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Abstract

Large numbers of dimensions not only cause clutter in multi-
dimensional visualizations, but also make it difficult for users to
navigate the data space. Effective dimension management, such
as dimension ordering, spacing and filtering, is critical for visual
exploration of such datasets. Dimension ordering and spacing
explicitly reveal dimension relationships in arrangement-sensitive
multidimensional visualization techniques, such as Parallel Coor-
dinates, Star Glyphs, and Pixel-Oriented techniques. They facil-
itate the visual discovery of patterns within the data. Dimension
filtering hides some of the dimensions to reduce clutter while pre-
serving the major information of the dataset.

In this paper, we propose an interactive hierarchical dimension
ordering, spacing and filtering approach, called DOSFA. DOSFA
is based on dimension hierarchies derived from similarities among
dimensions. It is a scalable multi-resolution approach making di-
mensional management a tractable task. On the one hand, it auto-
matically generates default settings for dimension ordering, spac-
ing and filtering. On the other hand, it allows users to efficiently
control all aspects of this dimension management process via vi-
sual interaction tools for dimension hierarchy manipulation. A
case study visualizing a dataset containing over 200 dimensions
reveals how our proposed approach greatly improves the effec-
tiveness of high dimensional visualization techniques.

Keywords: dimension ordering, dimension spacing, dimen-
sion filtering, multidimensional visualization, high dimensional
datasets

1 Introduction

High dimensional datasets are becoming commonplace in appli-
cations such as digital libraries, bioinformatics, simulations, pro-
cess monitoring, and surveys. They bring an important issue to
existing multi-dimensional visualization techniques - dimension
management. Without effective dimension management, such as
dimension ordering, spacing and filtering, high dimensional visu-
alizations can be cluttered and difficult for users to navigate the
data space. For example, a 200 dimensional data set means 40000
plots for Scatterplot Matrices [7], 200 axes for Parallel Coordi-
nates [13, 22], 200 subwindows for Recursive Pattern [15], and
200 arms for Star Glyphs [19].

The order of dimensions is crucial for the effectiveness of a
large number of visualization techniques [2]. For example, in
many multidimensional visualization techniques, such as Parallel
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Coordinates [13, 22], Star Glyphs [19], Circle Segments [3] and
Recursive Pattern [15], the dimensions have to be positioned in
some one- or two- dimensional arrangement on the screen. This
chosen arrangement of dimensions can have a major impact on
the expressiveness of the visualization because the relationships
among adjacent dimensions are easier to detect than relationships
among dimensions positioned far from each other. Another ex-
ample is attribute mapping. In visualizations such as Chernoff
Faces [6], Worlds within Worlds [9], and Dimensional Stacking
[17], more important dimensions need to be mapped to more pre-
attentive visual attributes, such as more important features of the
face in Chernoff Faces, axes appearing earlier in Worlds within
Worlds, and outer dimensions in Dimensional Stacking. Dimen-
sion ordering targets these problems, and aims to improve the
effectiveness of the visualization by giving reasonable orders to
the dimensions so that users can easily detect relationships or pay
more attention to more important dimensions.

In several multidimensional visualization techniques, such as
Parallel Coordinates [13, 22] and Star Glyphs [19], uniform spac-
ing/angles are placed by default between two adjacent axes in the
display. We conjecture that non-uniform spacing could be used to
convey information about dimensions, such as similarity between
adjacent dimensions or structure of the dimension space.

Dimension filtering removes some of the dimensions from the
display. It is essential for visualizing high dimensional datasets.
For datasets contains several hundreds or more dimensions, none
of the existing multidimensional visualization techniques can map
all the dimensions at the same time without cluttering the display.
Popular dimension reduction approaches, such as Principal Com-
ponent Analysis [14], Multidimensional Scaling [18], and Koho-
nen’s Self Organizing Maps [16, 10], condense the hundreds or
thousands of dimensions into a few dimensions. However, those
generated dimensions have little intuitive meaning to users and al-
low little user interaction. Dimension filtering is more intuitive to
users in that the remaining dimensions are all original dimensions
in the dataset so that they are all meaningful. Dimension filtering
is also more flexible in that it allows users to interactively select
or unselect dimensions to be filtered.

In this paper, we propose a general approach to dimension man-
agement for high dimensional visualization. Our solution is an
interactive hierarchical dimension management approach called
DOSFA (Dimension Ordering, Spacing, and Filtering Approach).
It supports both automatic as well as interactive means of dimen-
sion ordering, spacing and filtering.

