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Abstract Multivariate data visualization techniques are often limited in terms of
the number of data records that can be simultaneously displayed in a
manner that allows ready interpretation. Due to the size of the screen
and number of pixels available, visualizing more than a few thousand
data points generally leads to clutter and occlusion. This in turn re-
stricts our ability to detect, classify, and measure phenomena of inter-
est, such as clusters, anomalies, trends, and patterns. In this paper we
describe our experiences in the development of multi-resolution visu-
alization techniques for large multivariate data sets. By hierarchically
clustering the data and displaying aggregation information for each clus-
ter, we can examine the data set at multiple levels of abstraction. In
addition, by providing powerful navigation and �ltering operations, we
can create an environment suitable for interactive exploration without
overloading the user with dense information displays. In this paper, we
illustrate that our hierarchical displays are general by successfully apply-
ing them to four popular yet non-scalable visualizations, namely parallel
coordinates, glyphs, scatterplot matrices and dimensional stacking.

1. Introduction

One important approach for supporting the human in analyzing and
exploring data sets is to appropriately visualize the data and allow the
human to apply their innate perception and pattern recognition abilities
to make sense out of the data. Multivariate data visualization focuses on
the display of multidimensional data sets. Many multivariate visualiza-
tion techniques and systems have emerged during the last three decades,
including:

glyph techniques (Andrews, 1972; Cherno�, 1973; Ribarsky et al.,
1994),
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parallel coordinates (Inselberg and Dimsdale, 1990; Wegman, 1990),

scatterplot matrices (Cleveland and McGill, 1988),

dimensional stacking (LeBlanc et al., 1990), and

pixel-based techniques (Keim et al., 1995).

Each method has its strengths and weaknesses in terms of the explo-
ration tasks and data set characteristics for which it is most useful.

However, most existing techniques do not scale well as data sets get
larger and larger. The reason is that the available screen space is limited.
Hence when the data set reaches a certain size, we are no longer able to
place all data on the screen at the same time without extensive cluttering
and occlusion. For example, if every pixel on a 1024�1024 screen could
present one data item, then the maximum number we could put on the
screen at the same time without clutter is approximately one million.
Unfortunately, large data sets nowadays easily exceed this size, especially
when the number of dimensions is large. Worse yet, most of the existing
multivariate visualization techniques require much more than one pixel
per data item.

In this paper we present a number of techniques for visual exploration
of large multivariate data sets we have recently developed to overcome
the serious clutter problem. By hierarchically clustering the data and
displaying cluster summarizations to users, along with tools for navi-
gating the hierarchy and �ltering the clutter, we can visualize data sets
with millions, or even billions, of data points. To validate our ideas,
we demonstrate how we have extended several traditional visualization
techniques, including parallel coordinates, glyphs, scatterplot matrices
and dimensional stacking, to handle hierarchies of clusters. Lastly, we
also describe several powerful tools for aiding the exploration process.
All techniques described in this paper have been implemented and in-
tegrated into a working visualization system, called XmdvTool (Ward,
1994; Martin and Ward, 1995; Fua et al., 1999a; Fua et al., 1999b; Fua
et al., 2000).

2. Hierarchical Cluster Visualization

2.1 Hierarchical Cluster Tree

To overcome the problem of clutter on the display, the key strategy
is to put fewer items on the screen. Thus we need to compress the
data sets while preserving their signi�cant features. Moreover, we prefer
multiresolutional displays so that users can interactively select their pre-
ferred level of detail. Given the above considerations, we have explored
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the concept of constructing a hierarchical cluster tree for a data set and
designing hierarchical displays capable of conveying the contents of this
tree.
Each node Ti of a hierarchical cluster tree represents a cluster. A

non-leaf cluster is composed of all its child clusters, while a leaf clus-
ter contains only a single data item from the data set. A hierarchical
cluster tree structures and presents a large data set at di�erent levels
of abstraction. On extreme points, the collection of all leaf clusters
presents exactly every data item of the data set, while the root is a
cluster representing the whole data set.
A hierarchical cluster tree is typically formed by grouping objects

based on some measure of proximity between pairs of objects (Jain and
Dubes, 1988). A number of clustering algorithms have been proposed
for building hierarchical cluster trees of large data sets (Andreae et al.,
1990; Guha et al., 1998; Zhang et al., 1996). We note that our visualiza-
tion techniques are independent of the particular choice of the clustering
algorithms and in fact could equally be applied to hierarchical data sets
constructed based on some explicit hierarchical clustering. Hence, clus-
tering algorithms are not further discussed here.

