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Abstract

The analysis of data streams has become quite important in recent years, and is being
studied intensively in fields such as database management and data mining. Although some re-
searchers in data and information visualization have investigated the visual analytics of stream-
ing data to a certain degree, there are some obvious limitations in existing work: (1) a lack of
effective techniques to show how data patterns change over time; and (2) limited ability to
represent multivariate correlations. In this paper, we propose a framework to visualize multi-
variate data streams via a combination of windowing and sampling strategies. In order to help
users observe how data patterns change over time, we displaynot only the current sliding win-
dow but also abstractions of past data in which users are interested. Sampling is applied within
each single sliding window to help reduce visual clutter as well as preserve data patterns. Fur-
ther, we allow different windows to have different samplingratios to reflect how interested the
user is in the contents. We use a DOI (degree of interest) function to represent users’ interest
in the data within a set of windows. Users can apply two types of pre-defined DOI functions.
An interactive tool also allows users to adjust the DOI function online, in a manner similar to
transfer functions in volume visualization, to enable a trial-and-error exploration process. In
order to visually convey the change of multidimensional correlations, we designed four layout
strategies. User studies showed that three of these are effective techniques to achieve the above
goal compared to traditional time-series data visualization techniques. Based on this evaluation
experiment, we derived a guide to advise data analysts and visualization system developers on
how to choose appropriate layout strategies in terms of the characteristics of datasets and data
analysis tasks. Case studies are discussed to show the effectiveness of DOI functions and the
various visualization techniques.

Keywords: Data stream, multivariate data, visual analysis.

1 Introduction

Advances in hardware enable people to record data at rapid rates, e.g., kilobytes or megabytes per
second or even higher speeds. Some real application areas require data collection and analysis at
such a high speed. Moreover, the newly acquired or generateddata items often need to be processed
immediately, as in many cases the volume of data precludes storage for later analysis. For example,
network traffic monitoring involves tracking each packet toidentify features of interest, such as
bottlenecks and potential intrusions. In the areas of database and knowledge discovery, the term
data streamsor streaming datahas been used to refer to such data that keeps growing and needs
to be processed on the fly. Researchers have developed many techniques to manage, query and
analyze data streams in real-time [6].

In recent years, people have agreed that visualization can play a critical role in the processes
of data analysis and decision-making, since it can help analysts use visual perception to uncover
different patterns, such as clusters, associations, relationships, and trends. Streaming data is similar
to time-seriesdata, which is identified as one of basic data types [18] in thearea of information
visualization. In both data types, each datapoint has a timeattribute, i.e., a timestamp. One can
find a rich set of visualization techniques for time-series data in the literature. If we directly apply
existing time-series data visualization techniques to streaming data, we can partially address the
problem of visually exploring data streams. For example, a continuously expanding line chart can
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convey the trend of a univariate data stream. However, an important characteristic of streaming
data, namelyunbounded input, makes this simple approach ineffective and incomplete, asexisting
visualization techniques for time-series data generally regard the whole dataset as static and assume
that all of the data is available before rendering. This is impossible for streaming data. The
designed techniques must be capable of processing data in a continuous and unbounded fashion.

Two other issues exist in the visual exploration of both time-series and streaming data that must
be addressed in order to help users perform some common data analysis tasks:

(1)Temporal Visual Mining : There exist many data mining tasks for time-series data, such as
the discovery of temporal association rules and pattern evolution [17]. Existing time-series
data visualization techniques only support a small fraction of these tasks. In this paper, we
focus on two important types of temporal mining: data patterns for a specific time period,
and how data patterns change over time.

(2) Multivariate Correlations : Although a few existing visualization techniques for time-series
data try to present the relationships among multiple dimensions, their usefulness is often
limited. For example, [9] shows the degree of importance fordimensions, and [8] presents
some pre-specified statistical values among dimensions, but dimensions often have complex
relations that these methods do not convey. In this paper, weaim to combine multivariate
and time-series data visualization techniques to fill this gap.

The main goal of this paper is to present a framework for visually exploring unbounded mul-
tivariate data streams that can convey trends for each dimension, multivariate patterns, and the
change in these patterns over time. To achieve this goal, oneintuitive solution is to split the whole
stream into non-overlapped sliding windows and send them through the visualization pipeline one
by one, and provide an animation to users. This is certainly feasible, but actually is problematic.
Because users can easily forget patterns shown to them in past frames, especially when the length
of sliding windows is long, it is difficult for users to capture how data patterns change.

Our approach to achieving the main goal is as follows. We mix the data in the current window
with those in the past ones in the same view and distinguish them via different visual attributes;
or juxtapose these data in an ordered set of views. A DOI (degree of interest) function [5] is
introduced to describe the degree of users’ interest in a particular window. A lower DOI value
results in a smaller sampling ratio. This approach works in two ways: (1) Users can choose which
windows to show, normally those containing data patterns that users want to compare; and (2)
Users can reduce visual clutter via assigning lower DOI values to the selected windows.

Figure 1 shows an example of our visualization layout. This figure uses a small slice (5:00AM-
6:30AM on Feb. 16, 2009) of a traffic data stream provided by Mn/DOT (Minnesota Department
of Transportation) [16]. In this slice, each datapoint includes three measured values during a 30
second period from sensor D722. We only choose two dimensions to investigate their correlations
here. One dimension is the average vehicle speed (Speed), and the other is the percentage of
time that the detector sensed a vehicle (Occupancy). We present a traditional time-series data
visualization technique, line charts, in Figure 1(a). Figure 1(b) shows a naı̈ve solution that treats
all datapoints in these 1.5 hours as a static dataset. We can neither identify any strong relationship
betweenSpeedandOccupancy, nor learn how patterns change over time. Figure 1(c) splitsthe
data stream into three sliding windows and uses colors to denote the age of the windows. We
can draw a conclusion thatOccupancydoes not correlate with the change ofSpeedin the early
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period, but an obvious negative relationship exists between these two dimensions later. In Figure
1(d), each sliding window is visualized by a scatterplot andthree of them are juxtaposed in terms
of the time attribute. We can easily confirm the pattern we found via Figure 1(c), but the last
visualization technique uses more canvas space than the previous ones. In Figure 2, we can see
how DOI functions work to reduce visual clutter. After the DOI function is adjusted to reduce
sampling ratios of three windows, visual clutter is reduced, and users can more clearly see how the
main clusters move over time.

(a) (b)

(c)

0500 0530 0600
Line A Line B

(d)

Figure 1: Figures show some of the main ideas of this paper, using a traffic data collected from a
highway entrance. (a) A traditional time-series data visualization; (b) All of datapoints are shown
together via a traditional scatterplot; (c) The ages of dataare denoted by colors; (d) Juxtaposition
of data in the order of timestamps. Figures (c) and (d) can convey how data patterns change, but it
is difficult for (a) and (b) to present this change.

(a) (b)

Figure 2: Using DOI functions to reduce visual clutter on a sleep data stream. (a) All datapoints
are displayed; (b) Sampling is applied to each sliding window based on the DOI function after user
adjustment.

The main contributions of this paper are as below:
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• We present a framework for introducing windowing and sampling strategies into traditional
multivariate and time-series data visualization techniques. Its aim is to handle unbounded
input as well as conveying trends, multivariate correlations, and the changes of data patterns
over time.

• This framework allows users to define DOI functions to describe the degree of users’ in-
terest [5] for different portions of the data. This functionenables users to choose which
windows to display, and adjust sampling ratios to reduce possible visual clutter.