To reveal how DOSFA improves the effectiveness of high di-
mensional visualization techniques, we present a case study in this
paper that visualizes the OHSUMED dataset, which contains the
word-counts of a medical abstract collection [12]. It contains 215



dimensions and 298 data points.
The remainder of this paper is organized as follows. In Sec-

tion 2, we review related work. In Section 3, we introduce the
dimension hierarchy construction and navigation processes fun-
damental to our DOSFA approach. In Sections 4, 5 and 6 we
present our semi-automatic dimension ordering, spacing and fil-
tering approaches. In Section 7, we present our conclusions and
future work.

2 Background

Dimension order is an important issue in visualization. Bertin
gave some examples illustrating that permutations of dimensions
and data items reveal patterns and improve the comprehension of
visualizations [4]. Ankerst et. al. [2] pointed out the importance of
dimension arrangement for order-sensitive multidimensional vi-
sualization techniques. They defined the concept of similarity
between dimensions and discussed several similarity measures.
They proposed the idea of rearranging the dimensions such that
dimensions showing a similar behavior are positioned close to one
another. They proved that this is an NP-complete problem equiv-
alent to the traveling salesman problem, and used an automatic
heuristic approach to generate a solution. Our dimension ordering
approach is different from their approach in that we impose a hi-
erarchical structure over the dimensions to reduce the complexity
of the ordering problem and allow efficient user interactions.

Dimension order is also important for many other fields. For
instance, the database primitive similarity join has been used to
speed up applications such as similarity search, data analysis and
data mining. Its computational overhead is mostly dedicated to
the final distance computations between the feature dimensions.
Böhm et. al.[5] proposed a generic technique to avoid and accel-
erate the distance calculations between those dimensions by care-
fully ordering them according to a probability model.

Manual dimension ordering and filtering are available in many
multidimensional visualization systems. For example, Polaris [20]
allows users to manually select and order the dimensions to be
mapped to the display. Microsoft Excel allows users to change the
order of the dimension by drag-and-drop operations. In XmdvTool
[1], users manually filter dimensions and change the order of the
dimensions from a reconfigurable list of dimensions. Although
manual dimension ordering and filtering as found in such tools are
sufficient for low dimensional datasets, they become cumbersome
for high dimensional datasets.

Conveying information using spacing in the display has many
applications. Many tree drawing algorithms [11, 8] use spacing to
convey structural information about the tree. Ward [21] used the
distance between adjacent glyphs to convey their relationship in
an N dimensional space. In our approach, we propose to use the
spacing between dimensions to indicate similarity between adja-
cent dimensions or structure of the dimension space.

The idea of using dimension hierarchies to facilitate dimension
ordering, spacing and filtering is inspired by our previous work on
Visual Hierarchy Dimension Reduction (VHDR) [24]. In VHDR,
dimensions in a high dimensional dataset are grouped into a di-
mension hierarchy according to their similarities. Users select in-
teresting dimension clusters and display them instead of the orig-
inal dimensions in order to reduce the dimensionality of the dis-
play.

InterRing [23] (Figure 1 (a)-(d)) is an interactive radial space
filling tree visualization tool we designed for visualizing a dimen-
sion hierarchy. InterRing is generated using the rules that deeper
nodes of the hierarchy are drawn further from the center; child

nodes are drawn within the arc subtended by their parents, and
the sweep angle of a non-leaf node is equal to the aggregation of
that of all its children. InterRing provides a rich set of interactive
tools for panning/zooming, rolling-up/drilling-down, multi-focus
distortion, modification, reordering, and selection.

3 Dimension Hierarchy

Our hierarchical dimension ordering, spacing and filtering ap-
proach is based on dimension hierarchies derived from similarities
among dimensions. The problem of determining the similarity of
dimensions was characterized by Ankerst et. al. [2] as follows:
The database containing N data items with d-dimensions can be
described as d arrays Ai(0 <= i < d), each containing N real
numbers ai;k (0 <= k < N ). A similarity measure S maps
two such arrays to a real number. It also might be called a dis-
similarity measure because large numbers mean high dissimilarity
whereas zero means identity. Similarity can be defined in various
ways. Often it is highly domain-dependent. Detailed information
of similarity measures between two dimensions can be found in
[2]. In this paper, we assume that 0 <= S <= 1.