2.2 Visual Depiction of a Cluster

There are many characteristics of a cluster that can be visualized
in order to convey useful information regarding the cluster contents.
Typical aggregation information such as the cluster population, center,
extents (range of values for each dimension), and distribution can be
e�ective in helping the viewer decide whether she is interested in explor-
ing the cluster in more detail. In our initial implementation of cluster
visualization, we have selected to emphasize two cluster characteristics,
namely the cluster center and its extents. The center is simply a point
in data space, computed as the average of all cluster members. It is
visualized in the same manner as a data point in traditional single res-
olution displays. The extents are computed as the extreme values for
each dimension found in the member points. Extents are depicted as
a hyperbox surrounding the center point, colored according to the lo-
cation of the cluster relative to all other clusters at the given level of
detail (see Section 2.3 for a more detailed explanation on the coloring).
Rather than using uniformly shaded boxes to depict extents, we vary
the opacity such that it decreases linearly from the cluster center to the
cluster edges. The opacity is set to 0 at the edges. The opacity at the
center is set proportional to the cluster population, so that large clusters
are more readily discerned than small ones.
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2.3 Proximity-Based Coloring

Data elements (or clusters, in our case) can have many types of re-
lationships between them in screen-space (proximity after projection),
data-space (proximity in values), and structure-space (proximity based
on the results of structuring). It is often useful to highlight these re-
lationships to encourage interactive exploration. To this end, we have
been examining techniques to convey the structural relationships found
in the cluster hierarchy. In (Fua et al., 1999a) we introduced a coloring
strategy called proximity-based coloring to assign colors to clusters. It
maps colors by cluster proximity based on the structure of the tree, and
has the following properties:

sibling clusters have nearly the same color,

a parent cluster has a color within the range of its children's colors,

the color space is e�ectively utilized, i.e., there are no signi�cant
parts of the color space to which no cluster is assigned, and

di�erences in color between non-sibling clusters are readily discern-
able compared to the di�erence between siblings.

Such color coding is achieved by imposing a linear order on all clusters
in the tree and assigning colors to each cluster by indexing into a linear
colormap table. Details of the algorithm can be found in (Fua et al.,
2000).

3. Hierarchical Display Techniques

We have extended four traditional multivariate display techniques,
namely parallel coordinates, star glyphs, scatterplot matrices, and di-
mensional stacking, to convey cluster information in the manner out-
lined in the previous section. A key point to make is that the generic
approach was indeed easily applicable to each of the four traditional dis-
play techniques, thus convincing us that the general approach is a sound
one.

3.1 Hierarchical Parallel Coordinates

In traditional parallel coordinates (Figure 1, left), each dimension is
represented as a uniformly spaced vertical axis. A data item in this
multidimensional space is mapped to a polyline that traverses across
all the axes. We generate hierarchical parallel coordinates from the at
form parallel coordinates using the cluster summarization information.
In the hierarchical parallel coordinates (Figure 1, right), the clusters
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rather than individual data items are displayed. The mean of a cluster is
mapped to a polyline traversing across all the axes, with a band around
it depicting the extents of the cluster. The lower edge of the band
intersects each axis at the minimum value of its respective cluster in
that dimension. The upper edge of the band intersects each axis at the
maximum value of its respective cluster in that dimension. Obviously, if
we display each data item included in that cluster, they will all be inside
the band. Notice that even if two polylines intersect each other at some
axis, we now can easily di�erentiate them because they have di�erent
colors (see Section 2.3).

Figure 1. Flat and hierarchical parallel coordinates display of Cars data
set (Obtained via anonymous ftp from unix.hensa.ac.uk in the directory
/pub/statlib/datasets).

3.2 Hierarchical Glyphs

In the traditional form of star glyphs (Figure 2, left), each glyph
presents a single data item. The data values are mapped to the length
of rays emanating from a central point, and the ends of the rays are
linked to form a polygon. We can view these rays as axes, with each
axis presenting a dimension. Once again, we generate hierarchical glyphs
from the at form glyphs using cluster information. In the hierarchical
glyphs (Figure 2, right), each star glyph presents a cluster. The mean
values of a cluster are mapped to the length of rays emanating from a
central point in the star glyph. The ends of these rays are linked to form
the mean polygon. The band around the mean polygon has two edges;
one is outside the mean polygon and another one is inside the mean
polygon. The inside edge intersects each axis at the minimum value
of its respective cluster in that dimension, while the outside edge would
intersect each axis at the maximum value of its respective cluster in that
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dimension if we extended the axes. Obviously, if we were to draw a star
glyph starting from this center point to present a data item included in
that cluster, this star glyph would be inside the band of that cluster.

