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