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Abstract

The analysis of data streams has become quite importancentrgears, and is being
studied intensively in fields such as database managemelizds mining. Although some re-
searchers in data and information visualization have tiy&ted the visual analytics of stream-
ing data to a certain degree, there are some obvious lignitain existing work: (1) a lack of
effective techniques to show how data patterns change ower aind (2) limited ability to
represent multivariate correlations. In this paper, wepse a framework to visualize multi-
variate data streams via a combination of windowing and $amptrategies. In order to help
users observe how data patterns change over time, we dispiayly the current sliding win-
dow but also abstractions of past data in which users anesttl. Sampling is applied within
each single sliding window to help reduce visual clutter afl as preserve data patterns. Fur-
ther, we allow different windows to have different sampliagjos to reflect how interested the
user is in the contents. We use a DOI (degree of interestYibmto represent users’ interest
in the data within a set of windows. Users can apply two tyggg@-defined DOI functions.
An interactive tool also allows users to adjust the DOI fiorconline, in a manner similar to
transfer functions in volume visualization, to enable altand-error exploration process. In
order to visually convey the change of multidimensionalelations, we designed four layout
strategies. User studies showed that three of these aotiwdfeechniques to achieve the above
goal compared to traditional time-series data visuabiretiéchniques. Based on this evaluation
experiment, we derived a guide to advise data analysts aodhzation system developers on
how to choose appropriate layout strategies in terms oflthaeacteristics of datasets and data
analysis tasks. Case studies are discussed to show thaveffiess of DOI functions and the
various visualization techniques.

Keywords: Data stream, multivariate data, visual analysis.

1 Introduction

Advances in hardware enable people to record data at raeisl &g., kilobytes or megabytes per
second or even higher speeds. Some real application aaserelata collection and analysis at
such a high speed. Moreover, the newly acquired or genedatadtems often need to be processed
immediately, as in many cases the volume of data precludesg# for later analysis. For example,
network traffic monitoring involves tracking each packeidentify features of interest, such as
bottlenecks and potential intrusions. In the areas of @daland knowledge discovery, the term
data stream®r streaming datdhas been used to refer to such data that keeps growing and need
to be processed on the fly. Researchers have developed nwumygiges to manage, query and
analyze data streams in real-time [6].

In recent years, people have agreed that visualization kegnapcritical role in the processes
of data analysis and decision-making, since it can helpyatsalise visual perception to uncover
different patterns, such as clusters, associationsioedtips, and trends. Streaming data is similar
to time-seriegdata, which is identified as one of basic data types [18] inatl@@ of information
visualization. In both data types, each datapoint has a dittnibute, i.e., a timestamp. One can
find a rich set of visualization techniques for time-seriatadn the literature. If we directly apply
existing time-series data visualization techniques teastring data, we can partially address the
problem of visually exploring data streams. For examplerainuously expanding line chart can
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convey the trend of a univariate data stream. However, aoitapt characteristic of streaming
data, namelyinbounded inpuytmakes this simple approach ineffective and incompletexesting
visualization techniques for time-series data generalijard the whole dataset as static and assume
that all of the data is available before rendering. This ipassible for streaming data. The
designed techniques must be capable of processing datamiawous and unbounded fashion.

Two other issues exist in the visual exploration of both tiseeies and streaming data that must
be addressed in order to help users perform some commonradyaia tasks:

(1)Temporal Visual Mining: There exist many data mining tasks for time-series dateh a8
the discovery of temporal association rules and pattertugga [17]. EXxisting time-series
data visualization techniques only support a small fractibthese tasks. In this paper, we
focus on two important types of temporal mining: data patidor a specific time period,
and how data patterns change over time.

(2) Multivariate Correlations : Although a few existing visualization techniques for tiseries
data try to present the relationships among multiple dino@ss their usefulness is often
limited. For example, [9] shows the degree of importancedforensions, and [8] presents
some pre-specified statistical values among dimensionsgljimensions often have complex
relations that these methods do not convey. In this papegimeo combine multivariate
and time-series data visualization techniques to fill tlig.g

The main goal of this paper is to present a framework for Vigexploring unbounded mul-
tivariate data streams that can convey trends for each dim@nmultivariate patterns, and the
change in these patterns over time. To achieve this goaiptuiéve solution is to split the whole
stream into non-overlapped sliding windows and send theough the visualization pipeline one
by one, and provide an animation to users. This is certagagible, but actually is problematic.
Because users can easily forget patterns shown to themtifrganes, especially when the length
of sliding windows is long, it is difficult for users to capauhow data patterns change.

Our approach to achieving the main goal is as follows. We iméxdata in the current window
with those in the past ones in the same view and distinguisim tiia different visual attributes;
or juxtapose these data in an ordered set of views. A DOI édegf interest) function [5] is
introduced to describe the degree of users’ interest in ticpdar window. A lower DOI value
results in a smaller sampling ratio. This approach worksvimways: (1) Users can choose which
windows to show, normally those containing data patteras$ tisers want to compare; and (2)
Users can reduce visual clutter via assigning lower DOlesto the selected windows.

Figure 1 shows an example of our visualization layout. Tlgigre uses a small slice (5:00AM-
6:30AM on Feb. 16, 2009) of a traffic data stream provided byIMDIT (Minnesota Department
of Transportation) [16]. In this slice, each datapoint utieds three measured values during a 30
second period from sensor D722. We only choose two dimeasmimvestigate their correlations
here. One dimension is the average vehicle sp&pddy, and the other is the percentage of
time that the detector sensed a vehicizgupancy. We present a traditional time-series data
visualization technique, line charts, in Figure 1(a). Fegli(b) shows a naive solution that treats
all datapoints in these 1.5 hours as a static dataset. Wesettienidentify any strong relationship
betweenSpeedand Occupancy nor learn how patterns change over time. Figure 1(c) siblds
data stream into three sliding windows and uses colors totdethe age of the windows. We
can draw a conclusion th&ccupancydoes n%t correlate with the change $peedn the early



period, but an obvious negative relationship exists betvikrese two dimensions later. In Figure
1(d), each sliding window is visualized by a scatterplot iiwde of them are juxtaposed in terms
of the time attribute. We can easily confirm the pattern wentbuia Figure 1(c), but the last
visualization technique uses more canvas space than thieyseones. In Figure 2, we can see
how DOI functions work to reduce visual clutter. After the Dfdnction is adjusted to reduce
sampling ratios of three windows, visual clutter is redy@ed! users can more clearly see how the
main clusters move over time.
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Figure 1: Figures show some of the main ideas of this papary astraffic data collected from a
highway entrance. (a) A traditional time-series data Jigaton; (b) All of datapoints are shown
together via a traditional scatterplot; (c) The ages of datadenoted by colors; (d) Juxtaposition
of data in the order of timestamps. Figures (c) and (d) cameyohow data patterns change, but it
is difficult for (a) and (b) to present this change.
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Figure 2: Using DOI functions to reduce visual clutter oneegl data stream. (a) All datapoints
are displayed; (b) Sampling is applied to each sliding wimtased on the DOI function after user
adjustment.