• We provide four layout strategies to organize traditional multivariate data visualizations and
convey the change of multi-dimensional correlations. Userstudies showed that three of
these can effectively convey the multivariate pattern change compared to traditional time-
series data visualization techniques. Using the experiment results, we also derived a guide
to advise data analysts and visualization system developers to choose appropriate layout
strategies in terms of the characteristics of datasets and data analysis tasks.

• We integrate interaction techniques to help explore data streams, including a DOI function
interaction tool that helps analyze data via a trial-and-error process, and linked brushing
across multiple views. Several cases studies are discussedto show the effectiveness of these
interaction tools.

2 Related work

Streaming data visualization can be regarded as real-time time-series visualization with unbounded
and large-scale input. In this section, we review existing visualization techniques for time-series
data, focusing on the handling of large-scale input and representation of multivariate correlations.
In addition, we also investigate some recent research achievements regarding visually exploring
data streams.
Time-series Data Visualization: In order to deal with large time-series datasets, some abstraction
algorithms have been introduced into time-series visualization for adapting large temporal datasets
to limited display space. These can be categorized into two approaches: data-driven [15] and user-
driven [10] means. Miksch et al. [15] developed an abstraction algorithm for temporal univariate
data that aims to transform numerical values to qualitativedescriptions. It can smooth data oscil-
lation near thresholds. Hao et al. [10] used a sampling technique to abstract time-series data and
introduced DOI (degree of interest) functions to determinethe sampling rate. The DOI function is
used to represent how users are interested in different portions of a time-series dataset. The subset
of the original dataset with a higher DOI value is abstractedusing a higher sampling rate and dis-
played in higher resolution. Otherwise, an overview with lower resolution will be displayed. Hao’s
DOI function is designed for only static time-series data, and does not consider periodic phenom-
ena. We borrowed this idea and adapted it to streaming data. We also describe two types of DOI
functions, one of which can help users explore data streams having repeated patterns with a certain
cycle. We also got inspiration from other works on time-series data because of the similarities
between temporal and streaming data.
Data Stream Visualization: Some visualization techniques and systems have been designed and
implemented for particular types of data streams. Some researchers focus on univariate data. Hao
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et al. [11] used variable resolution density displays to visualize univariate data. They designed
circular overlay displays to avoid data shift movements after the display is full, thus avoiding the
difficulties for users to observe visualizations with too much change between frames.BinX [3] is a
real-time system to visualize time-series data on the fly. Ituses an aggregation algorithm to adapt
large datasets to a limited canvas and supports online adjustment for the levels of aggregation.
Our work will focus on how to convey multidimensional data patterns in data streams, which is
significantly different from these existing efforts.

Several recent research efforts involve the visualizationof multidimensional correlations. Wong
et al. [22] present techniques for handling a multidimensional data stream, similar to our work.
However, their focus is how to reduce the time complexity forscaling algorithms to generate
scatterplots for visually conveying clusters in data streams. Their basic approaches include data
stratification that intelligently reduces the data size using wavelets or sampling, and data-fusion
to project new data items onto the existing visualization toavoid re-processing the whole dataset.
Thus the problem they solved is to visualize the whole data stream in one pass, which is different
from our goal to convey the data patterns within a window and the change of data patterns over
time. Yu et al. [24] developed a tool for the visual analysis of a multimedia multi-stream data.
Some continuous time-series data and event data are first extracted from the multimedia stream,
and then are visualized via line charts, gray-level bars andcolor bars. Users can highlight selected
data portions, or zoom in on the region of interest to study the data trends and the multivariate data
patterns. Compared to the techniques we present in this paper, Yu’s tool focuses only on some
fairly simple patterns. In addition, they did not consider the unbounded nature of data streams.

Some existing research involves text streams. For instance, TextPool[1] is a tool for visualizing
and maintaining an up-to-the-minute understanding of livestreams of text such as newswires and
closed-captioned television. News stories are represented by content vectors, which are calculated
from news’ titles and a 10-30 word description. The final visualization is an animation of a graph
in which nodes represent salient terms from the streams. Compared to our work,TextPooldoes not
consider how to represent the change of patterns in a way other than animation, in which users can
easily forget the information in prior frames.

3 Streaming Data Model

To formalize the modeling of arriving data elements, we use the following definition derived
from [2]:

(V, ts) = (v1,v2, ...,vn, ts) (1)

to describe one arriving data element, which we call adatapointin the remainder of this paper.
Note thatn is the number of dimensions,vi(1≤ i ≤ n) are real numbers, andts is the timestamp
that represents when the datapoint originated. In this paper, we do not consider nominal values or
other types of data streams, such as documents, images and video. We consider these types as part
of our future work.

There are different types of streaming datasets in terms of their semantics. In this paper, we
focus on a widely used type, namelyUnivariate-Aggregation, in which each dimension can be
regarded as a univariate data stream, e.g., the traffic data stream we mentioned in Section 1. There
also exists other types of data streams. For instance, arriving datapoints may belong to different
objects, so trends on each dimension do not always make sense. The type of data stream has a
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significant impact on the choice of visualization strategies. For the univariate-aggregation type,
our main goal is to convey both trends for each dimension and multivariate data patterns. In the
future, we plan to explore other stream types.

The two streaming datasets used in this paper are the following.
Traffic Data Stream: In Section 1, We showed a slice of this data stream, which is provided by
Mn/DOT [16]. Mn/DOT installed more than one thousand sensors on highway entrance/exit ramps
and main lanes throughout the Twin Cities Metro area. Each detector can collect a value for each
of the following measures with an interval of 30 seconds: (1)Volume: the number of vehicles
passing the detector. (2) Occupancy: the percentage of timethat the detector sensed a vehicle. (3)
Speed: the average speed of all vehicles passing the detector. The website of Mn/DOT provides a
Java-based tool,DataExtract, to allow users to extract detector data to csv files. Thus we can get
several thousand values every 30 seconds. Instead of using all of these values at the same time, we
select one detector and retrieve its three measures during aspecific time period, e.g., one day or
week.
Sleep Data Stream: This data stream is a physiological dataset (Santa Fe time series competition
data set B) selected from the PhysioBank archive [7]. It is recorded from a patient suffering from
sleep apnea in a sleep laboratory. Since it is relatively long (about 4 hours at a frequency of 2Hz),
we use it to simulate a data stream. This dataset has three measures: heart rate, chest volume
(respiration force), and blood oxygen concentration.

4 The Framework Based on Windowing, Sampling and DOI
Functions

Before discussing the framework in detail, we introduce twoterms:
The Sampling Ratio is the percentage of datapoints to be selected to display. Although some
researchers use the termsampling rate, it is easy to confuse readers because sampling rate normally
refers to the number of samples per time unit taken from a continuous signal [13]. The definition
of sampling ratio used in this paper is as follows:

r(sampling ratio) =
the number of selected datapoints

the number of all datapoints
(2)

Note that sampling ratior must satisfy 0≤ r ≤ 1.
DOI Functions represent how interested the user is in seeing a particular sliding window. In a
regular static dataset, a DOI function calculates a value torepresent the degree of interest for a
portion of the dataset. Then the portion of data with high DOIvalues will be displayed with more
detail [5]. For data streams, the story becomes a little complex. When the stream system gets a
new sliding window (Window 1), a specific DOI level should be applied to this new portion of
data. However, when Window 1 expires and a new window (Window2) becomes the current one,
users might want to focus on Window 2 and show less interest inWindow 1. In this situation, the
sampling ratio for Window 1 must change. Hence, the DOI function should have two parameters,
a timestamp representing the specific sliding window and thecurrent time point. Formally, the
DOI function is given as DOI= fdoi(td, tc), wheretd andtc are the timestamps corresponding to a
specific sliding window and the current one. We use the smallest timestamp for all datapoints in
the window astd andtc. Other options are possible, e.g., the average timestamp.
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Figure 3: The framework of user-driven multiple-view visualization for data streams.

