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Abstract

Main memory is a critical resource when processing non-kilog
queries with state intensive operators that require resiet re-
sponses. While partitioned parallel processing can aditvithe
stringent memory demands in some cases, in general evensn a d
tributed system main memory remains bounded. In this woek, w
thus investigate the integration of two run-time adaptatiech-
nigues, namely, state spill to disk and state relocationrt@ker-
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nate machine, to handle this memory shortage problem. We an-streams from numerous market participants which may irclud

alyze the tradeoffs regarding key factors affecting thes® run-
time operator state adaptation techniques in a modern caeipu
cluster environment. Two strategies, lazy-disk and adligk, are
then proposed that integrate both state spill and statecaion
adaptations with different emphasis on local versus glatesi-
sion making. Extensive experiments of the proposed query pr
cessing system conducted on a compute-cluster (not meséty-a
ulation) confirm the effectiveness of these strategies.

1. Introduction

Characteristics of Non-Blocking Pipelined QueriesNon-blocking
query processing with data being pushed asynchronousiy fro
various data sources into the system and producing quenjtses
in real time as data comes through has become the focus oftrece
research. Efficient processing of such non-blocking qeési¢he
key to the success of many applications including remote®en
monitoring and online transaction processing [2, 4].

Current research of non-blocking query processing often as
sumes that query operators have fairly small-sized opestdtes,
e.g., small-window joins or even stateless operators ssickelact
and project [2,4,11]. Query operators with potentially dagper-
ator states, such as multi-joins, have not yet been cayestiid-
ied in this context. However, such operators are common ta da
integration and data warehousing environments. For instaa
real-time data integration system such as the emergingrefhéc
brokerage systems could help financial analysts and brakers
making timely decisions regarding foreign and domestidwess.
Here, stock prices, volumes, exchange rates, ask and hadsoff
and external reviews are continuously sent to the integraterver
during working hours, say 9AM-4PM. The server is required to
integrate these input streams and output the results tousade-
cision support systems as well as other integrated apjgitats
shown in Figure 1. This way, analysts and brokers make derssi
in real time based on the most up-to-date information.

hundreds of banks, international corporations and othanéial
institutions, matching order information based on markatipi-
pants’ ids and financial instrument types. Thus such systeoss
effectively handle multi-join integration queries. Moxeo, the
larger the number of different types of information streamsh a
system integrates, the more competitive the system oftesrbes,
since it can serve the needs of its users better.

Let us assume a financial data integration system built td mee
the needs of a financial consultant to a big corporation whah
many international ventures requiring often payments neitm
currency. Since exchange rates of currencies fluctuate béised
on how a country’s economy is doing, such a corporation mag ne
to reduce the transaction exposure of its internationalures by
deciding whether to participate in the futures market artjpehe
exchange rate at which it will have to buy the currency it rscfed
a future payment earlier or to wait until the payment is duslauny
the currency at the then-spot rates. To advise such a coiqgrora
a financial consultant might want to know current exchangesra
for the currency under question from different banks andibbs
to read reports on the country’s economy. The financial densu
tant might also be interested in finding out which brokerttbel
currency at the lowest price. An example of a multi-join quer
answering one of the above mentioned inquiries is:

QUERY 1:
SELECT br oker Nanme, min(price)
FROM bank1, bank2, bank3
VWHERE bank1. of f er Curr ency=bank2. of f er Curr ency

AND bank2. of f er Curr ency=bank3. of f er Currency
AND bankl. of f er =bank2. of f er
AND bank2. of f er =bank3. of f er AND
bankl. ti nest anp$>=$bank2. ti nest anp+w ndow
AND bank1l. ti nmest anp>=bank3. ti nest anp+wi ndow

GROUP BY br oker Name

In the above example assume the data integration servat-is co
nected to the networks of other banks and a company that is con