The main contributions of this paper are as below:
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e We present a framework for introducing windowing and sangp$itrategies into traditional
multivariate and time-series data visualization techagjults aim is to handle unbounded
input as well as conveying trends, multivariate correlaicand the changes of data patterns
over time.

e This framework allows users to define DOI functions to ddexthe degree of users’ in-
terest [5] for different portions of the data. This functienables users to choose which
windows to display, and adjust sampling ratios to reducsiptesvisual clutter.

e We provide four layout strategies to organize traditionaltivariate data visualizations and
convey the change of multi-dimensional correlations. Usadies showed that three of
these can effectively convey the multivariate pattern gearompared to traditional time-
series data visualization techniques. Using the expetimesults, we also derived a guide
to advise data analysts and visualization system deveddpechoose appropriate layout
strategies in terms of the characteristics of datasets atadashalysis tasks.

e We integrate interaction techniques to help explore da&asts, including a DOI function
interaction tool that helps analyze data via a trial-anmdfeprocess, and linked brushing
across multiple views. Several cases studies are disctssbdw the effectiveness of these
interaction tools.

2 Related work

Streaming data visualization can be regarded as real-tm@egeries visualization with unbounded
and large-scale input. In this section, we review existirsgialization techniques for time-series
data, focusing on the handling of large-scale input andessgrtation of multivariate correlations.
In addition, we also investigate some recent research \amients regarding visually exploring
data streams.

Time-series Data Visualization In order to deal with large time-series datasets, someaatigin
algorithms have been introduced into time-series visaibn for adapting large temporal datasets
to limited display space. These can be categorized into ppocaches: data-driven [15] and user-
driven [10] means. Miksch et al. [15] developed an abstoacslgorithm for temporal univariate
data that aims to transform numerical values to qualitatescriptions. It can smooth data oscil-
lation near thresholds. Hao et al. [10] used a sampling igclerto abstract time-series data and
introduced DOI (degree of interest) functions to deterntimeesampling rate. The DOI function is
used to represent how users are interested in differenbperof a time-series dataset. The subset
of the original dataset with a higher DOI value is abstractsidg a higher sampling rate and dis-
played in higher resolution. Otherwise, an overview withiéo resolution will be displayed. Hao’s
DOl function is designed for only static time-series dataj does not consider periodic phenom-
ena. We borrowed this idea and adapted it to streaming dagaal$¥ describe two types of DOI
functions, one of which can help users explore data streawiadprepeated patterns with a certain
cycle. We also got inspiration from other works on time-aserlata because of the similarities
between temporal and streaming data.

Data Stream Visualizatiort Some visualization techniques and systems have beemeesind

implemented for particular types of data streams. Somerelsers focus on univariate data. Hao
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et al. [11] used variable resolution density displays taalize univariate data. They designed
circular overlay displays to avoid data shift movementsratte display is full, thus avoiding the
difficulties for users to observe visualizations with tooadhiehange between framddinX[3] is a
real-time system to visualize time-series data on the flyséts an aggregation algorithm to adapt
large datasets to a limited canvas and supports online tatns for the levels of aggregation.
Our work will focus on how to convey multidimensional datédtpens in data streams, which is
significantly different from these existing efforts.

Several recent research efforts involve the visualizagfonultidimensional correlations. Wong
et al. [22] present techniques for handling a multidimenaialata stream, similar to our work.
However, their focus is how to reduce the time complexity $oaling algorithms to generate
scatterplots for visually conveying clusters in data strea Their basic approaches include data
stratification that intelligently reduces the data sizengsiavelets or sampling, and data-fusion
to project new data items onto the existing visualizatioauoid re-processing the whole dataset.
Thus the problem they solved is to visualize the whole dat&ast in one pass, which is different
from our goal to convey the data patterns within a window dreldhange of data patterns over
time. Yu et al. [24] developed a tool for the visual analydisanultimedia multi-stream data.
Some continuous time-series data and event data are firatted from the multimedia stream,
and then are visualized via line charts, gray-level barscahar bars. Users can highlight selected
data portions, or zoom in on the region of interest to studyddita trends and the multivariate data
patterns. Compared to the techniques we present in thig,pépe tool focuses only on some
fairly simple patterns. In addition, they did not considee tinbounded nature of data streams.

Some existing research involves text streams. For instdeg&P00[1] is a tool for visualizing
and maintaining an up-to-the-minute understanding ofdiveams of text such as newswires and
closed-captioned television. News stories are repregddiyteontent vectors, which are calculated
from news'’ titles and a 10-30 word description. The final @i&ation is an animation of a graph
in which nodes represent salient terms from the streams p@wed to our workTextPooldoes not
consider how to represent the change of patterns in a way tbizwe animation, in which users can
easily forget the information in prior frames.

3 Streaming Data Model

To formalize the modeling of arriving data elements, we use following definition derived
from [2]:
(V,ts) = (V1,V2, ..., Vn, tS) Q)

to describe one arriving data element, which we calagapointin the remainder of this paper.
Note thatn is the number of dimensionsg,(1 < i < n) are real numbers, artd is the timestamp
that represents when the datapoint originated. In thispamedo not consider nominal values or
other types of data streams, such as documents, imagesdiad We consider these types as part
of our future work.

There are different types of streaming datasets in termbkesf semantics. In this paper, we
focus on a widely used type, namdljnivariate-Aggregationin which each dimension can be
regarded as a univariate data stream, e.g., the traffic ttatmswe mentioned in Section 1. There
also exists other types of data streams. For instancejrgyrilatapoints may belong to different
objects, so trends on each dimension do n%t always make.s&hsetype of data stream has a



significant impact on the choice of visualization strategi€or the univariate-aggregation type,
our main goal is to convey both trends for each dimension anitivariate data patterns. In the
future, we plan to explore other stream types.

The two streaming datasets used in this paper are the folgpwi
Traffic Data Stream: In Section 1, We showed a slice of this data stream, whichasiged by
Mn/DOT [16]. Mn/DOT installed more than one thousand sessorhighway entrance/exit ramps
and main lanes throughout the Twin Cities Metro area. Eatbéctier can collect a value for each
of the following measures with an interval of 30 seconds: \(@ume: the number of vehicles
passing the detector. (2) Occupancy: the percentage othiatéhe detector sensed a vehicle. (3)
Speed: the average speed of all vehicles passing the det€btowebsite of Mn/DOT provides a
Java-based tooDataExtract to allow users to extract detector data to csv files. Thusameget
several thousand values every 30 seconds. Instead of ukoigreese values at the same time, we
select one detector and retrieve its three measures duspgafic time period, e.g., one day or
week.
Sleep Data Stream This data stream is a physiological dataset (Santa Fe &messcompetition
data set B) selected from the PhysioBank archive [7]. Ité®rded from a patient suffering from
sleep apnea in a sleep laboratory. Since it is relativelg [@bout 4 hours at a frequency of 2Hz),
we use it to simulate a data stream. This dataset has thresuresa heart rate, chest volume
(respiration force), and blood oxygen concentration.

4 The Framework Based on Windowing, Sampling and DOI
Functions

Before discussing the framework in detail, we introduce terons:

The Sampling Ratio is the percentage of datapoints to be selected to displathoddh some
researchers use the tesampling rateit is easy to confuse readers because sampling rate ngrmall
refers to the number of samples per time unit taken from amoeots signal [13]. The definition

of sampling ratio used in this paper is as follows:

the number of selected datapoints
the number of all datapoints

(2)

r(sampling rati¢p =

Note that sampling ratio must satisfy 6< r < 1.