Figure 3 shows the proposed framework. Here we use non-overlapped sliding windows. In
this figure,data item memory poolanddata item disk poolreside in a piece of memory and in
secondary storage, respectively. When a sliding window is formed, the data will be transferred to
the memory pool. Because the data stream is infinite in nature, a part of the infrequently accessed
data in the memory pool will be moved to the disk pool via data compression when the memory
is full. The data staying in the disk pool also will be broughtback the memory pool when users
need to view some older data, though some will be lost during compression. TheMixer is the
core of the whole framework. Its input includes the datapoints in the current window and a part of
the older windows from the memory pool. It can assign sampling ratios and generate output that
mixes datapoints from these windows. The sampling ratio fora given sliding window is calculated
by a functionr = fr(DOI), where DOI is the output of the DOI function. Since we allow users to
provide DOI functions as input, we call this frameworkuser-driven.

We allow users to define multiple DOI functions to get more than one output because different
tasks need different DOI functions. For example, during traffic monitoring, users might have
two data analysis tasks: (1) identifying how vehicle speed changes within the recent hour; (2)
comparing the traffic of today with that of yesterday at the same time. Obviously, two different
DOI functions are necessary.

For each output, our framework can provide multiple views tousers. The possible relationships
among views for the same output include: (1) They utilize different visualization techniques to
convey different data patterns; (2) Each view visualizes a part of the data, e.g., the recentk windows
are juxtaposed intok views to form small multiples [20]. Thus a user can watch how data patterns
change over time via comparing multiple views. We also allowusers to interact with multiple views
using linking operations. One example of linking is that users can choose one region of interest in
a line chart, and then datapoints falling into this region will be highlighted in a scatterplot matrix.
We will show ways to organize multiple views in Section 6 and describe more about interaction
techniques in Section 7.

As discussed before, we need to switch data between the memory pool and the disk pool. Since
data streams are by nature infinite, the disk pool will eventually be full. One solution is to use lossy
data compression techniques that lose some data detail but keep the primary data patterns. For older
data, we can allow the loss of more detail than the more recentdata. In this paper, we focus on the
visualization and interaction techniques. The storage issues will be described via a future paper.
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5 DOI Functions

In this section, we describe two types of DOI functions that can be used for some common tasks.
As discussed in Section 4, the output of a DOI functionfdoi(td, tc) is a DOI value, which needs
to be mapped to a sampling ratio via the functionr = fr(DOI). For the sake of convenience, we
define DOI functions in a way that their output is just the sampling ratio.
Type RC (Recent Change): Figure 4(a) shows the curve for this type of DOI function. Itaims
to help users study how data patterns change within the recent k+ 1 sliding windows, which are
assigned sampling ratiosr0, r1, ..., rk in the order from the current window to the past ones. Note
that we do not require thatr i 6= r j wheni 6= j. One common usage is to letr0 = r1 = ... = rk = 1.0.
Figure 1(c) is generated using this type of DOI function withargumentsk = 2 andr0 = r1 = r2 =
1.0. If there is too much visual clutter and users are less interested in the old data, we can letr i < 1
for 1≤ i ≤ k.
Type PP (Periodic Phenomena): The DOI functions shown in Figure 4(b) can assist users in
observing data patterns with periodic characteristics. The data stream is split into multiple cycles
(the vertical time axis) with the same length. Each cycle contains multiple sliding windows (the
horizontal time axes). In each cycle, the DOI function has a shape similar to Type RC functions.
The DOI function in Figure 4(b) enables users to investigatedata patterns within the recentp+1
cycles. W0,0 is the current window, andWi,0(1 ≤ i ≤ p) belong to the past cycles, but have the
same position in the cycle asW0,0. In each cycle, this function also choosesk windows just before
Wi,0(0 ≤ i ≤ p) to display. Thus it can help users study how data patterns change across both
windows and cycles. Consider the example of monitoring traffic. Imagine the current sliding
window is 6:00AM-6:30AM on a Monday. The current traffic datapattern could be similar to last
Monday, and less similar to last Tuesday to Friday, and totally different from last weekend for
the same interval (6:00AM-6:30AM). To confirm this assumption, we can define a Type PP DOI
function to choose only sliding windows corresponding to 6:00AM-6:30AM in these days.

The DOI function we defined is similar to the opacity transferfunction in volume rendering
[12]. The opacity transfer function assigns an opacity value to a voxel based on voxel’s intensity
and can bring out certain feature of those voxels having highopacity values. The relationship
between the sampling ratio and the sliding window timestampis like the relationship between the
opacity value and the voxel’s intensity.

6 Visualization Techniques

As we mentioned in the Introduction, our goal is to visually convey the change of multidimen-
sional correlations. Thus we designed the visualization techniques with the following question as
the main consideration: How do we organize datapoints in different sliding windows to convey
multivariate correlations and the changes of data patterns? Obviously, it does not work to directly
visualize the Mixer output via a traditional multivariate visualization technique, such as parallel
coordinates and scatterplot matrices (see Figure 1 (b)). Such a solution blends data patterns of all
windows chosen by the DOI function in the final visualization. It is almost impossible for users to
retrieve data patterns for a particular time period and investigate how patterns change over time.

In this section, we will first introduce four layout strategies, namelysuperimposition, juxtapo-
sition, step juxtapositionandanimation playback, to answer the above question, and demonstrate
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Figure 4: Two instances of DOI functions: (a) Type RC (RecentChange); (b) Type PP (Periodic
Phenomena).

their usage with type RC DOI functions. Note that these strategies can be applied to any multi-
variate visualization techniques; we mainly use scatterplots as examples. These four strategies will
then be extended to type PP DOI functions. Finally, we develop a new visualization technique,
namely “embedded view”, via combining line charts and scatterplot matrices. This is to take ad-
vantage of the visual representation capabilities of multivariate and time-series data visualization
techniques in one figure.

6.1 Layout Strategies

Superimposition: This strategy puts all datapoints in a single picture, but distinguishes datapoints
from different sliding windows via visual attributes, the choice of which, obviously, can affect the
effectiveness of final visualizations. Xie et al. performeda user study on visual representation of
data quality and concluded that hue has a stable capacity to convey data attributes under parallel
coordinates and scatterplot matrices as long as the visualization is not too cluttered [23]. The
reason is probably that it is processed preattentively [21]and does not require extra space. Thus
we decided to use colors to convey the timestamps of sliding windows. Figure 1 (c) is generated
via applying superimposition to a scatterplot.

An obvious disadvantage is that displays can become overloaded with too much information,
which may result in a longer analysis time. Moreover, if there are too many windows to be chosen
in the DOI function and many of the datapoints from differentsliding windows overlap each other,
it is difficult to distinguish them, even if we use color to convey the window to which they belong.
Juxtaposition: In this method, we generate onesub-pictureusing a multivariate visualization for
one time window, and then place these figures in order of time (horizontally, vertically, or a grid).
In Figure 1(d), each scatterplot holds the datapoints from one sliding window. Users can see the
change of data patterns via comparing three sub-pictures.