Such financial data integration systems often have to cannec stantly providing financial reports on countries’ econasnand



currency rates in the form of continuous streams. The sribhg
requirement of generating near real-time results demdifideeat
main memory based query processing. This is particulaitical
for data integration type queries that are state intensiveature
such as the multi-join integration queries mentioned abbvéhis
work, we thus focus on adapting operator states to addréss th
run-time memory shortage for queries with state intenspera-
tors, such as multi-join queries [26]. These queries arencomin
data integration related applications as shown in Figur&siwe
need accurate query results and thus cannot afford to |ceeciad
data, we cannot resort to techniques such as load sheddayg or
proximations [23]. As motivated in Figure 1, we assume thergu
is long running but finite. However, the techniques we study i
this work could also be applied to cases with infinite datesstrs
as long as operators have finite window sizes, a common isituat
in continuous query processing environments.
State-Level Adaptations. One solution to address the memory
shortage, as discussed in XJoin [25], Hash-Merge Join |,
[15], is to temporarily push memory resident states intkslis
This approach delays the processing of certain states (gke d
resident states) until a later time when more resourcesdvoel
available. The processing of the disk resident states ésnesf as
state cleanup Cleanup generates any missed results. We refer to
this pushing and cleaning processstate spilladaptation. Given
a monotonic increase of the operator states during theimm-t
phase due to long-running queries and requiring full andiacc
rate final results, there may be no opportunity to performstage
cleanup during the run-time phase. Thus, these disk resitities
would typically be processed after the run-time phase fessh

An alternate solution is to distribute state intensive afpms
to multiple machines with each machine processing a pantif
the input data. This is referred to partitioned parallel process-
ing [10, 14, 18, 20]. Then, we would move state partitions across
machines when only a subset of machines is overloaded wthile o
ers may exhibit available memory resources. For simplicity
call this type of adaptatiostate relocation As advantage, the

col to coordinate decision making at both local and global
control agents, and 2) an assessment of the tradeoffs to know
when to favor one technique over the other. A new partition
group level productivity metric is designed to select thstbe
partitions to be used by either adaptation process.

The integrated adaptation strategies have been implethente
in the framework of a distributed software architecturehwit

a coordinator as a global adaptation controller agent ingegha
of monitoring and coordinating the work of each query pro-
cessor and its local adaptation controller.

Extensive experimental evaluation to compare these peabos
strategies in the new context of continuous data stream pro-
cessing has been conducted on a modern PC-compute clus-
ter — that is, the observations are not just derived based on
simulation-based studies. The experimental results eonfir
the effectiveness of the proposed strategies.

The rest of the paper is organized as follows. Section 2 oswss
the basics of our approach. Sections 3 and 4 analyze thespilite
and relocation solutions, respectively. Section 5 prest inte-
grated adaptation strategies, along with their experiai@vialua-
tion. Sections 6 and 7 discuss related work and conclusion.

2. Basics of Our Approach

Partitioning State Intensive Operators. We review partitioned
processing for multi-input state intensive operators. otighout
this work, we use a symmetric multiple-way hash join operato
[26] as a representative example of state intensive opsrdtee to
joins being one of the most common class of queries. Othe sta
intensive operators can also be addressed in a similar masne
long as their functionality can be distributed to multiplachines
with each machine only processing non-overlapping partti As
discussed in [10, 20], aplit operator is inserted in front of each
input stream of such a partitioned operator. This split afuer

adapted states remain in main memory and thus active once theyartitions an input stream and sends the appropriate ipastito

relocation is completed. However, this type of adaptatidhnet
always solve the overall memory shortage problem since theen
aggregated main memory of multiple machines remains lanite
Contributions. While previous work studied the state relocation
and state spill adaptations separately [17, 20, 25], we noesti-
gate both state level adaptations in an integrated manmhear|q
such a comprehensive solution is needed since state spilhota
be efficient due to the access of slow secondary storages wtaile
relocation alone often cannot fully resolve the memory &ge
problem. We analyze the tradeoffs regarding the factors twon-
sidered when adapting statesrofilti-input operators using either
of these two techniques in a practical cluster environment.
The main contributions of this work are:

e A comprehensive integrated solution is designed to maxi-
mize the run-time query throughput in environments where
the memory of the distributed system is not sufficient for the
query processing. In particular, we propose two integnatio
strategies, namelyazy-diskandactive-disk to apply both
spill and relocation adaptations.

e The integration of these two techniques requires 1) a proto-

lWe assume applications here for which out-of-order defivr
output tuples is acceptable.

each machine that houses an instance of this partitionettope
For simplicity, we will henceforth refer to each instanibat of the
operator that runs in a particular machine asirstanceof the
partitioned operator.