Currently, we use an efficient counting test to decide if the sim-
ilarity measure between two dimensions is lower than a certain
similarity measure threshold. Given a similarity measure thresh-
old S, the idea of our approach is that if most data items in the
dataset have lower or equal dissimilarities than S when evaluating
two dimensions, then the similarity measure of these two dimen-
sions passes the counting test and is lower than S. Those data
items that have higher dissimilarities than S are defined as out-
liers. Given an acceptable outlier percentage O, the number of
outliers must be lower than O � N to pass the counting test. This
approach is flexible in that users can change the outlier percentage
in order to constrain or relax the similarity measure.

Using a dimension clustering approach (described in Section
3.1), we group similar dimensions into clusters and similar clus-
ters into larger clusters, resulting in a dimension hierarchy. By
organizing the original dimensions of a high dimensional datasets
into a dimension hierarchy, we are able to switch the problem of
ordering, spacing, and filtering of all the original dimensions to
the problem of ordering, spacing, and filtering of the child nodes
of each cluster in the dimension hierarchy. This then scales down
the problems and reducing their complexity.

3.1 Dimension Hierarchy Construction

We construct dimension hierarchies using a dimension clustering
approach. Generally speaking, as long as the similarity measure
between two dimensions is defined, any one of several existing
data clustering algorithms can be used to generate the dimen-
sion hierarchy; the similarity measure between two dimensions
in dimension clustering corresponds to distance between two data
items and dimensions in dimension clustering correspond to data
items in data clustering. We briefly describe a bottom-up ag-
glomerative dimension clustering algorithm we implemented as
follows. For more detail information, refer to [24].

� Iterative Clustering: We use a bottom-up clustering ap-
proach with a user defined number of iterations I . The itera-
tions are performed in the order of iteration0, iteration1,
..., iterationI . The iterations correspond to a series of in-
creasing similarity measure thresholds Si (0 <= i < I ,
Si < Sj if i < j, S0 = 0, SI = 1). These thresholds are



the minimum similarity measure required among the dimen-
sions in a cluster formed during the iterations. In iterationi,
dimensions that have not formed any clusters and clusters
formed from the previous iterations are considered. If any
pair of them has a similarity measure s smaller than Si, the
pair is recorded as a similar pair. Then the dimension or
cluster contained in the largest number of similar pairs is
extracted as a new cluster center. All the other dimensions
and clusters in similar pairs involved with it are put into this
new cluster and the similar pairs are removed. Repeating
the above approach will form more new clusters. An itera-
tion ends when no similar pairs are left. It is ensured that all
dimensions can be included into a root cluster since SI = 1.

� Representative Dimensions: In order to calculate the sim-
ilarity measure between two dimension clusters or a dimen-
sion cluster and a dimension, we use a representative dimen-
sion for each dimension cluster. The data array of the rep-
resentative dimension is the average of the arrays of dimen-
sions included in this dimension cluster. For a dimension
cluster containing non-leaf nodes, the average can be cal-
culated using the representative dimensions of the non-leaf
nodes scaled by the number of dimensions included in the
non-leaf nodes.

� Data Clusters: To cope with large scale data sets, we make
use of partial results of a bottom-up data clustering algorithm
applied on the data set. We select all data clusters with ex-
tents much smaller than the minimum similarity measure S0.
These data clusters contain all data items in the data set ex-
actly once. We use these data clusters instead of the original
data items in the data set to calculate the similarities among
dimensions. During our counting tests for similarity mea-
sures, the entry of a data cluster is added into the count if
it meets the criteria. For a very large data set, the number
of data clusters used in this process would be much smaller
than the number of original data items.

3.2 Dimension Hierarchy Navigation and Modifi-
cation

Because dimension hierarchies are essential for our hierarchical
dimension ordering, spacing and filtering approach, it is important
to allow users to interactively investigate and modify the automat-
ically generated dimension hierarchy. We use InterRing [23] to
navigate and modify the dimension hierarchy. InterRing (Figure 1
(a)-(d)) provides a rich set of navigation operations to allow users
to interactively gain overview and detail of the dimension hierar-
chy. These operations include:

drill-down/roll-up: the process of exposing/hiding sub-branches
of the hierarchy;

pan, zoom, and rotation: the process of modifying the focus,
scale, and orientation of the display.

distortion: the process of enlarging some objects in the display
while maintaining the context of surrounding objects;

With the modification operation in InterRing, users are able to
modify the given dimension hierarchy according to their domain
knowledge. A simple drag-and-drop operation allows nodes or
subtrees to be relocated to arbitrary non-terminal nodes in the hi-
erarchy.