Although juxtaposition can overcome some shortcomings of superimposition, it brings two
9



new disadvantages: (1) Let us recall Figure 1(d), in which the dots in the second and third sub-
pictures formed two lines, A and B. As a recognizable difference exists between the slopes of lines
A and B, users can draw conclusions about the change of data patterns. If this difference is not
that big, users may not easily identify the change of line slopes using juxtaposition, as there is
some distances between these two lines. In the superimposition layout, this difference should be
recognized more easily than juxtaposition, assuming thereis not too much visual clutter, because
one line can be regarded a reference when users observe the other. Thus superimposition has a
stronger capability to help users identify subtle changes of patterns than juxtaposition. (2) If users
want to compare the data patterns between two windows, they must move their eyes back and forth.
This could make the data analysis tasks cumbersome and mightresult in a longer response time,
especially when there are a large number of windows in the DOIfunctions.

In order to overcome the shortcomings from both superimposition and juxtaposition, we de-
veloped a third layout strategy to combine the advantages ofthe above two strategies, namelystep
juxtaposition.
Step Juxtaposition: Imagine the DOI function choosesk+1 (See Figure 4(a)) windows to display.
We createk sub-pictures: the first showsWk andWk−1, the second presentsWk−1 andWk−2, and so
on. This strategy uses superimposition to help users compare the data patterns of two contiguous
windows, juxtaposition to reduce possible visual clutter and shortens completion time for data
analysis tasks. Figure 5 shows an example. More than 2 windows can be superimposed in one
sub-picture in this technique to save canvas size if no too much visual clutter.

0G

1G

2G (Mar. 22)

(Mar. 23)

(Mar. 24)

Line  A Line  B

Line  C Line  D

(a) (b)

Figure 5: A step juxtaposition output using a type PP DOI function with the grouping approach
GA1, which is shown in Figure (b). The cycle length is one day.In Figure (a), We can see clearly
how data patterns change within the recent three sliding windows for March 24. However, data
patterns do not have significant changes on March 22 and 23.

A more convincing example is shown in Figures 6 and 7, where weuse a slice of traffic data
( Sensor D722, Feb. 16, 2009 ). The DOI function is of type RC and 25 windows are selected.
Imagine we were asked to find when the fit line slope changes from one window to the next. This
is definitely impossible via superimposition since human eyes cannot effectively distinguish 25
colors in one figure. In figure 6, it is an arduous task because of too many windows. However, in
Figure 7, this task becomes much easier. In each scatterplot, we only need to use light yellow data-
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points as the reference and observe dark yellow dots. We can not only find obvious changes from
Window 05:00-05:30 to Window 05:30-06:00, and from Window 05:30-06:00 to Window 06:00-
06:30, but can also perceive tiny changes from Window 06:00-06:30 to Window 06:30-07:00, from
Window 09:00-09:30 to Window 09:30-10:00, and from Window 09:30-10:00 to Window 10:00-
10:30. These tiny changes are almost impossible to detect using juxtaposition (Figure 6). In the
section on our user studies, we will see that step juxtaposition can help users obtain a much higher
response accuracy than juxtaposition and shorten completion time for data analysis tasks.
Animation : It is an intuitive idea to play the data pattern change usingan animation, with each
frame representing a time window. Animation combines the benefits of the prior three visualization
techniques:

(1) Because of the short memory of the human visual system, users can normally memorize the
previous frame in the animation when the current frame is shown to us. Thus it has similar
capabilities to convey data pattern change as superimposition and step juxtaposition.

(2) Compared to superimposition and step juxtaposition, animation can avoid the visual clutter
caused by overlapping datapoints from different time windows.

(3) Unlike juxtaposition and step juxtaposition, animation still uses a canvas having the same size
as superimposition, which can also avoid the possible visual clutter caused by overlapping
resulting from a smaller canvas size.

However, animation can only highlight the change between a small number of contiguous
time windows. Another shortcoming is that it might delay thedata analysis tasks, because users
frequently need to play the animation multiple times to confirm what they found. Moreover, we
must show a window ID together with the visualization, so users know that window they are
viewing. Thus users have to observe this caption while watching the animation and cannot fully
focus on the data patterns.

Based on the above description and analysis of our proposed layout strategies, we list and
compare their characteristics in Table 1. In Section 8, we will describe an experiment to compare
the representation capabilities of these four layout strategies, and then derive a guide to advise
analysts on choosing appropriate techniques for their dataanalysis requirements.

Superimposition Juxtaposition Step Juxtaposition Animation
(1) Contiguous Capabilities Good Fair Good Good
(2) Non-contiguous CapabilitiesGood Fair Fair Bad
(3) Overlapping Much No Few No
(4) Canvas size Full Shrunk Shrunk Full

Table 1: The comparison among four visualization techniques. The first column is the abbreviation
for what we want to compare: (1) Contiguous capabilities: Towhat extent can this strategy convey
the data pattern change between two contiguous sliding windows; (2) Non-contiguous capabilities:
This is similar to the first aspect but focuses on the pattern change between two non-contiguous
sliding windows; (3) Overlapping: The amount of possible visual clutter caused by overlapped data
from different sliding windows; (4) Canvas size: The size ofthe basic visual unit ( a scatterplot in
our example ) from which users can retrieve data patterns.
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Figure 6: A juxtaposition output using the traffic data from sensor D722 on Feb. 16, 2009. Assume
that the data analysis task is to detect the slope changes forfit lines of linear trends between
contiguous windows. It is difficult to detect tiny slope changes. Moreover, even for an obvious
change, it takes a longer time.
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Figure 7: A step juxtaposition output using the same data as Figure 6. We can easily and quickly
find when the slope of fit line for linear trend changes.
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6.2 Extension of Layout Strategies to Type PP DOI Functions

We have discussed four layout strategies and showed their usage together with type RC DOI func-
tions. In theory, we can directly apply these layout approaches to the case with type PP DOI
functions. For example, in a type PP DOI function, users might choose two cycles and three time
windows per cycle, and thus totally six windows should be shown. Such an example associated
with traffic data is shown in Table 2. If we directly utilize the proposed layout strategies to handle
these six windows, users could retrieve the information they want. However, this initial idea is
not efficient compared to an alternative approach to grouping and then visualizing. This approach
is based on a fact that users normally have two types of interests: (1) the pattern change across
windows in the same cycle; and (2) the change of patterns across cycles in the same time period,
such as window 1 and window 4. If users are interested in (1), we can organize two groups: (a)
windows 1 & 2 & 3; and (b) windows 4 & 5 & 6. For the second task, wecan split all windows
into three groups: (a) windows 1 & 4; (b) windows 2 & 5; and (c) windows 3 & 6. The rationale
is to put those windows in which users want to detect pattern changes into the same group. Then,
we can use the four proposed layout strategies to visualize each group, respectively. Therefore,
users can observe each group and try to extract the information of interest. Obviously, this group-
ing approach makes the pattern change analysis easier than the initial non-grouping method. For
superimposition, it can decrease the number of time windowsin one figure; and in the other three
layout strategies, the grouping approach will put togetheronly those windows in which users want
to detect the pattern changes.

6AM-7AM 7AM-8AM 8AM-9AM
Yesterday Window 1 Window 2 Window 3
Today Window 4 Window 5 Window 6

Table 2: Six windows used to explain the layout design for a type PP DOI function.

To be general, we provide two grouping approaches, called GA1 and GA2 (Figure 8) for the
type PP function shown in Figure 4(b).