DOI Functions represent how interested the user is in seeing a particlidiangs window. In a
regular static dataset, a DOI function calculates a valuepoesent the degree of interest for a
portion of the dataset. Then the portion of data with high D&ues will be displayed with more
detail [5]. For data streams, the story becomes a little dexap/NVhen the stream system gets a
new sliding window (Window 1), a specific DOI level should hgphed to this new portion of
data. However, when Window 1 expires and a new window (Wingdplecomes the current one,
users might want to focus on Window 2 and show less interedtimdow 1. In this situation, the
sampling ratio for Window 1 must change. Hence, the DOI fiamcshould have two parameters,
a timestamp representing the specific sliding window andctireent time point. Formally, the
DOl function is given as DO¥ fqqi(tg,tc), Wherety andt; are the timestamps corresponding to a
specific sliding window and the current one. We use the sstdilmestamp for all datapoints in
the window agy andt.. Other options are posgible, e.g., the average timestamp.
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Figure 3: The framework of user-driven multiple-view vismation for data streams.

Figure 3 shows the proposed framework. Here we use nonapet sliding windows. In
this figure,data item memory poanddata item disk pooteside in a piece of memory and in
secondary storage, respectively. When a sliding windownséd, the data will be transferred to
the memory pool. Because the data stream is infinite in nagypart of the infrequently accessed
data in the memory pool will be moved to the disk pool via datmpression when the memory
is full. The data staying in the disk pool also will be brouglack the memory pool when users
need to view some older data, though some will be lost durorgpression. Théixer is the
core of the whole framework. Its input includes the datafsoimthe current window and a part of
the older windows from the memory pool. It can assign samgplatios and generate output that
mixes datapoints from these windows. The sampling ratiafgiven sliding window is calculated
by a functionr = f;(DOI), where DOI is the output of the DOI function. Since we allovenssto
provide DOI functions as input, we call this framewarger-driven

We allow users to define multiple DOI functions to get morentbae output because different
tasks need different DOI functions. For example, durindfitranonitoring, users might have
two data analysis tasks: (1) identifying how vehicle spelednges within the recent hour; (2)
comparing the traffic of today with that of yesterday at thenedime. Obviously, two different
DOl functions are necessary.

For each output, our framework can provide multiple viewsders. The possible relationships
among views for the same output include: (1) They utilizéedént visualization techniques to
convey different data patterns; (2) Each view visualizearaqf the data, e.g., the recéntindows
are juxtaposed intk views to form small multiples [20]. Thus a user can watch hatagatterns
change over time via comparing multiple views. We also all@ers to interact with multiple views
using linking operations. One example of linking is thatrssgEn choose one region of interest in
a line chart, and then datapoints falling into this regiofi ke highlighted in a scatterplot matrix.
We will show ways to organize multiple views in Section 6 amscibe more about interaction
techniques in Section 7.

As discussed before, we need to switch data between the mgmolrand the disk pool. Since
data streams are by nature infinite, the disk pool will evalhgie full. One solution is to use lossy
data compression techniques that lose some data detaddpthke primary data patterns. For older
data, we can allow the loss of more detail than the more retaat In this paper, we focus on the
visualization and interaction techniques. The storageessvill be described via a future paper.



5 DOI Functions

In this section, we describe two types of DOI functions tteat be used for some common tasks.
As discussed in Section 4, the output of a DOI functigg(tg,tc) is a DOI value, which needs
to be mapped to a sampling ratio via the functioa f,(DOI). For the sake of convenience, we
define DOI functions in a way that their output is just the shingpratio.

Type RC (Recent Change) Figure 4(a) shows the curve for this type of DOI functionailins

to help users study how data patterns change within the tré&cef sliding windows, which are
assigned sampling ratiaosg, rq, ..., r¢ in the order from the current window to the past ones. Note
that we do not require that# rj wheni # j. One common usage isto lgf=r; = ... =r,=1.0.
Figure 1(c) is generated using this type of DOI function vaitgumentk =2 andro =r1 =r, =
1.0. If there is too much visual clutter and users are lessested in the old data, we can ek 1
forl1<i<k.

Type PP (Periodic Phenomena) The DOI functions shown in Figure 4(b) can assist users in
observing data patterns with periodic characteristice d&ta stream is split into multiple cycles
(the vertical time axis) with the same length. Each cycletaiois multiple sliding windows (the
horizontal time axes). In each cycle, the DOI function habapse similar to Type RC functions.
The DOI function in Figure 4(b) enables users to investiglata patterns within the recept- 1
cycles. Wy is the current window, aniM o(1 < i < p) belong to the past cycles, but have the
same position in the cycle &% . In each cycle, this function also choosesindows just before
W (0 <i < p) to display. Thus it can help users study how data patternsgehacross both
windows and cycles. Consider the example of monitorinditrafimagine the current sliding
window is 6:00AM-6:30AM on a Monday. The current traffic dattern could be similar to last
Monday, and less similar to last Tuesday to Friday, and lfothfferent from last weekend for
the same interval (6:00AM-6:30AM). To confirm this assuraptiwe can define a Type PP DOI
function to choose only sliding windows corresponding @0&M-6:30AM in these days.

The DOI function we defined is similar to the opacity trandterction in volume rendering
[12]. The opacity transfer function assigns an opacity @dtua voxel based on voxel’s intensity
and can bring out certain feature of those voxels having bigdcity values. The relationship
between the sampling ratio and the sliding window timestaniige the relationship between the
opacity value and the voxel’s intensity.

6 Visualization Techniques

As we mentioned in the Introduction, our goal is to visualyneey the change of multidimen-
sional correlations. Thus we designed the visualizatiohrigues with the following question as
the main consideration: How do we organize datapoints iemdiht sliding windows to convey
multivariate correlations and the changes of data patte@isviously, it does not work to directly
visualize the Mixer output via a traditional multivariateswalization technique, such as parallel
coordinates and scatterplot matrices (see Figure 1 (bph Swsolution blends data patterns of all
windows chosen by the DOI function in the final visualizatittris almost impossible for users to
retrieve data patterns for a particular time period andstigate how patterns change over time.
In this section, we will first introduce four layout strategj namelysuperimpositionjuxtapo-
sition, step juxtapositiomndanimation playbackto answer the above question, and demonstrate
8
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Figure 4: Two instances of DOI functions: (a) Type RC (Rec&hange); (b) Type PP (Periodic
Phenomena).

their usage with type RC DOI functions. Note that these atrias can be applied to any multi-
variate visualization techniques; we mainly use scattés@s examples. These four strategies will
then be extended to type PP DOI functions. Finally, we dgvelmew visualization technique,
namely “embedded view”, via combining line charts and scptbt matrices. This is to take ad-
vantage of the visual representation capabilities of maltate and time-series data visualization
techniques in one figure.

6.1 Layout Strategies

Superimposition: This strategy puts all datapoints in a single picture, listimguishes datapoints
from different sliding windows via visual attributes, thieoice of which, obviously, can affect the
effectiveness of final visualizations. Xie et al. perforngedser study on visual representation of
data quality and concluded that hue has a stable capacityniceg data attributes under parallel
coordinates and scatterplot matrices as long as the vzstiain is not too cluttered [23]. The
reason is probably that it is processed preattentively §2t] does not require extra space. Thus
we decided to use colors to convey the timestamps of slidingews. Figure 1 (c) is generated
via applying superimposition to a scatterplot.

An obvious disadvantage is that displays can become owtbwith too much information,
which may result in a longer analysis time. Moreover, if thare too many windows to be chosen
in the DOI function and many of the datapoints from differsiding windows overlap each other,
it is difficult to distinguish them, even if we use color to ®egy the window to which they belong.
Juxtaposition: In this method, we generate osab-pictureusing a multivariate visualization for
one time window, and then place these figures in order of thme&Zontally, vertically, or a grid).