Figure 1 (a) shows the dimension hierarchy of the OHSUMED
dataset visualized in InterRing. Figure 1 (b) is the same hierarchy
after reordering (Section 4). All the leaf nodes are selected and
their dimension names are shown. In Figure 1 (c), the reordered
hierarchy is distorted in order to examine details of several nodes.
In Figure 1 (d), the nodes outside the focus are hidden using a roll-
up operation so that the focus node can be viewed more clearly.

4 Dimension Ordering

Different orders of dimensions in order-sensitive multidimen-
sional visualizations can reveal different aspects of the datasets
to users. For example, similarity-oriented order of the dimen-
sions places dimensions with similar patterns next to each other.
Through this order, users are able to detect interdependent dimen-
sions. As another example, importance-oriented order of dimen-
sions places dimensions that are more important to the users in
more prevalent visualization positions, or maps them to more pre-
attentive visual attributes, thus helping users concentrate on them.
In the following subsections, we discuss these two dimension or-
dering techniques.

4.1 Similarity-Oriented Dimension Ordering

Similarity-oriented dimension ordering aims to minimize the sum
of similarities of all adjacent dimensions in the display. It has
been shown to be an NP-complete problem by Ankerst et. al. [2].
In our approach, we reduce the complexity of this problem using
the dimension hierarchy. First, we order each cluster in the di-
mension hierarchy. For a non-leaf node, we use its representative
dimension in the ordering of its parent node. Then, the order of
the dimensions is decided in a depth-first traversal of the dimen-
sion hierarchy (non-leaf nodes are not counted in the order). Once
the order of children of each cluster is decided, the order of all
the dimensions is decided. Thus the problem of ordering all the
original dimensions has be re-expressed as ordering the children
of non-leaf nodes of the dimension hierarchy.

Because in most cases, the number of children of a cluster in
the dimension hierarchy is much smaller than the number of leaf
nodes of that hierarchy, the complexity of the ordering will be
greatly reduced. For example, suppose we have N dimensions to
be arranged in a 1-dimensional order, if we use optimal order-
ing, which require the calculation of all possible permutations of
the dimensions, the similarity measure calculation, which is the
most time consuming in the ordering approach, has to be applied
N! times. While using a well-balanced M-tree, where M is much
smaller than N, we only need to apply the similarity measure cal-
culation for approximately (N�1)=(M�1)�M ! times, which is
much less than N!. As a result, some algorithms that are not suit-
able for ordering a large number of dimensions, such as optimal
ordering, could be used in our approach. Here are some ordering
algorithms we implemented:

� Optimal ordering. Optimal ordering computes the sum of
neighboring dimension similarities for every possible per-
mutation within the dimensions to be ordered to find the per-
mutation with the smallest sum.

� Random Swapping. Random swapping starts with an ini-
tial configuration and randomly chooses two dimensions to
switch their positions. If the new arrangement has a smaller
similarity sum, then it is kept and the old one is rejected; oth-
erwise leave the old arrangement intact and go on swapping



another pair of dimensions. Keep doing this for a certain
number of times. This is not an optimal approach for re-
ordering dimensions, but it is more applicable for large num-
ber of dimensions.

An approximate dimension ordering approach is to directly use
the depth-first traversal result of a dimension hierarchy without
reordering it. The reason is that in dimension hierarchies, similar-
ities among siblings within a cluster are controlled within certain
ranges. In other words, the similarities among the children of a
dimension cluster are similar. Thus with a good dimension hierar-
chy, we should get a reasonable order of the original dimensions
even without reordering the hierarchy.

Figures 2 (a), 3 (a) show the OHSUMED dataset in Parallel Co-
ordinates and Star Glyphs (a subset of the data items are shown)
in their original dimension order. It can be seen that it is very
hard to find any patterns of the dataset. Figure 1 (b) shows the
dimension hierarchy of the OHSUMED dataset ordered according
to similarity. Figures 2 (b) and 3 (b) show its corresponding Paral-
lel Coordinates and Star Glyphs (the same subset of data items as
in Figure 3 (a)) displays. It is obvious that Figures 2 (b) and 3 (b)
reveal similar dimensions while Figures 2 (a) and 3 (a) do not. The
benefits of dimension ordering are not limited to revealing similar
dimensions. It is clear that in Figure 2 (b), it is much easier to
detect the overall trends of the dataset than in Figure 2 (a). For the
Star Glyphs displays, it is much easier to find differences among
the glyphs in Figure 3 (b) than in Figure 3 (a). For example, it is
much easier to detect the difference between the third and fourth
star glyphs in the last row in Figure 3 (b) than in 3 (a).