For example, assume we process a three-way join query: (
B C) as shown in Figure 2 (a). The join is defined asif=
B.B; = C.C1 where A, B, and C denote the three input streams and
A1, B1, andC; are the join columns. As shown in Figure 2(b),
the query is partitioned and run on two machines. Fh&t 4 op-
erator partitions the input stream A based on the colutnnwhile
the Split p operator partitions the input stream B based?nand
so on? A unionoperator, if needed for appropriate result merging,
can be inserted into the output streams of all instancesegpain-
titioned operator to combine the results into one strearfufther
processing. Stateless operators such as split and uni@vemnéy
distributed among all available machines during such atjmared
processing as they consume very limited memory and thus tend
not to be the bottleneck in terms of resource consumption.

2To keep the discussion focussed, we assume here that edich par
tioned join operator has all its join conditions defined omsame
domain for each input. This is trivially true for binary opéors
and typically also assumed for m-way continuous join opsaty
the stream literature. Trees of such operators, each veitbwn
join columns, can be naturally supported [15]. Furtheatsgies
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Figure 2. Example of Partitioned Processing

Adaptation without Re-Hashing. To effectively adapt partitions
without ever having to rehash any of the existing partitiansun
time, each split operator divides each input stream into ahmu
larger number of partitions than the number of availablehiras.
We identify each partition by a uniquuartition ID, i.e., 1,2,.. ., n
(with n the number of distinct partitions). For example, wig/inh
work with 500 partitions over 10 machines. Adaptation sush a
spilling or relocating is now done at the granularity of #é&0
partitions. This method has first been applied in the earta da
skew handling literature [7] as well as in the recent panti¢éid
stream processing work Flux [20].

Partition-Group Granularity for Adaptation. \We organize op-
erator states based on input partitions as done in [15].1&ingut
query operators, such as the ones tackled in Flux [20], have t
adapt partitions from one input stream only. However, thétimu
input operators we focus on have in their states partitioos f
different input streams with the same partition ID. Thus|tiple
ways of organizing partitions are possible.

EEE BB

A B C A B C

(a) Select partitions from one (b) Select partitions from al
individual input steam input streams with the same

Figure 3. Composing Partition Groups

As proposed in XJoin [25], we could choose partitions from
one input at a time and adapt them independently (Figurg.3(a)
However, this strategy has two potential drawbacks in fiantd
processing of multi-way join queries. (1) Itincreases thiplex-
ity in the cleanup process. This is because if partitiongHmen
pushed to disk, this requires us to keep track of the timgssaoh
when each of these partitions was pushed, and the timestafmps
each tuple in order to avoid duplicates in the cleanup psodesr
example, tuples from partitiod; have been pushed into disk at
time ¢ during execution. As done in previous work [15], we use
A1 to denote this part of partitiod;. Then all the tuples froni;
andC; with a timestamp greater tharhave to join with theA}
in the cleanup process. Givety, B:, andC, could be pushed
into the disk more than one time, the cleanup needs to be care
fully synchronized with the timestamps of the input tupled ¢he
timestamps of the partitions being pushed. (2) Worse ystaike
relocation were to move partitions from individual inputsdif-
ferent machines, this then would force us to process tuplehat

for handling single n-ary join with different join columnsut be
devised.

partition with across machine joins. For example, if we haanti-
tion A; in machineM;, while partitionsB; andC; are in machine
M-, then a newly incoming tuple that belongsA4e has to access
both machinesd\/; and M to produce the join result. Instead, if
we were to put all three partitiond,, By, andC; in the same
machine, we could access one machine only to produce this joi
result. Thus this would tend to be more efficient.

Accordingly, we group the partitions with the same pantitib
across all input streams of an operator together as theeshahit
to be adapted, as illustrated in Figure 3(b). This avoidekpen-
sive processing of queries across multiple machines. digaksatly
simplifies the cleanup process as discussed above becadthsr ne
timestamps nor other metadata has to be kept at the opergtors
simplicity, we henceforth call all partitions with the sarmparti-
tion ID even when from different inputs onmartition group or
in short, partition if the context is clear. As unlike [15] ere the
focus is on dependencies at the partition level across tperim
a pipeline, here we focus on distributed query processing the
idea of "across-state-partition” even makes more sensekasps
the join local to a machine and thus much cheaper compared to
alternate partition choices. While the techniques progasehis
work are equally applicable to the granularities of panti§ and
partition groups, without loss of generality we henceforih as-
sume the later granularity for simplicity reasons.