In Figure 1(d), each scatterplot holds the datapoints fram sliding window. Users can see the
change of data patterns via comparing three sub-pictures.

Although juxtaposition can overcome some shortcomingsupesmposition, it brings two
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new disadvantages: (1) Let us recall Figure 1(d), in whi@hdbts in the second and third sub-
pictures formed two lines, A and B. As a recognizable diffieeexists between the slopes of lines
A and B, users can draw conclusions about the change of datarm If this difference is not
that big, users may not easily identify the change of lingpatousing juxtaposition, as there is
some distances between these two lines. In the superingokyout, this difference should be
recognized more easily than juxtaposition, assuming tisemet too much visual clutter, because
one line can be regarded a reference when users observehttte ®hus superimposition has a
stronger capability to help users identify subtle chandgmterns than juxtaposition. (2) If users
want to compare the data patterns between two windows, thieymove their eyes back and forth.
This could make the data analysis tasks cumbersome and reglit in a longer response time,
especially when there are a large number of windows in the fD@itions.

In order to overcome the shortcomings from both superintiposand juxtaposition, we de-
veloped a third layout strategy to combine the advantagésedadbove two strategies, namstgp
juxtaposition
Step Juxtaposition Imagine the DOI function choosé&s-1 (See Figure 4(a)) windows to display.
We createk sub-pictures: the first shows andW_1, the second presentg_, andW_», and so
on. This strategy uses superimposition to help users cantpardata patterns of two contiguous
windows, juxtaposition to reduce possible visual clutted dhortens completion time for data
analysis tasks. Figure 5 shows an example. More than 2 wisdaw be superimposed in one
sub-picture in this technique to save canvas size if no tochmisual clutter.
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Figure 5: A step juxtaposition output using a type PP DOI fiomcwith the grouping approach
GAL1, which is shown in Figure (b). The cycle length is one dayFigure (a), We can see clearly
how data patterns change within the recent three slidinglovirs for March 24. However, data
patterns do not have significant changes on March 22 and 23.

A more convincing example is shown in Figures 6 and 7, wheraiseea slice of traffic data
( Sensor D722, Feb. 16, 2009 ). The DOI function is of type RE@ 2B windows are selected.
Imagine we were asked to find when the fit line slope changes e window to the next. This
is definitely impossible via superimposition since humaasegannot effectively distinguish 25
colors in one figure. In figure 6, it is an arduous task becatisgoanany windows. However, in
Figure 7, this task becomes much easier. Inleglch scatten@ainly need to use light yellow data-



points as the reference and observe dark yellow dots. Weaaonty find obvious changes from
Window 05:00-05:30 to Window 05:30-06:00, and from Window3D-06:00 to Window 06:00-
06:30, but can also perceive tiny changes from Window 00®30 to Window 06:30-07:00, from
Window 09:00-09:30 to Window 09:30-10:00, and from Windo®:3D-10:00 to Window 10:00-
10:30. These tiny changes are almost impossible to detetw jis<taposition (Figure 6). In the
section on our user studies, we will see that step juxtapostan help users obtain a much higher
response accuracy than juxtaposition and shorten coropletne for data analysis tasks.
Animation: It is an intuitive idea to play the data pattern change usingnimation, with each
frame representing a time window. Animation combines theefits of the prior three visualization
techniques:

(1) Because of the short memory of the human visual systeens wsn normally memorize the
previous frame in the animation when the current frame isvehto us. Thus it has similar
capabilities to convey data pattern change as superiniqositd step juxtaposition.

(2) Compared to superimposition and step juxtapositiommation can avoid the visual clutter
caused by overlapping datapoints from different time wimslo

(3) Unlike juxtaposition and step juxtaposition, animatgtill uses a canvas having the same size
as superimposition, which can also avoid the possible Vidutter caused by overlapping
resulting from a smaller canvas size.

However, animation can only highlight the change betweemallsnumber of contiguous
time windows. Another shortcoming is that it might delay ttega analysis tasks, because users
frequently need to play the animation multiple times to aomfivhat they found. Moreover, we
must show a window ID together with the visualization, sorsdeow that window they are
viewing. Thus users have to observe this caption while wagcthe animation and cannot fully
focus on the data patterns.

Based on the above description and analysis of our prop@gedt strategies, we list and
compare their characteristics in Table 1. In Section 8, wedgscribe an experiment to compare
the representation capabilities of these four layout efrias, and then derive a guide to advise
analysts on choosing appropriate techniques for theiratzddysis requirements.

Superimposition Juxtaposition Step Juxtaposition Animation
(1) Contiguous Capabilities Good Fair Good Good
(2) Non-contiguous CapabilitiesGood Fair Fair Bad
(3) Overlapping Much No Few No
(4) Canvas size Full Shrunk Shrunk Full

Table 1: The comparison among four visualization techrsgiiée first column is the abbreviation
for what we want to compare: (1) Contiguous capabilitieswhat extent can this strategy convey
the data pattern change between two contiguous slidingamiag(2) Non-contiguous capabilities:
This is similar to the first aspect but focuses on the patteemge between two non-contiguous
sliding windows; (3) Overlapping: The amount of possibkaual clutter caused by overlapped data
from different sliding windows; (4) Canvas size: The sizéhad basic visual unit ( a scatterplot in
our example ) from which users can retrieve data patterns.
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Figure 7: A step juxtaposition output using the same datage €& 6. We can easily and quickly
find when the slope of fit line for linear trend changes.
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6.2 Extension of Layout Strategies to Type PP DOI Functions

We have discussed four layout strategies and showed thrageusgether with type RC DOI func-
tions. In theory, we can directly apply these layout appheacto the case with type PP DOI
functions. For example, in a type PP DOI function, users netloose two cycles and three time
windows per cycle, and thus totally six windows should bewshoSuch an example associated
with traffic data is shown in Table 2. If we directly utilizegproposed layout strategies to handle
these six windows, users could retrieve the informatiory thant. However, this initial idea is
not efficient compared to an alternative approach to grapaind then visualizing. This approach
is based on a fact that users normally have two types of ister€l) the pattern change across
windows in the same cycle; and (2) the change of patternsaayxles in the same time period,
such as window 1 and window 4. If users are interested in (&)c&n organize two groups: (a)
windows 1 & 2 & 3; and (b) windows 4 & 5 & 6. For the second task, eam split all windows
into three groups: (a) windows 1 & 4; (b) windows 2 & 5; and (éhdows 3 & 6. The rationale
is to put those windows in which users want to detect patteamges into the same group. Then,
we can use the four proposed layout strategies to visuadizk group, respectively. Therefore,
users can observe each group and try to extract the infasmatiinterest. Obviously, this group-
ing approach makes the pattern change analysis easierthamtial non-grouping method. For
superimposition, it can decrease the number of time windowse figure; and in the other three
layout strategies, the grouping approach will put togetimdy those windows in which users want
to detect the pattern changes.

6AM-7AM | 7TAM-8AM | BAM-9AM
Yesterday| Window 1 | Window 2 | Window 3
Today Window 4 | Window 5 | Window 6

Table 2: Six windows used to explain the layout design forpetl P DOI function.

To be general, we provide two grouping approaches, called @& GA2 (Figure 8) for the
type PP function shown in Figure 4(b).

GAL: If the data analysis task focuses on the pattern changssaermdows within one cycle,
p-+ 1 groups Go, Gy, ...,Gp in Figure 8) will be provided. Actually, each group contadis
windows in one cycle. An example of this grouping approachmwn in Figure 5.