4.2 Importance-Oriented Dimension Ordering

The importance of each dimension is decided by a user’s partic-
ular visualization task. In the following description, we assume
that users are looking for variance of a dataset. Thus a dimension
that contributes more to the variance of the dataset is more impor-
tant than a dimension that contributes less to the variance. To this
end we order the dimensions according to their contribution to the
variance. Here again, we use the hierarchical approach to scale
down the complexity of the problem.

We assume that similar dimensions have similar contributions
to the dataset’s variance because they contain similar information.
Thus the problem of ordering all the dimensions can be switched
to the problem of ordering each cluster in the dimension hierarchy.
As in the similarity-oriented ordering, we first order each cluster
in the dimension hierarchy. For a non-leaf node, we use its rep-
resentative dimension in the ordering of its parent node. Then,
the order of the dimensions is decided by the order of the dimen-
sions in a depth-first traversal of the dimension hierarchy (non-leaf
nodes are not counted in the order). To order a non-leaf node, we
apply Principal Component Analysis (PCA) [14] on its children,
and order them according to their contributions to the first several
principal components.

With different user tasks, the importance of the dimensions can
be decided in different ways from the above example. However,
the general approach is similar; either order all the dimensions at
the same time according to their importance, or order the clusters
in the dimension hierarchy according to the importance of their
children in order to reduce the complexity of the problem.

4.3 User Interaction

Relationships among dimensions may remain undetected by the
automatic ordering approach. Since users are often experts on the

data sets been visualized, they may be able to improve on the re-
sults of the automated ordering. Hence allowing users to interac-
tively adjust the order of the dimensions is important.

In our approach, users have two ways to interactively change
the order of the dimensions (reorder):

� manually change the order of the dimensions in the data dis-
plays. This is similar to many existing manual dimension
reordering approaches, using either reconfigurable lists or
drag-and-drop operations [20, 1].

� manually change the order of siblings using the ”Modifica-
tion” operation of InterRing. By changing the order of a
dimension cluster, the order of all the similar dimensions
contained in this cluster is changed correspondingly. This
change will be propagated to the data display. This reorder-
ing approach is efficient even for a large number of dimen-
sions. It provides the users with a manageable way for man-
ual reordering through this multi-resolution approach.

5 Dimension Spacing

Dimension ordering reveals useful dimension relationship infor-
mation to users. However, this information may not be accurate.
For example, in the dimension order generated using similarity-
oriented hierarchical ordering approach, two adjacent dimensions
could be the ending dimension of one cluster and the starting di-
mension of another cluster. Thus their similarity is lower than the
similarity of two adjacent dimensions within any of those clus-
ters. For an order generated using a non-hierarchical approach,
the similarities between dimensions may still be different. Users
could not know these differences from the order of the dimen-
sions. Thus dimension spacing, which explicitly convey dimen-
sion relationship information by varying the spacing between two
adjacent axes or angles, is useful here. For unordered dimensions,
dimension spacing is even more useful since the order of dimen-
sions does not convey any dimension relationship information. In
this section, we propose several promising dimension spacing ap-
proaches.

5.1 Automatic Approach

In multidimensional visualization techniques containing explicit
axes, the default spacing between all the adjacent axes is equal,
such as Parallel Coordinates [13, 22] and Star Glyphs [19]. How-
ever, the relationships between adjacent dimensions are generally
not equal - some adjacent dimensions may have close relation-
ships while others may not. We can explicitly convey this to users
by varying the spacing between adjacent axes - a smaller distance
or angle means a closer relationship so that closely related di-
mensions are placed closely together, while unrelated dimensions
stand apart. By applying this spacing approach to the similarity-
oriented ordered dimensions, we allow users to grasp relation-
ships between the dimensions more intuitively as suggested by the
Gestalt Law on proximity. A simple and general approach to spac-
ing dimensions to reveal dimension relationships is to calculate the
correlation factor of each pair of adjacent dimensions, and assign
axes a distance or angle proportional to this factor.