Figure 2. Flat and hierarchical star glyphs display of Cars data set.

3.3 Hierarchical Scatterplot Matrices

In traditional scatterplot matrices (Figure 3, left), each data item is
projected to N*N plots (N is the number of dimensions), each of which is
a pairwise projection of the data set. The position of the projected point
in a plot is decided by the values of the data item in the two dimensions
that comprise this plot. We generate a hierarchical scatterplot matrix
from the at form scatterplot matrix using the cluster information. In
the hierarchical scatterplot matrix (Figure 3, right), the clusters are
shown in the N*N plots. The mean of a cluster is projected to the
N*N plots as an ordinary data item in the at form scatterplot matrix.
The extent of the cluster is also projected to the N*N plots, forming
rectangles around the projected mean. The projections of the same
cluster on di�erent plots are colored in the same way, which helps users
link clusters from one plot to another. In the non-hierarchical scatterplot
matrix, all data items have the same color, hence users can �nd it diÆcult
to trace a data item between plots in those traditional displays.

3.4 Hierarchical Dimensional Stacking

Traditional dimensional stacking (Figure 4, left) displays an N dimen-
sional data set by recursively embedding dimensions within one another.
The range of each dimension is broken into a user-selected number of
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Figure 3. Flat and hierarchical scatterplot matrices display of Cars data set.

discrete bins, and the screen space is divided into a grid of sub-images
based on the number of bins for two of the dimensions. These sub-images
are then decomposed based on the bin count of two more dimensions,
and the process continues. Each small block on the �nal display thus
represents a discrete position in the N dimensional space. A data item
will fall into one of these small blocks. We generate the hierarchical
dimensional stacking from the at form dimensional stacking using the
approach followed with the other display methods. In the hierarchical di-
mensional stacking (Figure 4, right), the clusters replace the data items.
The mean of a cluster will fall into a single small block similar to where
an ordinary data item in the at form dimensional stacking would be
placed. The band of this cluster depicts the extent of the cluster. This
time it is possible that some parts of the band are disjoint from others in
display space due to the nature of the dimensional stacking technique.

4. Interactive Tools

Having introduced methods for mapping hierarchical cluster informa-
tion into a visualization, we now need to tackle the problem of how
to give users the power to interactively perform their data exploration
tasks. We have developed a suite of interactive tools, such as the
structure-based brush, drill-down/roll-up operations, extent scaling, and
dynamic masking, to reduce clutter and interactively explore the hier-
archical displays.
Structure-based Brush: Users often need to explore a particu-

lar subspace of interest after obtaining an overview of the hierarchical
structure. One way of achieving this is though brushing. Brushing is
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Figure 4. Flat and hierarchical dimensional stacking display of Cars data set.

a direct and data-driven metaphor. It is an interactive process for se-
lecting subsets of data or localizing a subspace within an N-dimensional
space (Martin and Ward, 1995; Wong and Bergeron, 1996; Ward, 1994).
Many useful operations such as highlighting, deleting, masking or ag-
gregation may be performed on elements that lie within the selected
subspace. Brushing has traditionally been performed in either screen

space or data space. One example of brushing in screen space is the use
of rubber-banding rectangles; an example of brushing in data space is
interactively creating hyperboxes by painting over data points of interest
(Martin and Ward, 1995).

Since brushing is useful, we want to keep it in the interactive hierar-
chical displays. However, brushing in screen space or data space cannot
perform necessary selection operations in our hierarchical displays. Ac-
cording to the fact that the hierarchical cluster tree is highly structured,
we have developed the concept of a structure-based brush. A structure-
based brush allows users to select subsets of the hierarchical structure
by specifying focal extents as well as a levels-of-detail on a visual repre-
sentation of the structure. Details of the structure-based brush can be
found in (Fua et al., 1999b; Fua et al., 2000).
Drill-down/Roll-up Operations: Drill-down/roll-up operations al-