GA1: If the data analysis task focuses on the pattern change across windows within one cycle,
p+1 groups (G0, G1, ...,Gp in Figure 8) will be provided. Actually, each group containsall
windows in one cycle. An example of this grouping approach isshown in Figure 5.

GA2: If users are interested in changes across cycles, we generatek+1 groups (G′
0, G′

1, ...,G′
k in

Figure 8). Every group hasp+1 windows, each of which belongs to a cycle. All are in the
same position within the cycle.

6.3 Integrating Time-series and Multivariate Data Visualizations

All of the above techniques assume the use of multivariate visualizations to convey multi-dimensional
correlations. Another normal data analysis requirement inexploring data streams is to observe the
trends for each dimension, which can be achieved using traditional time-series data visualization
techniques such as line charts and heat maps. It is true that we can just put line charts and a scat-
terplot matrix side by side to convey both the trends for eachdimension and multi-dimensional
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Figure 8: Two grouping approaches to helping users achieve various data analysis goals.

(a)

(b)

(c) (d)

Figure 9: The embedded views for the sleep data stream. We notonly see how clusters move over
time in the scatterplots, but also see the trends for each dimension via line charts in the diagonal
plots. Figure (c) is generated using the DOI function shown in Figure (a), which chooses the recent
9 windows to display. After the user uses the DOI function interactive tool to adjust the function
to Figure (b), we can get a new view shown in Figure (d). Users can more clearly see the move of
clusters on Figure (d) than Figure (c).
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correlations. This requires decreasing the canvas size foreach visualization since the total canvas
size is normally fixed, e.g., monitor size. To overcome this shortcoming, we propose a novel tech-
nique, namelyembedded views, to embed line charts into scatterplot matrices to save canvas space.
This approach is adapted from the enhance scatterplot matrices of Cui et al. [4], who introduced
0D, 1D and 2D visualizations, including histograms, line charts and images, into the diagonal
plots.

Figures 9(c) and 9(d) show two embedded views using the sleepdata stream. They use the DOI
functions shown in Figures 9(a) and 9(b), respectively. From these two views, we can clearly see
how the main clusters move over time in the scatterplot. In addition, we can also study the trends
for each dimension via line charts.

7 Interactions

7.1 DOI Function Interactive Tool

Although we described two pre-defined types of DOI functionsin Section 5, it is necessary to en-
able users to define DOI functions by themselves to analyze data streams in different applications.
We also feel that it will make the system much more useful to allow users to adjust the DOI func-
tions interactively. Basically, visual analysis based on the DOI function is often a trial and error
process. It is normal that analysts do not know the exact characteristics of the data patterns and
how these patterns change prior to exploring the data streams. By allowing users to adjust the DOI
functions, analysts can select a predefined DOI function first, and then adjust it to find useful data
patterns while the system is running. Some possible adjustments to facilitate exploration include:
(1) Increasing the sampling ratio to see more details or to decrease the ratio to avoid visual clutter.
(2) Changing some of the arguments for pre-defined types of DOI functions. For example, if the
number of sliding windows to be displayed for the type RC DOI function is large, say 9, but we
find most important changes occur within the recent two or three windows, we can reduce it and
observe the change in more detail.

We designed an interface to enable users to change the DOI function interactively. Using this
tool, users can (1) drag the DOI function curve to change DOI values for a particular window; (2)
save or load a DOI function to/from a file; (3) add/delete a window;(4) add/delete a cycle (only
applicable for type PP function); and (5) reset the DOI function to the original state. Figures 2 and
9 show the effect of using this tool. In Figure 2(a), the arguments for the DOI function are set as
r0 = r1 = r2 = 1.0, but they are changed tor0 = 0.5 andr1 = r2 = 0.33 in Figure 2(b). In Figure 9
we show the effect of reducing the number of windows.

7.2 Linked Brushing among Multiple Views

In order to help users explore subsets of interest, we introduce linked brushing into the framework.
Brushing is a commonly used interaction technique to allow users to select a subset of data via a
query. Linked brushing is used in multiple view visualizations. Users can link multiple views for
one dataset. For instance, brushing points in one view can cause the same points to be highlighted
in other views.
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The linked brushing in our framework is similar to others. When users choose a subset in a
view, the data in this subset will also be highlighted in other views. Two technical issues warrant
discussion: (1) how to define a query for the subset of interest; and (2) how to highlight this subset.
The second one is challenging. Many visualization tools, such as XmdvTool [14] and GGobi [19],
use colors to highlight subsets of interest. However, in ourframework, colors have been assigned
to denote data age.
Query Definition: We use a hyperbox proposed by Martin and Ward [14] to specifya brush query,
but add the time attribute to the brush definition, namely anN+1-dimensional brush:

([S1,E1], [S2,E2], ..., [Sn,En], [St,Et ]) (3)

where[Si ,Ei](1≤ i ≤ n) denotes the start and end values for brush coverage on dimension i, which
specify a range in which users are interested, and(St,Et) denotes the time range. For a datapoint
(V, ts) = (v1,v2, ...,vn, ts) in the data stream, if it satisfiesSi ≤ vi ≤ Ei for all i(1 ≤ i ≤ n) and
St ≤ ts≤ Et , then it falls into the subset to highlight.

We allow users to usedata driven brushing[14] to specify the query, which requires that the
data falls into specified ranges on only one or two dimensions, and can be any values on other
dimensions. The final visualization will show the exact bounds for those data of interest on other
dimensions, including the time attribute.
Highlighting :

We solve the highlighting issue via the following two rules:
Rule 1: If a visual attribute other than color is available and is effective in denoting window age,
switch to this new one and use colors to highlight selected datapoints; otherwise, go to rule 2. For
example, if we select star glyphs as the multivariate visualization, we can place glyphs in the order
of time, and use colored grids to denote the age of sliding windows.
Rule 2: We apply a fog effect to the data portion in which users are not interested by blending
them with a gray shade. This results in these data being shownin a dimmer color, but users still
can identify the ages of these data in terms of the color key. Figure 10 shows the fog technique for
highlighting data, and data driven brushing to specify the query.

8 Evaluations on Layout Strategies

Earlier we proposed four layout strategies to utilize traditional multivariate visualizations to convey
the pattern change in data streams. We also compared these four strategies using four criteria, and
demonstrated some examples to show that our proposed techniques can effectively visualize the
change of multivariate correlations. However, the answersto two important questions are still
pending:

• Are the proposed techniques significantly better than othertraditional time-series data vi-
sualization techniques, such as line charts and heatmaps, to convey the change of multi-
dimensional correlations?

• Which layout strategy is the best to convey the pattern change for a specific dataset and
pattern?
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Figure 10: Data driven brushing is applied to the sleep data stream. Users first set the ranges for
Heart rate andblood oxygen. The exact bounds of selected data onChestvol and timestamp are
shown using a shade background.

For the first question, we might say yes. The reason is as follows: multivariate visualizations,
such as scatterplot matrices, are specially designed for conveying multi-dimensional correlations,
and the rationale of our techniques is to layout multiple multivariate visualizations, and show the
pattern change. But line charts and heatmaps are designed for conveying trends of one dimension.
Thus they cannot show multi-dimensional correlations or their changes very well. However, we
can find some techniques in the literature that convey multi-dimensional correlation via line charts
and heatmaps [24]. Thus a user study will likely be more convincing than the above argument.