Besides revealing relationships between adjacent dimensions,
spacing can also be used to reveal the structure of the dimension
space in our hierarchical approach. The algorithm of spacing ac-
cording to the structure of the dimension hierarchies is simply to
make the distance between two adjacent dimensions proportional



to the threshold used to form their first common ascendant. Thus a
dimension will have a smaller distance or angle to its adjacent di-
mension if the adjacent dimension belongs to the same cluster than
if it belongs to a different cluster. Also, if two adjacent dimensions
belong to the same cluster, their distance or angle is smaller if the
threshold used to form that cluster is smaller. Because the thresh-
old used to form a cluster reflects similarity of its children in the
dimension hierarchy, the spacing calculated using this algorithm
also reveals the similarity of the adjacent dimensions along with
the overall structure of the dimension space.

The Parallel Coordinates display of the OHSUMED dataset in
Figure 2 (b) has been spaced according to the structure of the di-
mension hierarchy. It is easy to detect some closely related dimen-
sions, and some dimensions that are fairly different from adjacent
dimensions from this figure. Figure 2 (c) is a zoomed display of
Figure 2 (b). It can be seen that in the OHSUMED dataset, which
contains word-counts in a medical abstract collection, the word
“glucose” appears in similar frequency to the word “insulin” in
most articles.

5.2 Interactive Control

For high dimensional datasets, the displays might still be cluttered
despite dimension spacing. Thus it is important to allow users to
interactively enlarge or decrease the distance of adjacent dimen-
sions so that they can examine as well as hide detail of interesting
or uninteresting dimensions and relationships. In our approach,
we provide three ways to allow users to interactively change the
distances between dimensions.

� zooming in/out and panning. We allow users to zoom the x
and/or y directions so that, for visualization techniques such
as Parallel Coordinates, horizontal zooming will only affect
the distances between axes.

� manual distortion. When the display is in distortion mode,
users can left click between two axes to increase their spac-
ing, or right click to decrease it.

� structure-based spacing distortion.

Zooming and panning keeps the original spacing of the dimen-
sions, however, context is lost when users are examining details.
Manual distortion preserves the context, however, the local spac-
ing in the distorted area is lost. In addition, it can be tedious when
users want to examine details of many dimensions at the same
time. When the dimensionality of the dataset is high, it is also
difficult to specify a distortion because the spacing between most
dimensions is very small. Structure-based spacing distortion ad-
dresses these shortcomings.

Structure-based spacing distortion is linked to structure-based
circular distortion of InterRing [23], the dimension hierarchy visu-
alization. Structure-based circular distortion allows users to pro-
portionally enlarge/decrease all descendants in clusters through
simple drag-and-drop operations. Figure 1 (c) shows a distorted
dimension hierarchy in InterRing. A cluster and all its descen-
dants are enlarged by one drag-and-drop operation. We propagate
this distortion to dimension spacing in data displays. Thus when
a node in InterRing presenting a dimension is enlarged/decreased,
the spacing around the dimension is also enlarged/decreased.

Particularly, we adjust the dimension spacing algorithm so that
the spacing between two adjacent dimensions is decided by the
product of two parameters: the spacing parameter and the distor-
tion parameter. The spacing parameter is the distance or angle
decided by the algorithm described in Section 5.1 that reflects the

relationship between these two dimensions. The distortion param-
eter is specified by the distortion degree of the nodes representing
these two dimensions in InterRing. We choose the larger of the
two so that for an enlarged leaf node in InterRing, the spacing
around its corresponding dimension is also enlarged proportion-
ally.

Many advantages of structure-based distortion in InterRing
have propagated to structure-based spacing distortion, such as:

� Spacing of a cluster of dimensions can be distorted using a
single drag-and-drop operation.

� Details can be examined within their context.

� Local spacing inside the enlarged or decreased area has been
preserved.

� Multiple foci can coexist. Users can enlarge or decrease sev-
eral areas in the same display.

In Figure 1 (c), the dimension hierarchy is distorted using
structure-based distortion. Figure 3 (c) shows part of the Star
Glyphs display linked to Figure 1 (c) with structure-based spac-
ing distortion. It is clear that structure-based spacing distortion
helps users to see details within context.

6 Dimension Filtering

6.1 Automatic Approach

When the dimensionality is fairly large, even if we apply order-
ing and spacing of the dimensions to the display, it still may be
crowded. Very similar dimensions may likely be cluttered to-
gether. In this case, we would like to filter some dimensions to
reduce the clutter problem while at the same time retaining most
of information in the dataset. This could be done manually, auto-
matically, or semi-automatically. We propose a dimension filter-
ing approach that automatically generates a default filtering result,
while allowing users to interactively modify it. We claim that auto-
matically generating a default result is important for high dimen-
sional datasets, and user interactions are also necessary because
improvements can usually be made on automatic approaches.

