
CAPE: Continuous Query Engine with
Heterogeneous-Grained Adaptivity ∗

Elke A. Rundensteiner, Luping Ding, Timothy Sutherland, Yali Zhu, Brad Pielech, Nishant Mehta

Department of Computer Science, Worcester Polytechnic Institute
100 Institute Road, Worcester, MA 01609, U.S.A

{rundenst, lisading, tims, yaliz, winners, nishantm}@cs.wpi.edu

1 Introduction

We present CAPE, our Continuous Adaptive Query
Processing Engine, that is designed to efficiently eval-
uate continuous queries in highly dynamic stream en-
vironments with the following characteristics: (1) the
input data may stream into the query engine at widely-
varying rates; (2) meta knowledge such as punctu-
ations [10] may dynamically be embedded into data
streams; (3) as queries are registered into or removed
from the query engine, the computing resources avail-
able for processing an individual operator may vary
greatly over time; (4) different users may impose dif-
ferent quality of service (QoS) requirements.

In view of these uncertainties, no one unique op-
timization technique can be expected to always suc-
ceed. Correspondingly, CAPE employs an optimiza-
tion framework with heterogeneous-grained adaptivity
for effectively coping with such dynamic variations.

In our demonstration, we will focus on the following
novel features of the CAPE system:
1. Highly reactive query operators capable of exploit-
ing metadata to reduce resource usage and to improve
execution efficiency (intra-operator adaptivity).
2. Online query reoptimization and migration between
sub-plans to continuously converge to the best possible
plan given the current situation (plan-level adaptivity).
3. Adaptive operator scheduling and plan distribution
among multiple machines (system-wide adaptivity).

Our system differs from prior continuous query sys-
tems in several ways. The STREAM system [7], fo-

∗The research was partly supported by the RDC grant 2003-
04 on “On-line Stream Monitoring Systems: Untethered Health-
care, Intrusion Detection, and Beyond.”

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 30th VLDB Conference,
Toronto, Canada, 2004

cusing on formal continuous query semantics, also ap-
plies some adaptation strategies such as runtime mod-
ification of the resource allocation and scheduling pol-
icy [2]. In addition to this, our system enables finer-
grained intra-operator adaptivity [4, 5] and distributes
a query plan to run on multiple machines for scaling
purposes [9].

TelegraphCQ [3] provides a very fine-grained level
of flexibility by continuously routing each tuple indi-
vidually through its network of operators. However, it
only achieves lightweight online query rewriting such
as changing the order of query operators. Further-
more, the Eddies approach has the inherent problem of
recomputing all delta intermediate results in the case
of multiple joins. This may incur a significant overhead
given high stream rates and join selectivities. Our sys-
tem instead takes the more established approach of
working with pre-defined optimized query plans, such
as query networks in Aurora [1] or STREAM, and then
extends this approach with adaptive techniques.

Unlike the Aurora system, we focus on the design of
the fine-tuned individual query operators [4, 5], such
as the join operator with intra-operator scheduling of
various related tasks including state purge and meta-
data propagation. Moreover, we support online migra-
tion of sub-plans not only composed of stateless oper-
ators, but also containing stateful operators, to allow
for maximal online adjustments in plan execution per-
formance [11].

In summary, CAPE aims to deliver exact
query answers by making the best effort through
heterogeneous-grained adaptations with the goal to
meet users’ QoS requirements.

2 Application Example

The applications we will use to demonstrate CAPE are
online auction management and web log analysis. Fig-
ure 1 shows several streams and a sample query in an
online auction application. For each person that has
registered to the auction system, this query asks for
the count of distinct categories that include the items



this person has bid on within 12 hours of her registra-
tion time. Since the exploitation of dynamic metadata,
i.e., punctuations, is a novel feature in CAPE, we now
explain our techniques for optimizing this query.

�����������

	
��������

���
���������

����������������	����
������	��
�����
������������
��
������������������������
����������
������
��������	������	������	������������	������
������

���
�����

������������
���������������� ���	��
�����
�
 ��������������
�����������!"	�
��#$�%����&��
'(������������
 )���������
 	�
�����

����
 )������

*�������������


���
�

���
�
���
������



���
��

����
)���
 ����	���
���


������


Figure 1: Sample Query in an Online Auction System.