The answer to the second question can help us design an efficient streaming data visualization
system. If we do not have this answer, one possible solution is to provide all possible views to
users and allow them to choose which one to use. When the system is running, users have to
switch between various views to look for the best one. This could make users miss important
pattern changes. The reasons include: (1) one kind of changemight be obvious in one technique,
but not evident in others; and (2) data patterns are not always changing from one window to the
next, so users have no idea whether they have caught the correct change.

In order to answer these two questions, we performed a user study to observe participants’ ca-
pabilities in detecting pattern changes on some artificial datasets adapted from real ones. We tested
our proposed layout strategies and traditional time-series data visualizations, including line charts
and heatmaps. The experiment results can help validate the effectiveness of our proposed tech-
niques, and enable us to derive a guide how to choose layout strategies based on the characteristics
of data analysis tasks and datasets. This is useful for both the data analysts as well as visualization
system designers.

8.1 Experiment Design

The basic procedure used to design this experiment is as follows: (1) Choose some commonly-
used data patterns that can be defined easily and clearly; (2)Construct streaming datasets having
changes on selected data patterns between time windows; (3)Generate figures or animations using
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the proposed visualization techniques, as well as line charts and heatmaps, and design questions to
ask participants, regarding the pattern changes in the generated visualizations; (4) Analyze users’
response accuracy and response time. In theory, high accuracy and low response time indicates
an effective technique. Whether a proposed technique is good depends on many aspects, such as
the selected data patterns and the magnitude of pattern change. In this experiment, we tried as
many combinations of these factors as possible, and observed how they affected users’ responses.
Although it is impossible to try all combinations, our experiments aimed to test the most common
ones to guide most data analysis tasks.
Choosing Data Patterns: In prior examples, we can see two types of data pattern change: one is
the slope change of linear trends (Figures 1, 5), and the other is the movement of the main cluster
(Figures 2, 9). They both are very common in many real applications and are easy to explain to
participants without experience in visual data analysis. There are some other types of change, such
as the displacement of fit lines representing linear trends,the expansion or shrinking of clusters,
and changes in other data patterns. Actually, different types of data patterns might be similar to
each other, e.g., the displacement and the slope change of a linear trend. Therefore, we may be
able to borrow some results on evaluating slope change when we design a system to help users
detect displacements in linear trends. If a new data analysis task is totally different from the tested
data pattern changes, a new experiment can be designed with this procedure as a guide.
Constructing Datasets: The basic idea for constructing a dataset is as follows: (1)Pick a specific
time window, namelyW0, from a real dataset and regard it as the first window of the final experi-
mental data. (2) Construct several artificial time windows,namely fromW1 to Wn−1, based on the
initial window. We require that the selected pattern is always changing fromWi to Wi+1 for any i
that satisfies 0< i < n−1. (3) Generate the final dataset using the windows fromW0 to Wn−1. An
example dataset is shown in Figure 11. It is generated from a snapshot of traffic data. Figure 11(a)
corresponds a subset of the real traffic data, while figures 11(b) and 11(c) are generated using time
windows adapted from the data in Figure 11(a).

(a) (b) (c)

Figure 11: Figure (a) - (c) show three time windows of an artificial streaming dataset. Figure (a)
is cut and copied from a time window of traffic data. The datapoints in Figures (b) and (c) are
constructed from those in Figure (a) via the rotation shown in Figure 12.

The key is step (2). How can we determine the change magnitude? How many time windows
can we create? After analyzing some real datasets, we noticed that the change magnitude can
significantly affect a user’ capability to detect the pattern changes. In addition, if the number of
time windows in superimposition is big, users cannot distinguish different windows because of the
number of colors and the presence of overlapping, Thus, we created streaming datasets that are
combinations of the following two factors:
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Figure 12: We show how to construct an artificial streaming dataset having three time-windows
from a real dataset. The straight linePA0 represents the linear trend with which the datapoints in
a specific time window of traffic data agree.PA1 andPA2 correspond to the linear trends of two
constructed time windows. Note that we also created an anti-clockwise change and introduce more
windows for some questions.

• Change Magnitude: Obviously, a bigger change can be more easily perceived by human
eyes. We created multiple datasets having various degrees of magnitude for the change in
the selected data patterns,

• The Number of Windows: We created three types of datasets, with 3, 4, and 5 time win-
dows, respectively.

Figure 12 shows how to determine the magnitude of pattern change (linear trend) between
contiguous windows. The straight linePA0 represents the fit line of the linear trend for the initial
window. In this line, the pointP is the intersection of fit lines for two contiguous time windows
in the real traffic data, one of which is the initial window. For example, if we pick the second
time window as the initial window in Figure 1(d), the pointP is the intersection of linesA andB.
The distance betweenP andA0 is half of the diagonal line for the scatterplot. We then construct
the fit lines for artificial windows fromW1 to Wn−1. In Figure 12, we only show two fit lines
l1(PA2) and l2(PA2) for W1 andW2. Note that|PA0| = |PA1| = |PA2| and we use thed1 = |A0A1|
andd2 = |A1A2| to represent the change magnitude. In conclusion, in the experiment for linear
trend patterns, we use the combination of three types of change magnitude (1, 4 and 12 pixels),
and three time window counts (3, 4, 5 windows).

The construction of datasets for cluster motion patterns issimilar to the above process.
Generating Visualizations and Questions: In order to make the comparison among the user
responses for different techniques meaningful, we follow several rules:

(1) Color Schema: In superimposition and step juxtaposition, the selection of color schema
can significantly affect participants’ capabilities to detect pattern change. Thus we applied the
same color schema to all visualizations generated using superimposition and step juxtaposition.
Specifically, we selected a color schema, utilized the colors at the two ends in the step juxtaposition,
and chose evenly spaced colors based on the number of time windows for the superimposition.

(2) Canvas Size: Because a small canvas size can lower response accuracy and increase the
response time because of possible overlapping, we fixed the total canvas size and assigned a spe-
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cific canvas size to each scatterplot based on the layout strategies. To be specific, we allowed the
superimposition and animation to use the total canvas size,but put the juxtaposition and step jux-
taposition in a grid while maintaining the ratio between width and height for each scatterplot. The
total size of the grid is equal to the total canvas size. For example, if we have 5 windows in gen-
erating a juxtaposition, we split the total canvas to a grid having 9(3×3) cells. This can maintain
the shape of scatterplots but utilize the canvas size as muchas possible.

(3) Point Size: The point size must be appropriate to convey data patterns in scatterplots since
dots that are too small are difficult to distinguish and big dots could result in overlapping. Thus
we used 4×4 pixel points in the superimposition and animation, and the3×3 pixel points in the
juxtaposition and step juxtaposition, because the latter have a smaller canvas size.

The questions for our proposed techniques are straightforward. For example, in questions
about linear trends, we designed a multiple choice question, and directly asked about how the fit
line slope changes (increasing or decreasing) between two specific contiguous windows. However,
it is almost impossible to perceive a fit line or a cluster in line charts and heatmaps. Thus we gave
equivalent questions. For linear trends, we asked participants to estimate the rate of change for
one variable with respect to the change of the other, which can be regarded as the fit line slope.
We asked users to tell us how this rate changes. In cluster movement questions, we asked users to
estimate how the average value on one variable changes from one window to the next.

8.2 Experiment Settings

In total, 14 computer science students attended our experiments. Two of them were undergraduate
students, while the others were graduate students. We first gave a short introduction and showed
some sample questions to each student, and then asked each tofinish two groups of questions.
Each group has 33 questions. One group was for linear trends and the other pertained to cluster
movement. To avoid the side-effect of a learning curve, we shuffled all questions in each group for
each participant. All questions were shown to users via the same laptop.