Our dimension filtering approach is also based on the dimen-
sion hierarchy. In this approach, we use a filtering criterion that is
a combination of the dimension similarity and importance. We as-
sume that if some dimensions are very similar to each other, then
only one of them should be left in the display. We also assume
that if some dimensions are fairly unimportant for a user’s visual-
ization task, then they should not be displayed. Thus a similarity
threshold and an importance threshold are used in the filtering.
The algorithm to select dimensions for display is an iterative ap-
proach starting from the root of the dimension hierarchy. Each
iteration contains the following steps:

1. Check if the node’s importance is smaller than the impor-
tance threshold; if yes, ignore the node and return. That is,
the dimensions contained in unimportant nodes are ignored.

2. If it is not ignored and it is a leaf node, select it and return.

3. Otherwise check the threshold used to form the node. If it
is larger than the similarity threshold, apply the iterative ap-
proach on its immediate descendants. Otherwise only apply
the iterative approach on its most important immediate de-
scendant.



Figures 2 (d), 3 (d) and 4 (b) give examples of dimension filter-
ing. Comparing Figures 1 (b), 4 (b) with 2 (d), 3 (d) (remaining
dimensions in Figures 2 (d) and 3 (d) keep the same order as in
Figures 2 (b) and 3 (b)), we find that the filtering retains the major
information of the dataset fairly well, while in the filtered displays,
the number of dimensions is much more manageable compared to
the unfiltered ones. In Figure 4 (b), the Scatterplot Matrix display
of the OHSUMED dataset, there are so many plots that individual
plots cannot be discerned without significant zooming.. While in
Figure 4 (d), the number of plots has been greatly reduced.

6.2 Interactive Filtering

It is possible that the automatic filtering process might filter out
some dimensions that a user is concerned about, or keep some
dimensions that a user finds uninteresting. It is therefore important
to allow users to interactively adjust filtering results.

The automatic filtering (Section 6.1) is a recursive process star-
ing from the root of a hierarchy. We can apply this process to the
root of any sub-branch in the dimension hierarchy instead of the
root of the dimension hierarchy. In this way, we can apply filtering
to a subset of the dimensions instead of all the dimensions.

In InterRing, each selected leaf node corresponds to a dimen-
sion displayed in the data visualization. We can add/delete a
dimension to/from the display by selecting/unselecting its corre-
sponding leaf node. Thus users can filter dimensions using a man-
ual selection operation in InterRing, that is, clicking an unselected
node to select it, or clicking a selected node to unselect it.

In InterRing, rolling-up/drilling-down operations allow users to
hide/show sub-branches by clicking their root nodes. We also link
them to the dimension filtering. Whenever some leaf nodes are
hidden in InterRing, it means that users are not interested in them.
Thus we also filter their corresponding dimensions from the data
display.

Users can also manually delete a dimension from the data dis-
play by clicking to select it, then hitting the ‘delete’ button to
delete it. Since InterRing provides an overview of the dimension
space structure, while data display provides the context of the data
items for manually filtering dimensions, the option of filtering di-
mensions from InterRing or the data display gives users significant
flexibility.

7 Conclusion and Future Work

In this paper, we have proposed an interactive approach to dimen-
sion ordering, spacing and filtering for high dimensional datasets
based on dimension hierarchies. Dimension ordering, spacing and
filtering can significantly increase the effectiveness of multidimen-
sional visualizations, but the processes are complex for high di-
mensional datasets. By grouping dimensions into a dimension
hierarchy according to their similarity, we improved the manage-
ability of dimensions in high dimensional data sets and reduced
the complexity of the ordering, spacing and filtering tasks. In ad-
dition, our findings are that user interactions for dimension or-
dering, spacing and filtering are much easier to accomplish with
dimension hierarchies.

In the future, we will formally evaluate our approach. We plan
to compare the quality of our hierarchical ordering approach with
other heuristic approaches. We want to evaluate how dimension
ordering, spacing and filtering benefits high dimensional visual-
ization applications, such as document visualization, through user
studies. We intend to evaluate DOSFA’s applicability to differ-
ent multidimensional visualization techniques. We also want to

study and improve the efficiency and effectiveness of our dimen-
sional clustering algorithm, as it is the foundation of our DOSFA
approach.