GA2: If users are interested in changes across cycles, we gekerd groups Gy, Gi, ..., G, in
Figure 8). Every group has+ 1 windows, each of which belongs to a cycle. All are in the
same position within the cycle.

6.3

All of the above techniques assume the use of multivarigtgalizations to convey multi-dimensional
correlations. Another normal data analysis requiremegkpioring data streams is to observe the
trends for each dimension, which can be achieved usingiwadi time-series data visualization
techniques such as line charts and heat maps. It is true thaawjust put line charts and a scat-
terplot matrix side by side to convey both t?ﬁ trends for ediamension and multi-dimensional

Integrating Time-series and Multivariate Data Visualizations
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Figure 8: Two grouping approaches to helping users achiaseus data analysis goals.
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Figure 9: The embedded views for the sleep data stream. Wenhosee how clusters move over
time in the scatterplots, but also see the trends for eackrdiian via line charts in the diagonal
plots. Figure (c) is generated using the DOI function shawrigure (a), which chooses the recent
9 windows to display. After the user uses the DOI functiomiattive tool to adjust the function
to Figure (b), we can get a new view shown in Figure (d). Usarsmore clearly see the move of
clusters on Figure (d) than Figure (c).
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correlations. This requires decreasing the canvas sizeafdr visualization since the total canvas
size is normally fixed, e.g., monitor size. To overcome thizrg&oming, we propose a novel tech-
nique, namelyembedded view$o embed line charts into scatterplot matrices to saveasaspace.
This approach is adapted from the enhance scatterplotaasitoif Cui et al. [4], who introduced
0D, 1D and 2D visualizations, including histograms, linerth and images, into the diagonal
plots.

Figures 9(c) and 9(d) show two embedded views using the dlatpstream. They use the DOI
functions shown in Figures 9(a) and 9(b), respectivelynttbese two views, we can clearly see
how the main clusters move over time in the scatterplot. bitamh, we can also study the trends
for each dimension via line charts.

7 Interactions

7.1 DOI Function Interactive Tool

Although we described two pre-defined types of DOI functionSection 5, it is necessary to en-
able users to define DOI functions by themselves to analytzestileams in different applications.
We also feel that it will make the system much more useful mmatisers to adjust the DOI func-
tions interactively. Basically, visual analysis based loe DOI function is often a trial and error
process. It is normal that analysts do not know the exactachenistics of the data patterns and
how these patterns change prior to exploring the data sgeBynallowing users to adjust the DOI
functions, analysts can select a predefined DOI functiot) &rel then adjust it to find useful data
patterns while the system is running. Some possible adgrgso facilitate exploration include:
(1) Increasing the sampling ratio to see more details or toedese the ratio to avoid visual clutter.
(2) Changing some of the arguments for pre-defined types dfflx@tions. For example, if the
number of sliding windows to be displayed for the type RC D@idtion is large, say 9, but we
find most important changes occur within the recent two aedlwindows, we can reduce it and
observe the change in more detail.

We designed an interface to enable users to change the D€@ldannteractively. Using this
tool, users can (1) drag the DOI function curve to change DxDles for a particular window; (2)
save or load a DOI function to/from a file; (3) add/delete adewv;(4) add/delete a cycle (only
applicable for type PP function); and (5) reset the DOI fiorcto the original state. Figures 2 and
9 show the effect of using this tool. In Figure 2(a), the arguts for the DOI function are set as
ro=r1=ro =10, butthey are changedtg = 0.5 andr; =r, = 0.33 in Figure 2(b). In Figure 9
we show the effect of reducing the number of windows.

7.2 Linked Brushing among Multiple Views

In order to help users explore subsets of interest, we intetinked brushing into the framework.
Brushing is a commonly used interaction technique to alleersito select a subset of data via a
qguery. Linked brushing is used in multiple view visualipas. Users can link multiple views for
one dataset. For instance, brushing points in one view aasedaie same points to be highlighted
in other views.
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The linked brushing in our framework is similar to others. &Wlusers choose a subset in a
view, the data in this subset will also be highlighted in othiews. Two technical issues warrant
discussion: (1) how to define a query for the subset of inteaesl (2) how to highlight this subset.
The second one is challenging. Many visualization toolshsas XmdvTool [14] and GGobi [19],
use colors to highlight subsets of interest. However, infamework, colors have been assigned
to denote data age.

Query Definition: We use a hyperbox proposed by Martin and Ward [14] to spedifsush query,
but add the time attribute to the brush definition, nameliaf-dimensional brush

([S.|.7 E1]7[827E2]7"'7[S’17 En]?[S7EI]> (3)

where[S, Ei](1 <i < n) denotes the start and end values for brush coverage on donenahich
specify a range in which users are interested, @dE;) denotes the time range. For a datapoint
(V,ts) = (v1,Vo,...,Vp,tS) in the data stream, if it satisfi€$ < v; < E; for all i(1 <i <n) and

S <ts< K, then it falls into the subset to highlight.

We allow users to usdata driven brushing[14] to specify the query, which requires that the
data falls into specified ranges on only one or two dimengiand can be any values on other
dimensions. The final visualization will show the exact basifor those data of interest on other
dimensions, including the time attribute.

Highlighting :

We solve the highlighting issue via the following two rules:

Rule 1: If a visual attribute other than color is available and igetive in denoting window age,
switch to this new one and use colors to highlight selectédptants; otherwise, go to rule 2. For
example, if we select star glyphs as the multivariate vigatibn, we can place glyphs in the order
of time, and use colored grids to denote the age of slidinglos.

Rule 22 We apply a fog effect to the data portion in which users areimerested by blending
them with a gray shade. This results in these data being shoaimmer color, but users still
can identify the ages of these data in terms of the color kigyirE 10 shows the fog technique for
highlighting data, and data driven brushing to specify thery,.

8 Evaluations on Layout Strategies

Earlier we proposed four layout strategies to utilize ttiadial multivariate visualizations to convey
the pattern change in data streams. We also compared thessrategies using four criteria, and
demonstrated some examples to show that our proposed geesntan effectively visualize the
change of multivariate correlations. However, the ansv@nsvo important questions are still
pending:

e Are the proposed techniques significantly better than diiaglitional time-series data vi-
sualization techniques, such as line charts and heatmagsnivey the change of multi-
dimensional correlations?

e Which layout strategy is the best to convey the pattern ohdoga specific dataset and
pattern?
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Figure 10: Data driven brushing is applied to the sleep datas. Users first set the ranges for
Heart rate andblood oxygen The exact bounds of selected dataCirestvol and timestamp are
shown using a shade background.

For the first question, we might say yes. The reason is asAfsilmultivariate visualizations,
such as scatterplot matrices, are specially designed fareging multi-dimensional correlations,
and the rationale of our techniques is to layout multipletmatiate visualizations, and show the
pattern change. But line charts and heatmaps are designeafeeying trends of one dimension.
Thus they cannot show multi-dimensional correlations eirtbhanges very well. However, we
can find some techniques in the literature that convey ndirttiensional correlation via line charts
and heatmaps [24]. Thus a user study will likely be more aaeing than the above argument.

The answer to the second question can help us design anmftieaming data visualization
system. If we do not have this answer, one possible solusida provide all possible views to
users and allow them to choose which one to use. When thensysteunning, users have to
switch between various views to look for the best one. Thisldcanake users miss important
pattern changes. The reasons include: (1) one kind of chaigj# be obvious in one technique,
but not evident in others; and (2) data patterns are not awhgnging from one window to the
next, so users have no idea whether they have caught thetonange.