low users to change the level of detail of our hierarchical displays intu-
itively and directly. Drill-down refers to the process of viewing data at
a level of increased detail, while roll-up refers to the process of view-
ing data with decreased detail (Fua et al., 1999a). When users perform
drill-down, the number of clusters in the display increases because the
visible clusters split into smaller clusters. Conversely, when users per-
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form roll-up, the number of clusters in the displays decreases because
the displayed clusters merge together and form larger clusters.
We couple our drilling operations with brushing. Our system per-

mits selective drill-down/roll-up of the brushed and non-brushed region
independently. This exibility is important as it allows the viewing of
a subset of elements in varying levels of detail while maintaining the
overall context.
Extent Scaling: Though the bands of the clusters on the hierarchical

displays are translucent, it is often diÆcult to isolate or to tell them apart
when they are overlapping. Moreover, it is possible that the users may
want to see the bands indicating the relative scale of the clusters but
do not want to see them covering a large portion of the screen. One
way to solve this problem is to decrease the extents of all the bands in
each dimension by scaling them uniformly via a dynamically controlled
extent scaling parameter E 2 [0; 1]. E a�ects the extents of the bands
in this way:

bandExtenti = E � clusterExtenti (1)

where i refers to the identity of a cluster Ti, clusterExtenti refers to the
distances from the mean to the maximum and minimum value of cluster
Ti in each dimension, and bandExtenti refers to the distances from the
mean point to the maximum and minimum value of the displayed band
of cluster Ti in each dimension.
Dynamic Masking: Dynamic masking refers to the ability to con-

trol the relative opacity between brushed and unbrushed clusters. It
allows users to deemphasize or even eliminate brushed or unbrushed
clusters. With dynamic masking, the viewer can interactively fade out
the bands of the unbrushed clusters, thereby obtaining a clearer view
of the brushed clusters while maintaining context regarding unbrushed
areas. Conversely, the bands of the brushed clusters can be faded out,
thus obtaining a clearer view of the unbrushed region. Used together
with the structure-based brush, dynamic masking reduces the overlap
and density of the clusters on the screen by fading out uninteresting
clusters.

5. Related Work

In recent years, many research e�orts have focused on the problem of
clutter when visualizing large multivariate data sets.
Wong and Bergeron (Wong and Bergeron, 1996) have constructed a

multiresolution display using wavelet approximations, where the data
size is reduced by repeatedly merging neighboring points. Their ap-
proach is to construct hierarchical structures using a wavelet transform
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and view di�erent levels of detail interactively upon the hierarchical
structures. However, the wavelet transform requires the data to be or-
dered, making it useful only for data sets with a natural ordering, such
as time-series data.

Another approach is to let the characteristics of the data set reveal
itself. For example, Wegman and Luo (Wegman and Luo, 1997) suggest
over-plotting translucent data points or lines so that sparse areas fade
away while dense areas appear emphasized. The disadvantage of this
method is that it relies on overlapping points or lines to identify clusters.
Clusters without overlapping elements will not be visually emphasized.

Keim et al. (Keim et al., 1995) studied pixel-level visualization schemes
which permit the display of a large number of records on a typical work-
station screen based on recursive layout patterns. In this case, the num-
ber of displayable records is dependent on the size of the display area.
This limitation restricts the scalability of their method. Moreover, since
each pixel only represents one variable, it is diÆcult to convey the inter-
actions among variables. We instead take a di�erent approach of pre-
serving the look and feel of well-known traditional display techniques in
as much as possible, and addressing the clutter problem by abstracting
the data itself into several di�erent levels of detail.

6. Conclusions and Future Work

In this paper we have presented a generalized strategy for visually de-
picting and exploring very large multivariate data sets. All of the visual-
ization, navigation, and �ltering methods we described have been imple-
mented in the XmdvTool system (Ward, 1994), a public-domain software
package developed at WPI (see http://davis.wpi.edu/~xmdv). The
system has been successfully applied to the analysis of data in a wide
range of disciplines, including the earth and space sciences, economics
and business, statistics, optimization, and performance analysis.

Our current and future work will focus on both the evaluation and
re�nement of the techniques presented, addressing issues such as cop-
ing with very deep or broad hierarchies, alternate navigation tools, and
database strategies to optimize system performance. Result of some of
our evaluation experiments can be found in (Yang et al., 2001) We are
also interested in investigating methods for handling very large numbers
of data dimensions, as most techniques lose their e�ectiveness when the
dimensionality exceeds 20-30. Finally, we are exploring other domains to
which the techniques can be applied, as this often leads to new avenues
for research.
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