Since the auction system knows the closing time for
each auction, it can insert punctuations into the Bid
stream to mark the end of bids for each specific item.
This kind of dynamic metadata along with static meta-
data such as the unique key and window semantics
can help the stateful operators to shrink the runtime
state and the blocking operators to emit partial results
regularly. Therefore, in the first join (Item �� Bid),
when a punctuation is received from the Bid stream,
the tuple with the same item id from the Item stream
can be purged. The second join (Out1 �� Person) is a
window join which applies a 12-hour window on Per-
son.reg time. Whenever a Person tuple drops out of
the window, no more join results will be generated for
that person. Thus, a punctuation for this p id can be
produced and placed into the Out2 stream. This will
trigger the group by operator to emit a partial result
for this person. Our experimental results [4, 5] show
that by exploiting appropriate metadata, the join only
requires near-constant memory overhead. The group-
by operator is able to produce partial results at the
earliest time possibly by exploiting the punctuations
propagated by the upstream join.

3 System Overview

CAPE embeds novel adaptation techniques for tuning
different levels of query evaluation, including intra-
operator execution, operator scheduling, query plan
structuring and plan distribution. Each level of adap-
tation yields maximally optimized performance by
working on its own. However, none of them can possi-
bly handle all variations that occur in a stream envi-
ronment. In addition, the improper use of all levels of
adaptations may cause either optimization counterac-
tion or over-optimization. Hence, an important task
is to coordinate different levels of adaptations, guiding
them to function properly on their own and also to
cooperate with each other in a well-regulated manner.
CAPE not only incorporates novel adaptation strate-

gies for all aspects of continuous query evaluation, but
also employs a well-designed mechanism for coordinat-
ing different levels of adaptations.

��������	
�����

��

�����	��
����

���	��

��� ������	��

�����	��
���������

����
�

��	��

�����	
��
��

��

�	���
�
����
��

�	����
����
���

�
�	�
 �	
��
����
��

����!�����
"�����	��

�	�����#�����!
��

�	��	
��

"$�

����
��%��
��
&��

Figure 2: CAPE System Architecture.

In the system architecture shown in Figure 2, the
key adaptive components are Operator Configurator,
Operator Scheduler, Plan Reorganizer and Distribu-
tion Manager. Once the Execution Engine starts exe-
cuting the query plan, the QoS Inspector will regularly
collect statistics within each sampling interval from
the Execution Engine. All of the four adaptive compo-
nents use these statistics along with QoS specifications
to determine if they need to adjust their behavior.

To synchronize adaptations at all levels, we have
designed a heterogeneous-grained adaptation schema.
Since these adaptations deal with dissimilar runtime
scenarios and have different overheads, they are in-
voked in CAPE under different conditions.

The intra-operator adaptation incurs the lowest
overhead so that it functions within an operator’s ex-
ecution time slot. Second, the Operator Scheduler ad-
justs the operator processing order after a run of a sin-
gle operator or a group of operators, called a schedul-
ing unit. After a scheduling unit finishes its work, the
scheduler will check the QoS metrics for the operators
and decide which operator to run next or even switch
to a better scheduling strategy. This is a novel fea-
ture unique to our system. The Plan Reorganizer will
wait for the completion of several scheduling units and
then check the QoS metrics for the entire query plan
residing on its local machine to decide whether to re-
structure the plan. The Distribution Manager, which
likely incurs the highest cost, is assigned the longest
decision making time interval. If a particular machine
is detected to be overloaded, the Distribution Manager
will redistribute one or multiple query plans among a
cluster of machines. The Plan Migrator is invoked as
necessary by the Plan Reorganizer to migrate from the
old plan to the new plan, or by the Distribution Man-
ager to migrate a query from one machine to another
machine.

4 Adaptive Techniques in CAPE

4.1 Highly Reactive Query Operators

Our operators are able to adjust their behavior accord-
ing to changes in the environment. We take our adap-
tive punctuation-exploiting join operator PJoin [4, 5]



as an example. PJoin is able to utilize punctuations
to remove no-longer-needed data from its join state in
a timely manner, thereby reducing the memory over-
head and improving the probe efficiency. It can also
propagate punctuations to help the blocking operators
or stateful operators downstream.