In order to answer these two questions, we performed a usdy & observe participants’ ca-
pabilities in detecting pattern changes on some artifi@tskets adapted from real ones. We tested
our proposed layout strategies and traditional time-sef#éa visualizations, including line charts
and heatmaps. The experiment results can help validateffgtivveness of our proposed tech-
niques, and enable us to derive a guide how to choose layatggies based on the characteristics
of data analysis tasks and datasets. This is useful for hetdta analysts as well as visualization
system designers.

8.1 Experiment Design

The basic procedure used to design this experiment is asvgll (1) Choose some commonly-
used data patterns that can be defined easily and clearlgof®truct streaming datasets having

changes on selected data patterns between 1ti8me windowsg(Brate figures or animations using



the proposed visualization techniques, as well as linetglaad heatmaps, and design questions to
ask participants, regarding the pattern changes in thergkevisualizations; (4) Analyze users’
response accuracy and response time. In theory, high agcaral low response time indicates
an effective technique. Whether a proposed technique id depends on many aspects, such as
the selected data patterns and the magnitude of pattergehdn this experiment, we tried as
many combinations of these factors as possible, and olisboxe they affected users’ responses.
Although it is impossible to try all combinations, our exipeents aimed to test the most common
ones to guide most data analysis tasks.

Choosing Data Patterns In prior examples, we can see two types of data pattern eamg is
the slope change of linear trends (Figures 1, 5), and the tllee movement of the main cluster
(Figures 2, 9). They both are very common in many real apjidica and are easy to explain to
participants without experience in visual data analysker€ are some other types of change, such
as the displacement of fit lines representing linear tretisexpansion or shrinking of clusters,
and changes in other data patterns. Actually, differenegypf data patterns might be similar to
each other, e.g., the displacement and the slope changedrafaa trend. Therefore, we may be
able to borrow some results on evaluating slope change wieedesign a system to help users
detect displacements in linear trends. If a new data arsalgsk is totally different from the tested
data pattern changes, a new experiment can be designedsifirocedure as a guide.
Constructing Datasets The basic idea for constructing a dataset is as followsP{d} a specific
time window, namely\p, from a real dataset and regard it as the first window of the éxperi-
mental data. (2) Construct several artificial time windomamely from\W; to W;,_1, based on the
initial window. We require that the selected pattern is glsvehanging fronW to W 1 for anyi

that satisfies & i < n— 1. (3) Generate the final dataset using the windows WMgto W, 1. An
example dataset is shown in Figure 11. It is generated fromapshot of traffic data. Figure 11(a)
corresponds a subset of the real traffic data, while figur@s) Bhd 11(c) are generated using time
windows adapted from the data in Figure 11(a).
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Figure 11: Figure (a) - (c) show three time windows of an artfistreaming dataset. Figure (a)
is cut and copied from a time window of traffic data. The datajsoin Figures (b) and (c) are
constructed from those in Figure (a) via the rotation shawRigure 12.

The key is step (2). How can we determine the change magritbidev many time windows
can we create? After analyzing some real datasets, we ddteg the change magnitude can
significantly affect a user’ capability to detect the pattehanges. In addition, if the number of
time windows in superimposition is big, users cannot dgtish different windows because of the
number of colors and the presence of overlapping, Thus, e&ed streaming datasets that are
combinations of the following two factors: 19



Figure 12: We show how to construct an artificial streamingsket having three time-windows
from a real dataset. The straight liR8g represents the linear trend with which the datapoints in
a specific time window of traffic data agreBA; andPAy correspond to the linear trends of two
constructed time windows. Note that we also created anckmtkwise change and introduce more
windows for some questions.

e Change Magnitude Obviously, a bigger change can be more easily perceivedubyan
eyes. We created multiple datasets having various degfeaagnitude for the change in
the selected data patterns,

e The Number of Windows. We created three types of datasets, with 3, 4, and 5 time win-
dows, respectively.

Figure 12 shows how to determine the magnitude of patterngshdlinear trend) between
contiguous windows. The straight lif® represents the fit line of the linear trend for the initial
window. In this line, the poinP is the intersection of fit lines for two contiguous time windo
in the real traffic data, one of which is the initial window. rFexample, if we pick the second
time window as the initial window in Figure 1(d), the polis the intersection of lined andB.
The distance betwedn andAg is half of the diagonal line for the scatterplot. We then ¢orct
the fit lines for artificial windows from\; to W,_1. In Figure 12, we only show two fit lines
[1(PAp) andl»(PA) for Wy andWs. Note that|PAg| = |PA;| = |PAz| and we use thed; = |ApA|
andd; = |A1A| to represent the change magnitude. In conclusion, in thergrpnt for linear
trend patterns, we use the combination of three types ofgshamgnitude (1, 4 and 12 pixels),
and three time window counts (3, 4, 5 windows).

The construction of datasets for cluster motion patterssidar to the above process.
Generating Visualizations and Questions In order to make the comparison among the user
responses for different techniques meaningful, we follewesal rules:

(1) Color Schema: In superimposition and step juxtapasitibe selection of color schema
can significantly affect participants’ capabilities to efgt pattern change. Thus we applied the
same color schema to all visualizations generated usingrsaposition and step juxtaposition.
Specifically, we selected a color schema, utilized the sabthe two ends in the step juxtaposition,
and chose evenly spaced colors based on the number of tindewsfor the superimposition.

(2) Canvas Size: Because a small canvas size can lower mespeonuracy and increase the
response time because of possible overlap%igg, we fixedtakedanvas size and assigned a spe-



cific canvas size to each scatterplot based on the layougiea. To be specific, we allowed the
superimposition and animation to use the total canvas Bigegyut the juxtaposition and step jux-
taposition in a grid while maintaining the ratio between tiidnd height for each scatterplot. The
total size of the grid is equal to the total canvas size. Farmgde, if we have 5 windows in gen-
erating a juxtaposition, we split the total canvas to a gadiig 9(3x 3) cells. This can maintain
the shape of scatterplots but utilize the canvas size as amipbssible.

(3) Point Size: The point size must be appropriate to conadg pdatterns in scatterplots since
dots that are too small are difficult to distinguish and bigsdmuld result in overlapping. Thus
we used 4« 4 pixel points in the superimposition and animation, and3ke3 pixel points in the
juxtaposition and step juxtaposition, because the latiee fa smaller canvas size.

The questions for our proposed techniques are straighafokw For example, in questions
about linear trends, we designed a multiple choice queséind directly asked about how the fit
line slope changes (increasing or decreasing) betweengemf contiguous windows. However,
it is almost impossible to perceive a fit line or a cluster nelcharts and heatmaps. Thus we gave
equivalent questions. For linear trends, we asked paatit§to estimate the rate of change for
one variable with respect to the change of the other, whichbearegarded as the fit line slope.
We asked users to tell us how this rate changes. In clusteement questions, we asked users to
estimate how the average value on one variable changes fiewiadow to the next.

8.2 Experiment Settings

In total, 14 computer science students attended our expatsnTwo of them were undergraduate
students, while the others were graduate students. We évst @ short introduction and showed
some sample questions to each student, and then asked efatishidwo groups of questions.
Each group has 33 questions. One group was for linear tramtisha other pertained to cluster
movement. To avoid the side-effect of a learning curve, weflgd all questions in each group for
each participant. All questions were shown to users viadhgesaptop.