8.3 Experiment Results

Result 1: Figures 13(a) and 13(b) show the mean values with a 95% confidence interval of response
accuracy (RA) and response time (RT) for all participants and questions. We also compared RA
and RT values for different visualization techniques usingthe paired samples t-test and drew the
following conclusions: (1) From the aspect of RA, superimposition, step juxtaposition and ani-
mation are all significantly better than juxtaposition, line charts and heatmaps (p < 0.001). Since
every question has only three choices, the performance of juxtaposition, line charts and heatmaps
was deemed not acceptable within our experiment configuration because their RA mean values
are less than 50%. Thus three of the four proposed techniquescan work much better to convey
multi-dimensional correlations than traditional time-series data visualizations, such as line charts
and heatmaps. (2)Superimposition and animation are a little bit more accurate than step juxta-
position (p = 0.02 and 0.05). But superimposition is not significantly different from animation
(p = 0.67). (3) For the RT values, we only compared acceptable techniques. We can see that
participants normally spent less time on step juxtaposition than superimposition and animation.
However, superimposition is not significant different fromanimation(p = 0.10), while the differ-
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ence between step juxtaposition and animation is significant (p = 0.005). Therefore, for the tasks
requiring users’ quick response to pattern changes, step juxtaposition is a good option.

(a) (b)

Figure 13: The experiment result for all participants and questions: (a) response accuracy; (b)
response time.

Result 2: In order to see how the magnitude of pattern change affects participants’ performance,
we calculated the mean values with a 95% confidence interval of RA values grouped by the com-
bination of layout strategies and change magnitude. The results are shown in Figure 14, which
demonstrates two facts: One, participants have improved performance when the change magni-
tude ( the number of pixels ) becomes bigger, except for juxtaposition. The difference between a
1 pixel change and a 4(12) pixel change is significant for all layout strategies except juxtaposition
(p < 0.02). Moreover, the percentages of correct answers for 4 and 12 pixel change are close to
100% for all layout strategies except juxtaposition. However, the RA values for a 4 pixel change
is not significantly worse than those for a 12 pixel change. Two, for the 1 pixel change, animation
has the highest RA values, and was significantly better than superimposition and step juxtaposition
(p = 0.04 and 0.03). Subjects had a correctness percentage of about 65%. Considering that the
point size is 4×4 for animation, this is a very good result. The reason is obvious: when the change
is very small, the similarity between the datapoints of two windows results in too much overlap-
ping; thus participants cannot perceive subtle changes from the figures we generated. However,
animation can avoid the overlapping and still convey the pattern change via the short-term mem-
ory of human brain. Therefore, we draw two conclusions: (1) Under our experiment configuration,
superimposition, step juxtaposition and animation can work very well for changes bigger than or
equal to 4 pixels; (2) Animation can work relatively well even if the change is very tiny and smaller
than the point size, while superimposition and step juxtaposition cannot.

An interesting result of this experiment is that juxtaposition is not good at conveying pattern
change. We expected that it would at least be better than superimposition because it could relieve
visual clutter and make the pattern obvious. Actually, it isnot as good as the other three techniques.
Our guess is that human eyes cannot detect change from one figure to the other without an appro-
priate reference if the change is tiny. Recall that we asked participants to detect the slope change
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Figure 14: The response accuracy for all participants and datasets having only 3 time windows.
The numbers on the horizontal axis mean the change magnitudein the unit of pixels.

of a linear trend. We can observe one time window by treating the datapoints in the other time
window as a reference in superimposition, step juxtaposition, and animation, because datapoints
of two time windows are put in the same scatterplot. Note that, when an animation shows the
second frame, the first frame can still be used as a reference because of human short-term memory.
This makes it easy to perceive the pattern change. However, if using juxtaposition, it is difficult to
use such a reference because two windows are separated from each other. One possible solution
to improve juxtaposition is to add reference points for eachindividual scatterplot in the form of
lines. In such as way, users can easily estimate the parameters for the data patterns in each window,
including the slope of fit lines and the distance between a cluster and the scatterplot border. This
solution has an obvious disadvantage: grid lines can cause visual clutter and thus counteract their
benefits. This should be tested in an experiment, which we plan as future work.

8.4 Evaluation Summary and Implications

We have answered question 1 at the beginning of this section (are these layouts better than tra-
ditional techniques) using conclusion 1 of result 1. For question 2, it is difficult to give a simple
answer because each technique is appropriate for differentcases. Instead, we derive a set of guide-
lines (Table 3) to advise data analysts and visualization system designers to choose appropriate
layout strategies.

The number of windows
involved in pattern

The magnitude of the pattern change
Small Large

Small Animation Superimposition & step juxtaposition
Large Animation Step juxtaposition

Table 3: The guideline to advise data analysts and visualization system designers to choose appro-
priate layout strategies in terms of the characteristics ofdatasets and tasks.

We recommend animation when the change is small, because animation is the only technique
that appears to work very well in this case. However, animation could make the visualizations
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annoying and requires a longer response time, so we recommend superimposition and step jux-
taposition when the change magnitude is big. Superimposition does not work well when users
choose too many windows in the DOI functions, as it can cause bring serious visual clutter and
humans cannot readily differentiate many colors at once. Inthis situation, step juxtaposition is best
choice. A key question is: what is this threshold at which superimposition becomes problematic?
It is almost impossible to give such a number for all visual analysis tasks, because it depends on
many factors, including the selection of color schema, canvas size and the degree of visual clutter.
In terms of visual perception theory, human eyes can distinguish at most about 10 colors in one
figure. Thus this threshold is 10 or less if datapoints are toocrowded in the final visualization. For
a specific use case, users or system designers can do an experiment to determine this number.

In Table 3, we divided the change magnitude into small and large. So we must answer a ques-
tion: what kind of change magnitude can be regarded as small(large)? Let us recall the experiment
result shown in Figure 14. Only animation can work relatively well when the pattern change is
smaller than the point size. So our recommendation is that ifthe change is smaller than the size
of visual items, we regard it as small and suggest that users use animation to observe the pattern
change.

9 Case Studies

In this section, we present three stories using these examples to show the effectiveness of our vi-
sualization and interaction techniques. Because we have showed the effectiveness of our proposed
visualization techniques in user studies, we will mainly focus on demonstrating the usefulness of
DOI functions and their interactions in cases 1 and 2. The former will use a type PP DOI function,
while the latter focuses on the trial-and-error exploration process using the DOI function inter-
action tool. Since all examples used scattplots up to now, wewill demonstrate the third case by
integrating step juxtaposition into parallel coordinatesto show that our proposed layout strategies
can be applied to other traditional multivariate visualization techniques.
Case Study 1: Figure 5 uses the measures from the sensor D191 (close to theintersection of I-
35W and 35th St.) in the traffic data stream. We use a type PP DOIfunction as shown in Figure 5
(b). The length of a cycle is one day. The current window is 7:00PM-7:30PM on Tuesday, March
24, 2009. In our implemented system, we used scatterplot matrices to show this example. For
the sake of saving space, we chose two interesting subplots from each scatterplot matrix to form
Figure 5(a). In the two scatterplots, we can see thatSpeedandOccupancyalways have a negative
relationship with each other. However, the absolute value of the slope for line A is much larger
than that for line B. Thus, we can conclude that a small changeof Occupancycan result in a big
change inSpeed, and vice versa, during the past two sliding windows (6:00PM-7:00PM). This is
the result of heavy traffic. Nevertheless, these two dimensions do not obviously affect each other
in the current window. A more important finding is that such a change of data patterns did not
happen on March 22 and 23, i.e, the traffic from 6:00PM to 7:30PM was not that heavy.