���������	


��
	���

��
��
�����
�	�


�	��
��	


������
����	


����

��������
�������

���������

��������

��������
�������

��
��
�����

��
���
�	�

����
�
�	�


Figure 3: PJoin.

0
2000
4000
6000
8000

10000
12000
14000

0 1000 2000 3000 4000 5000
Window Size (ms)

M
ig

ra
ti

o
n

 T
im

e 
(m

s)

T_MS T_PT

Figure 4: Migration Time.

The PJoin execution logic is composed of several
tasks including join, purge and propagation. We have
designed various state purge and punctuation propaga-
tion strategies, including eager and lazy purge, and ac-
tive and passive propagation, to achieve different opti-
mization goals. We also employ an event-driven intra-
operator scheduling mechanism (Figure 3) to switch
among individual tasks driven by the events model-
ing the punctuation arrivals, the memory threshold
reached, etc. The events, listeners and thresholds are
configured by the Operator Configurator and can be
dynamically adjusted at runtime. This realizes an
adaptive execution logic for PJoin.

All stateful operators in CAPE are equipped with
a punctuation-exploiting adaptive execution logic.
These operators can react to punctuation arrivals, re-
source (memory) modifications and punctuation re-
quests from downstream operators.

4.2 Adaptive Operator Scheduling

The existing stream systems usually stick to an op-
erator scheduling algorithm once it is determined to
be the optimal one from the beginning of the query
execution. However, as the stream environment expe-
riences changes, this initially optimal scheduling algo-
rithm may become sub-optimal. In response, in CAPE
we employ an adaptive scheduler-selection framework
[8]. Our Operator Scheduler can take any number of
scheduling algorithms and a set of QoS requirements as
input, and dynamically select the scheduling algorithm
to use based on how well the system is performing.
Thus, it leverages the strengths of multiple scheduling
strategies and also works even under changing QoS re-
quirements at runtime. No a priori knowledge about
the scheduling algorithms in the system is required.
Due to the lightweight nature of the framework, the
overhead of using an adaptive strategy rather than a
static algorithm has been shown experimentally to be
minimal. Figure 5 shows how the adaptive framework
reduces average tuple delay in the query plan.

CAPE currently incorporates a wide variety of
scheduling algorithms, ranging from well established

ones like Round Robin and FIFO, to those proposed
recently for continuous query processing such as Train
[1] and Chain [2].

0

10000

20000

30000

40000

50000

60000

70000

10 30 50 70 90 110 130 150 170 190 210 230 250 270 290

Time (s)

A
ve

ra
g

e 
T

u
p

le
 D

el
ay

 i
n

 
q

u
er

y 
p

la
n

 (
m

s)

Adaptive
FIFO
MTIQ
RR
Chain

Figure 5: Improving QoS w/ Adaptive Scheduling.

4.3 Online Plan Migration

When a relatively dramatic change occurs in the
stream environment, it may be more effective to opti-
mize the query plan itself to improve the performance.
We have developed a set of online plan reoptimiza-
tion methods and corresponding rewriting rules. De-
pending on the user QoS requirements, such as out-
put rates, the appropriate optimization method and
rewriting rules are dynamically invoked.

Once the Plan Reorganizer has generated new query
sub-plans, the existing plans can then be seamlessly
migrated to the new ones on-the-fly [11]. This is a fea-
ture thus far unique to CAPE. We have developed two
lightweight online plan migration strategies [11]: par-
allel track strategy and moving state strategy. Both
strategies take special care to safely migrate the state
of stateful operators, such as joins, to prevent any
missing or duplicate results.

The moving state strategy first drains out tuples in-
side intermediate queues, and then carefully maps and
moves over all relevant tuples in the states of the old
query plan to their corresponding location in the new
plan. In contrast, the parallel track strategy operates
in a more gradual fashion by plugging in the new plan
and starting to execute both plans in parallel. The old
plan can be disconnected once the old tuples inside it
are all purged. The cost of the two strategies are deter-
mined by several system parameters, such as operator
selectivities, window sizes, and data arrival rates. As
one of our experiment results on query plans with mul-
tiple joins, Figure 4 shows the relation between migra-
tion elapsed time and window size for both strategies
(MS for moving state and PT for parallel track). The
Plan Migrator dynamically evaluates the cost of these
two strategies and chooses the more efficient one.