8.3 Experiment Results

Result I Figures 13(a) and 13(b) show the mean values with a 95% @ndelinterval of response
accuracy (RA) and response time (RT) for all participant® @nestions. We also compared RA
and RT values for different visualization techniques ughng paired samples t-test and drew the
following conclusions: (1) From the aspect of RA, superisifion, step juxtaposition and ani-
mation are all significantly better than juxtapositionglicharts and heatmapg € 0.001). Since
every gquestion has only three choices, the performancextdgosition, line charts and heatmaps
was deemed not acceptable within our experiment configurdiecause their RA mean values
are less than 50%. Thus three of the four proposed technipresvork much better to convey
multi-dimensional correlations than traditional timetee data visualizations, such as line charts
and heatmaps. (2)Superimposition and animation are a bitimore accurate than step juxta-
position (p = 0.02 and 005). But superimposition is not significantly different fincanimation
(p=0.67). (3) For the RT values, we only compared acceptable tqaha. We can see that
participants normally spent less time on step juxtapasitian superimposition and animation.
However, superimposition is not significant different frammationp = 0.10), while the differ-
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ence between step juxtaposition and animation is signifigaa: 0.005). Therefore, for the tasks
requiring users’ quick response to pattern changes, skggasition is a good option.
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Figure 13: The experiment result for all participants anésgiwns: (a) response accuracy; (b)
response time.

Result 2 In order to see how the magnitude of pattern change affesticipants’ performance,
we calculated the mean values with a 95% confidence inteh\RRAovalues grouped by the com-
bination of layout strategies and change magnitude. Thdtseare shown in Figure 14, which
demonstrates two facts: One, participants have improvedmpeance when the change magni-
tude ( the number of pixels ) becomes bigger, except for poddion. The difference between a
1 pixel change and a 4(12) pixel change is significant foraglblt strategies except juxtaposition
(p < 0.02). Moreover, the percentages of correct answers for 4 armaxel change are close to
100% for all layout strategies except juxtaposition. Hogrethe RA values for a 4 pixel change
is not significantly worse than those for a 12 pixel changeo,Tar the 1 pixel change, animation
has the highest RA values, and was significantly better thparsmposition and step juxtaposition
(p=0.04 and 003). Subjects had a correctness percentage of about 65%sideang that the
point size is 4x 4 for animation, this is a very good result. The reason isalwi when the change
is very small, the similarity between the datapoints of twiadews results in too much overlap-
ping; thus participants cannot perceive subtle changes the figures we generated. However,
animation can avoid the overlapping and still convey theégpatchange via the short-term mem-
ory of human brain. Therefore, we draw two conclusions: (fjl&€r our experiment configuration,
superimposition, step juxtaposition and animation carkwery well for changes bigger than or
equal to 4 pixels; (2) Animation can work relatively well eméthe change is very tiny and smaller
than the point size, while superimposition and step juxéémm cannot.

An interesting result of this experiment is that juxtapiositis not good at conveying pattern
change. We expected that it would at least be better thamisypesition because it could relieve
visual clutter and make the pattern obvious. Actually, itasas good as the other three techniques.
Our guess is that human eyes cannot detect change from one tiigtlhe other without an appro-
priate reference if the change is tiny. Recall2t£|at we askatigipants to detect the slope change
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Figure 14: The response accuracy for all participants amaisdés having only 3 time windows.
The numbers on the horizontal axis mean the change magnitakle unit of pixels.

of a linear trend. We can observe one time window by treatmegdatapoints in the other time
window as a reference in superimposition, step juxtapmsithtnd animation, because datapoints
of two time windows are put in the same scatterplot. Note, thdilen an animation shows the
second frame, the first frame can still be used as a referauaibe of human short-term memory.
This makes it easy to perceive the pattern change. Howéwesing juxtaposition, it is difficult to
use such a reference because two windows are separateddotnother. One possible solution
to improve juxtaposition is to add reference points for eiaclividual scatterplot in the form of
lines. In such as way, users can easily estimate the pareiet¢he data patterns in each window,
including the slope of fit lines and the distance between steftand the scatterplot border. This
solution has an obvious disadvantage: grid lines can cassal\clutter and thus counteract their
benefits. This should be tested in an experiment, which wegsdguture work.

8.4 Evaluation Summary and Implications

We have answered question 1 at the beginning of this seci@ntfese layouts better than tra-
ditional techniques) using conclusion 1 of result 1. Forgfoa 2, it is difficult to give a simple
answer because each technique is appropriate for diffeases. Instead, we derive a set of guide-
lines (Table 3) to advise data analysts and visualizatistesy designers to choose appropriate
layout strategies.

The number of windows The magnitude of the pattern change
involved in pattern Small Large

Small Animation | Superimposition & step juxtaposition
Large Animation | Step juxtaposition

Table 3: The guideline to advise data analysts and visuglizaystem designers to choose appro-
priate layout strategies in terms of the characteristictatdéisets and tasks.

We recommend animation when the change is small, becausa@om is the only technique
that appears to work very well in this case.23However, aniomatiould make the visualizations



annoying and requires a longer response time, so we recothewgrerimposition and step jux-
taposition when the change magnitude is big. Superimposdbes not work well when users
choose too many windows in the DOI functions, as it can cauisg Iserious visual clutter and
humans cannot readily differentiate many colors at oncthignsituation, step juxtaposition is best
choice. A key question is: what is this threshold at whichesirpposition becomes problematic?
It is almost impossible to give such a number for all visualgsis tasks, because it depends on
many factors, including the selection of color schema, aarsize and the degree of visual clutter.
In terms of visual perception theory, human eyes can distghigat most about 10 colors in one
figure. Thus this threshold is 10 or less if datapoints arectowded in the final visualization. For
a specific use case, users or system designers can do amexpieio determine this number.

In Table 3, we divided the change magnitude into small argklaBo we must answer a ques-
tion: what kind of change magnitude can be regarded as dang#{? Let us recall the experiment
result shown in Figure 14. Only animation can work relagvekll when the pattern change is
smaller than the point size. So our recommendation is thtaeithange is smaller than the size
of visual items, we regard it as small and suggest that useranimation to observe the pattern
change.

9 Case Studies

In this section, we present three stories using these exsanplshow the effectiveness of our vi-
sualization and interaction techniques. Because we haweezhthe effectiveness of our proposed
visualization techniques in user studies, we will mainlgus on demonstrating the usefulness of
DOl functions and their interactions in cases 1 and 2. Thaéowill use a type PP DOI function,
while the latter focuses on the trial-and-error explomagmwocess using the DOI function inter-
action tool. Since all examples used scattplots up to nowwiklelemonstrate the third case by
integrating step juxtaposition into parallel coordinat@show that our proposed layout strategies
can be applied to other traditional multivariate visudima techniques.

Case Study 1 Figure 5 uses the measures from the sensor D191 (close toténsection of I-
35W and 35th St.) in the traffic data stream. We use a type PPfld®tion as shown in Figure 5
(b). The length of a cycle is one day. The current window i©9P¥-7:30PM on Tuesday, March
24, 2009. In our implemented system, we used scatterplaticeatto show this example. For
the sake of saving space, we chose two interesting subptotsdach scatterplot matrix to form
Figure 5(a). In the two scatterplots, we can see 8medandOccupancyalways have a negative
relationship with each other. However, the absolute vafube slope for line A is much larger
than that for line B. Thus, we can conclude that a small chafiggccupancycan result in a big
change inSpeedand vice versa, during the past two sliding windows (6:06PRDPM). This is
the result of heavy traffic. Nevertheless, these two dinmerssdo not obviously affect each other
in the current window. A more important finding is that suchhamge of data patterns did not
happen on March 22 and 23, i.e, the traffic from 6:00PM to 7M®Rs not that heavy.