From the scatterplot formed byVolumeand Occupancy, we also can see some interesting
change of data patterns. Line C contains only data corresponding to the current window (7:00PM-
7:30PM). It shows a positive relationship between these twodimensions. We can also see a neg-
ative relationship betweenVolumeandOccupancywhen observing other datapoints with lighter
colors (Line D), which denote the time period from 6:00PM-7:00PM. The possible reason is that
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high occupancy means low speed, which can result in fewer vehicles passing the sensor when
traffic is very heavy. Conversely, high occupancy means thatmore vehicles will pass the sensor
(Volume) when traffic is not heavy. A similar change did not happen on March 22 and March 23.

What happened? This is not at traffic peak hours. Finally, from the incident record of Mn/DOT,
we discover that flooding happened in the late afternoon on March 24, near the cross of I35W and
42nd St. because of 0.44 inch of precipitation on that day. This is very probably the reason why
data patterns changed on March 24, as compared to March 22 and23.

The analysis of this example confirms that the developed techniques can convey not only the
multidimensional correlations for a particular time period, but also the change of data patterns, and
eventhe change of the changes of data patternsif using type PP functions.
Case Study 2: Let us investigate Figure 9, which uses the sleep data stream. The current win-
dow is 36.5-37 minutes after the beginning of this sleeping experiment. Figures 9(c) and 9(d) use
embedded views to convey not only trends for three dimensions but also multidimensional correla-
tions. Figure 9(c) was generated using a DOI function to compare the recent 9 sliding windows as
shown in in Figure 9(a). From each scatterplot we can quicklyfind how the primary data in each
sliding window move over time. For example, in the plot with heart rate (heart) as X and blood
oxygen concentration (blood) as Y, we can see that the older data mainly fall into the bottom area,
then slowly move in the upper-left direction, and finally return back to a middle position. From
line charts, we can find that the heart rate decreased to a minimum value and then slowly went up
within the recent sliding windows, and, at the same time, theblood oxygen concentration reached
a maximum value and then slowly went down. The findings from line charts are good supplements
to conclusions gained via the scatterplot.

In Figure 9(c), we also can see that this interesting change exists in the recent several windows.
If we want to see more detail of this change, we can use the DOI function interactive tool to adjust
the DOI function for choosing fewer sliding windows to display. The new DOI function is shown
in Figure 9(b), which results in a new view (See Figure 9(d)).From the new view, we can more
clearly see how the positions of clusters change as comparedto Figure 9(c).

If we observe carefully the plot with (heart) as X and (blood) as Y in Figure 9(d), we can see
that some of the data in Window 1 (the window just before the current window) have the lowest
positions. We then use data driven brushing to set the query condition for dimensionsheartand
blood to select these points (Figure 10). Then the exact bounds forthose data satisfying the query
on dimensionchestand timestamp are shown using a shading background. Thus we can discover
the time when the movement of clusters happened.
Case Study 3:

This case uses a 5-minute slice of sleep data stream. We splitit into 10 time windows and
generated Figure 15 using step juxtaposition and parallel coordinates. Let us first observe the
changes of the correlation between the heart rate and blood oxygen concentrate. Basically, we can
see two types of distribution: Type 1: low heart rate and highblood oxygen concentrate, such as
windows 54.0-54.5, 56.5-57.0, and 58.0-58.5; and Type 2: high heart rate and low blood oxygen
concentrate, e.g., windows 54.5-55.0 and 57.0-57.5. The datapoints in some windows are the
mixture of two types of data, such as window 57.5-58.0. In each sub-figure, we can clearly see
how the data is changing from one type to the other. For example, in figure 15(a), the data changed
from type 1 to type 2. We investigated the whole stream and found that type 1 is the primary one
and type 2 concentrates in some parts of the stream. Thus type2 can be treated as an outlier. Since
the patient in this sleeping experiment shows sleep apnea (periods during which he takes a few
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quick breaths and then stops breathing for up to 45 seconds),type 2 data might be associated with
this abnormality. Is this guess true? The third dimension, the chest volume, that is the indicator
of respiration, can tell us the answer. During the normal human breath, the chest volume should
change in a waving way. We can see that in most of time windows,chest volume values exist in
a wide range, which is normal. However, we can find that the values of this dimension in four
windows have a very narrow range, including windows 54.0-54.5, 55.5-56.0, 56.5-57.0, and 58.0-
58.5, where the patient might stop breathing for a while. Moreover, just after each of these four
windows, we can see that data changed from type 1 to type 2. Forexample, in sub-figure (c), the
darker points correspond to window 55.5-56.0, where we guess the patient stopped breathing. We
can find that the data changed from type 1 to type 2 in sub-figure(d). Thus, we have a finding
via the help of visualizations, that the patient will changeto an abnormal condition of high heart
rate and low blood oxygen concentrate after sleep apnea happened. We have not confirmed this
finding with medical expert, but this case study at leat can show that the proposed layout strategies
is so powerful that it can help us find possible cause and effect in data streams, when we apply
them to traditional multivariate visualizations. This canhelp promote hypotheses and confirm new
findings.

10 Conclusions and Future Work

In this paper, we have proposed a framework for the exploration of multivariate data streams.
The story starts from a basic idea to display both the currentdata and abstractions of past data to
show not only the data patterns in a particular time period but also how data changes over time.
We split the whole stream into non-overlapped sliding windows and apply uniform sampling to
each window. The sampling ratio for a particular window is determined by a DOI (degree of
interest) function to reflect users’ interest. A larger DOI value results in a larger sampling ratio
for the specified window, which shows more detail in the final view. We provide two types of
DOI functions to satisfy some common data analysis tasks, aswell as a DOI function interactive
tool to allow users to adjust the DOI function when exploringdata streams. In order to show how
data patterns change, we have proposed four layout strategies, superimposition, juxtaposition, step
juxtaposition and animation, to place sliding windows. Theevaluation showed that three of these
can effectively convey the multivariate pattern change compared to the traditional time-series data
visualization techniques. We also derived a guide to advisedata analysts and visualization system
developers in choosing appropriate layout strategies based on the characteristics of datasets and
data analysis tasks. In addition, we allow users to use multiple views in the final visualization and
support linked brushing to highlight a subset of interest inall views when users define a query in
one view.

Some potential future work includes:

• The current framework is totally user-driven. Most parameters, including those within DOI
functions and the length of sliding windows, are controlledby users. In the future, we plan
to extend the current framework with a data-driven feature,to enable the system to automati-
cally adjust DOI functions and other arguments in terms of data features. For example, when
data patterns change quickly, the system should be able to automatically shorten the sliding
window to facilitate the observation of changes.
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Figure 15: The visualization for a slice of sleep data streamgenerated by applying step juxtaposi-
tion to parallel coordinates. All time units in the figure areminutes. We can clearly see how the
relationship between variables changes from one window to the next.
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• In this paper, the detection of pattern change depends on visual analysis. For instance, users
must compare the shape of the datapoints of two windows to detect whether the slope of the
fit line is changing. In the next step, we plan to integrate statistics and data mining algorithms
to compute the pattern changes, and directly visualize the change, using either juxtaposition
or superimposition strategies.
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