4.4 Self-Adjusting Plan Distribution

CAPE handles query plan distribution with a Distri-
bution Manager which manages the tuple queues be-
tween machines [9]. A distributed query plan is cre-
ated by connecting multiple machines over a network



connection to distribute operators. There are many
distribution plans available for use in CAPE. Newly-
developed distribution plans can also be plugged in
easily. To maintain the integrity and validity of the
data, especially the data in the state of the stateful
operators, the Distribution Manager follows a strict
set of rules to migrate an operator to another process-
ing machine.

In addition, CAPE has the unique ability to redis-
tribute a workload in both a local (decentralized) and a
global (centralized) control mode at runtime. This en-
ables ultimate flexibility in distribution based on the
number of processing machines. The distribution is
based on a cost model, which considers memory us-
age, network costs and overall processing costs.

5 Demonstration

Figure 6: View of Query Plan During Execution.

In the demonstration, we will visually show the six
aspects of the CAPE system listed below through a
GUI (Figure 6). We employ a stream feeder to supply
the application data at varying arrival rates, which can
be as fast as 400 tuples/sec in our FIFA World Cup
1998 web log analysis application [6].
1. General system features. We will show the run-
time status of query plan structures, inter-operator
queues and storage manager. In particular, we have
the ability to monitor the QoS statistics as they are
updated at runtime (Figure 7).
2. Reactive operators. We will show the PJoin
intra-operator scheduling switches from one task to
another upon the arrival of punctuations, or when the
allocated memory is used up. We will also show how
the punctuations delivered by the upstream join oper-
ator unblock the downstream group-by operator.
3. Adaptive operator scheduling. We will show
how the system switches to a different scheduling al-
gorithm to yield better query performance.

4. Runtime plan reoptimization and migration.
We will show how the Plan Reorganizer locates the
sub-plan that needs to be restructured when it de-
tects the performance decline of a query plan exceeds
a pre-determined threshold. It then invokes the Plan
Migrator to migrate from the old sub-plan to the new
one at runtime.
5. Plan distribution. We will show that when one
machine is overloaded, the Distribution Manager re-
distributes query plans to handle this situation.

Figure 7: Statistics Monitor.

6 Acknowledgment

The authors wish to thank Maylene Natasha Waltz for
the CAPE GUI development.

References
[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Con-

vey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Au-
rora: A new model and architecture for data stream man-
agement. VLDB Journal, 12(2):120–139, August 2003.

[2] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain:
operator scheduling for memory minimization in data
stream systems. In ACM SIGMOD, pages 253–264, 2003.

[3] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin,
J. Hellerstein, W. Hong, S. Krishnamurthy, S. Madden,
V. Raman, F. Reiss, and M. Shah. TelegraphCQ: Contin-
uous dataflow processing for an uncertain world. In CIDR,
pages 269–280, 2003.

[4] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T. Heine-
man. Joining punctuated streams. In EDBT, pages 587–
604, March 2004.

[5] L. Ding, E. A. Rundensteiner, and G. T. Heineman. MJoin:
A metadata-aware stream join operator. In DEBS, June
2003.

[6] Internet Traffic Archive. http://www.acm.org/sigcomm/ITA/,
2003.

[7] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu,
M. Datar, G. Manku, C. Olston, J. Rosenstein, and
R. Varma. Query processing, resource management, and
approximation in a data stream management system. In
CIDR, pages 245–256, Jan 2003.

[8] B. Pielech, T. Sutherland, and E. A. Rundensteiner. Adap-
tive scheduling framework for a continuous query system.
Technical Report WPI-CS-TR-04-16, Worcester Polytech-
nic Institute, April 2004.

[9] T. Sutherland. D-cape: A self-tuning continuous query
plan distribution architecture. WPI, MS Thesis, May 2004.

[10] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Ex-
ploiting punctuation semantics in continuous data streams.
TKDE, 15(3):555–568, May/June 2003.

[11] Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dy-
namic plan migration for continuous queries over data
streams. In ACM SIGMOD, June 2004, to appear.