From the scatterplot formed byolumeand Occupancy we also can see some interesting
change of data patterns. Line C contains only data correspgmo the current window (7:00PM-
7:30PM). It shows a positive relationship between thesedineensions. We can also see a neg-
ative relationship betweeviolumeand Occupancywhen observing other datapoints with lighter

colors (Line D), which denote the time period from 6:00PNJPM. The possible reason is that
24



high occupancy means low speed, which can result in feweickshpassing the sensor when
traffic is very heavy. Conversely, high occupancy meansmiae vehicles will pass the sensor
(Volume) when traffic is not heavy. A similar change did ngppen on March 22 and March 23.

What happened? This is not at traffic peak hours. Finallynftiee incident record of Mn/DOT,
we discover that flooding happened in the late afternoon orciM24, near the cross of I35W and
42nd St. because of 0.44 inch of precipitation on that days iBwery probably the reason why
data patterns changed on March 24, as compared to March Z23and

The analysis of this example confirms that the developechtqaks can convey not only the
multidimensional correlations for a particular time peribut also the change of data patterns, and
eventhe change of the changes of data pattefnsing type PP functions.

Case Study 2 Let us investigate Figure 9, which uses the sleep datarstrddne current win-
dow is 36.5-37 minutes after the beginning of this sleepkmeement. Figures 9(c) and 9(d) use
embedded views to convey not only trends for three dimesdiahalso multidimensional correla-
tions. Figure 9(c) was generated using a DOI function to am@the recent 9 sliding windows as
shown in in Figure 9(a). From each scatterplot we can quitkly how the primary data in each
sliding window move over time. For example, in the plot witkelt rate ltear) as X and blood
oxygen concentratiorb(ood) as Y, we can see that the older data mainly fall into the noticea,
then slowly move in the upper-left direction, and finallyurt back to a middle position. From
line charts, we can find that the heart rate decreased to axminivalue and then slowly went up
within the recent sliding windows, and, at the same time plbed oxygen concentration reached
a maximum value and then slowly went down. The findings frara Gharts are good supplements
to conclusions gained via the scatterplot.

In Figure 9(c), we also can see that this interesting chaxigésen the recent several windows.
If we want to see more detail of this change, we can use the Dxtion interactive tool to adjust
the DOI function for choosing fewer sliding windows to digpl The new DOI function is shown
in Figure 9(b), which results in a new view (See Figure 9(éom the new view, we can more
clearly see how the positions of clusters change as compaigdure 9(c).

If we observe carefully the plot witthgar) as X and blood) as Y in Figure 9(d), we can see
that some of the data in Window 1 (the window just before theerui window) have the lowest
positions. We then use data driven brushing to set the qumgtitton for dimensionseartand
bloodto select these points (Figure 10). Then the exact boundbdse data satisfying the query
on dimensiorchestand timestamp are shown using a shading background. Thuameiscover
the time when the movement of clusters happened.

Case Study 3

This case uses a 5-minute slice of sleep data stream. Wetgpliv 10 time windows and
generated Figure 15 using step juxtaposition and paratleidinates. Let us first observe the
changes of the correlation between the heart rate and bloagea concentrate. Basically, we can
see two types of distribution: Type 1: low heart rate and hiflod oxygen concentrate, such as
windows 54.0-54.5, 56.5-57.0, and 58.0-58.5; and Type @¢h heart rate and low blood oxygen
concentrate, e.g., windows 54.5-55.0 and 57.0-57.5. Ti&pdats in some windows are the
mixture of two types of data, such as window 57.5-58.0. Irhesaub-figure, we can clearly see
how the data is changing from one type to the other. For exampfigure 15(a), the data changed
from type 1 to type 2. We investigated the whole stream andddhbat type 1 is the primary one
and type 2 concentrates in some parts of the stream. Thug tyae be treated as an outlier. Since
the patient in this sleeping experiment shovzvg sleep aprexeo(s during which he takes a few



quick breaths and then stops breathing for up to 45 secotyg®)2 data might be associated with
this abnormality. Is this guess true? The third dimensiba,dhest volume, that is the indicator
of respiration, can tell us the answer. During the normal &wioreath, the chest volume should
change in a waving way. We can see that in most of time windolast volume values exist in
a wide range, which is normal. However, we can find that theeslbf this dimension in four
windows have a very narrow range, including windows 54.(6585.5-56.0, 56.5-57.0, and 58.0-
58.5, where the patient might stop breathing for a while. &bwer, just after each of these four
windows, we can see that data changed from type 1 to type 2examnple, in sub-figure (c), the
darker points correspond to window 55.5-56.0, where wegthespatient stopped breathing. We
can find that the data changed from type 1 to type 2 in sub-figl)re Thus, we have a finding
via the help of visualizations, that the patient will charigean abnormal condition of high heart
rate and low blood oxygen concentrate after sleep apneaehagdp We have not confirmed this
finding with medical expert, but this case study at leat canvsthat the proposed layout strategies
is so powerful that it can help us find possible cause andtefiedata streams, when we apply
them to traditional multivariate visualizations. This dslp promote hypotheses and confirm new
findings.

10 Conclusions and Future Work

In this paper, we have proposed a framework for the explmmadif multivariate data streams.
The story starts from a basic idea to display both the cudatd and abstractions of past data to
show not only the data patterns in a particular time periadatao how data changes over time.
We split the whole stream into non-overlapped sliding wingd@nd apply uniform sampling to
each window. The sampling ratio for a particular window isedeined by a DOI (degree of
interest) function to reflect users’ interest. A larger D@lue results in a larger sampling ratio
for the specified window, which shows more detail in the finelw We provide two types of
DOI functions to satisfy some common data analysis task&efisas a DOI function interactive
tool to allow users to adjust the DOI function when exploritada streams. In order to show how
data patterns change, we have proposed four layout steatesgiperimposition, juxtaposition, step
juxtaposition and animation, to place sliding windows. Bvaluation showed that three of these
can effectively convey the multivariate pattern change garad to the traditional time-series data
visualization techniques. We also derived a guide to addaésa analysts and visualization system
developers in choosing appropriate layout strategiesdbasehe characteristics of datasets and
data analysis tasks. In addition, we allow users to use pteRiews in the final visualization and
support linked brushing to highlight a subset of interesdlirviews when users define a query in
one view.

Some potential future work includes:

e The current framework is totally user-driven. Most paraengtincluding those within DOI
functions and the length of sliding windows, are controligdusers. In the future, we plan
to extend the current framework with a data-driven featiorenable the system to automati-
cally adjust DOI functions and other arguments in terms td élzatures. For example, when
data patterns change quickly, the system should be ableéamatically shorten the sliding
window to facilitate the observation of changes.
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Figure 15: The visualization for a slice of sleep data strgemerated by applying step juxtaposi-
tion to parallel coordinates. All time units in the figure anenutes. We can clearly see how the
relationship between variables changes from one windoWwgmeéxt.
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¢ In this paper, the detection of pattern change depends aahasalysis. For instance, users
must compare the shape of the datapoints of two windows extietether the slope of the
fitline is changing. In the next step, we plan to integratéstas and data mining algorithms
to compute the pattern changes, and directly visualizelibage, using either juxtaposition
or superimposition strategies.
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