References

[1] http://davis.wpi.edu/ xmdv/.
[2] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimen-

sions for an enhanced visualization of multidimensional data. Proc. of IEEE
Symposium on Information Visualization, InfoVis’98, p. 52-60, 1998.

[3] M. Ankerst, D. Keim, and H. Driegel. Circle segments: A technique for
visually exploring large multidimensional data sets. Proc. of Visualization
’96, 1996.

[4] J. Bertin. Semiology of Graphics: Diagrams, Networks, Maps. University of
Wisconsin Press, 1983.

[5] C. Boehm, F. Krebs, and H.-P. Kriegel. Optimal dimension order: A generic
technique for the similarity join. 4th Int. Conf. on Data Warehousing and
Knowledge Discovery, pp. 135-149, 2002.

[6] H. Chernoff. The use of faces to represent points in k-dimensional space
graphically. Journal of the American Statistical Association, Vol. 68, p. 361-
68, 1973.

[7] W. Cleveland and M. McGill. Dynamic Graphics for Statistics. Wadsworth,
Inc., 1988.

[8] P. Eades. Drawing the trees. Bulletin of the Institute of Combinatorics and its
Applications, p. 10-36, 1992.

[9] S. Feiner and C. Beshers. Worlds within worlds: Metaphors for exploring
n-dimensional virtual worlds. Proc. UIST’90, p. 76-83, 1990.

[10] A. Flexer. On the use of self-organizing maps for clustering and visualization.
PKDD’99, p. 80-88, 1999.

[11] G. Furnas. Generalized fisheye views. Proc. of Computer-Human Interaction
’86, p. 16-23, 1986.

[12] W. Hersh, C. Buckley, T. Leone, and D. Hickman. OHSUMED: An interactive
retrieval evaluation and new large text collection for research. In Proceedings
of the Seventeenth Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, Performance Evaluation, pages
192–201, 1994.

[13] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visualizing
multidimensional geometry. Proc. of Visualization ’90, p. 361-78, 1990.

[14] J. Jolliffe. Principal Component Analysis. Springer Verlag, 1986.
[15] D. Keim, H. Kriegel, and M. Ankerst. Recursive pattern: a technique for

visualizing very large amounts of data. Proc. of Visualization ’95, p. 279-86,
1995.

[16] T. Kohonen. Self Organizing Maps. Springer Verlag, 1995.
[17] J. LeBlanc, M. Ward, and N. Wittels. Exploring n-dimensional databases.

Proc. of Visualization ’90, p. 230-7, 1990.
[18] A. Mead. Review of the development of multidimensional scaling methods.

The Statistician, Vol. 33, p. 27-35, 1992.
[19] J. Siegel, E. Farrell, R. Goldwyn, and H. Friedman. The surgical implication

of physiologic patterns in myocardial infarction shock. Surgery Vol. 72, p.
126-41, 1972.

[20] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis, and visual-
ization of multidimensional relational databases. InfoVis ’00, p. 5-14, 2000.

[21] M. O. Ward. A taxonomy of glyph placement strategies for multidimensional
data visualization. Information Visualization, Vol 1, pp.194-210, 2002.

[22] E. Wegman. Hyperdimensional data analysis using parallel coordinates. Jour-
nal of the American Statistical Association, Vol. 411(85), p. 664-675, 1990.

[23] J. Yang, M. O. Ward, and E. A. Rundensteiner. Interring: An interactive tool
for visually navigating and manipulating hierarchical structures. InfoVis ’02,
p. 77-84, 2002.

[24] J. Yang, M. O. Ward, E. A. Rundensteiner, and S. Huang. Visual hierarchical
dimension reduction for exploration of high dimensional datasets. VisSym
2003, accepted, 2003.



Figure 1: InterRing. (a): Dimension hierarchy of OHSUMED dataset in InterRing. (b): after reordering. (c): after distortion. (d): after
roll-up operation.

Figure 2: Parallel Coordinates. (a): OHSUMED dataset without DOSFA. (b): after ordering and spacing. (c): after zooming. (d): after
filtering.



Figure 3: Star Glyphs. (a): OHSUMED dataset without DOSFA. (b): after ordering and spacing. (c): distorted star glyphs. (d): after
filtering.

Figure 4: Scatterplot Matrices. (a): OHSUMED dataset without DOSFA. Individual plots cannot be discerned without significant zooming.
(b): after filtering.