Partition Group Productivity Metrics. The usage of partition
groups as adaptation unit helps to simplify statisticsemibn by
reducing it to the granularity of each partition group — camrga
to either full operator-level (too coarse-grained) or &if@vel (too
fine-grained and thus not practical).

Here, we propose a new metric to be employed by the policies
of both adaptation techniques, callgartition group productivity
For each partition group, we record its current size, represl by
Ps;... We also record how many tuples have been generated from
this partition group, denoted b¥,.+p.:. We define thgroductiv-
ity of each partition group aBoutput/ Psize. Given a similar size
Psize, @a smallP,ytput / Psize value indicates that only few output
results have been generated so far.

The productivity value of each partition group reflects the i
put data that has been processed so far. They are updated when
new data gets processed. As commonly assumed in databases fo
lack of any knowledge about the future, we also assume hate th
the values we observed so far would be indicative of the sefd
behavior of the partition groups in the near future. Clealter-
nate ways of computing the productivity value exist. Fomegke,
we can maintain snapshots of historical values and assigrehi
weights to more recent values using an amortized weight-func
tion to compute a tuned partition productivity value, degiag on
the perceived stability of the operator’s behavior. Alagive cost
models could be easily plugged into our system in the futfire i
it turns out to be necessary, as the particular policies woftime
state adaptation are independent of cost model details .
Distributed Software Architecture: Local and Global Adapt a-
tion Controllers. We analyze our run-time adaptation strategies
based on a distributed system with the following architex{&ig-
ure 4): A dedicatedjlobal coordinator(GC) is in charge of a set
of query engine$QE) running on different machines. The global
coordinator distributes the query and connects operatatsare
distributed into different query engines. It collects amélgizes
running statistics of each processor. It also mal@ase-grained
adaptation decisionsuch as how many states to relocate from one
processor to the other but not which partition groups. A geer



gine takes care of executing the portions of the continuagsyg
plans assigned to it. Each query engine reports statisti¢set
global coordinator. Aocal adaptation controllerat each engine
is responsible for choosing partition groups to adapt (tefked
or relocated). It also engages in the protocol to relocagzaipr
states from or to a query engine on another machine.
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Figure 4. System Architecture

In this architecture, the state relocation decision is nipdie
global coordinator based on the collected system statjstibile
the detailed decision of choosing which partitions to sgllbcate
is handled by the local adaptation controller in each premes
discussed in [21], the global coordinator is very scalabig mot
likely to become a bottleneck since it collects only lightight
statistics from the processors. Unlike Flux [20], whichsatl
the adaptation and partitioning functionalities into eaufhivid-
ual Flux query operator, our architecture naturally féaiés tiered
adaptation decision making. Below we exploit this propéstyle-
sign effective adaptation strategies.

3. State Spill Adaptation

The integrated adaptation strategies proposed in this @ape
based on two independent query processing optimizatidmigaes,
namelystate spillandstate relocation Thus, before presenting our
integrated solution, we first study each individual techeign our
targeted cluster environment.

be applied to merge partition groups and produce missingtses
The details of the cleanup process are omitted for spacensas

Within our framework, the state spill process is local to amgu
engine. Here we utilize a throughput-oriented state spiitegy
that aims for a high run-time output rate — though other rogtri
would be possible. That is, we aim to generate as many output
results as possible given part of the memory resident stage®
be pushed into disks (temporarily inactive). As our experits
confirmed, a high overall throughput run-time phase alsoces
the efforts in the cleanup process as more work would have bee
already completed.

To achieve maximal throughput, the state spill policy mst d
cide which partition groups to push when memory overflows: Di
ferent flush policies have been discussed in the literafewe ex-
ample, XJoin [25] flushes the largest partition. Our spilli@o
uses the metrics as defined in Section 2 to rank partitionpgrou
by their productivities and then selects partitions thetless pro-
ductive to be pushed in each spill process. The intuitiohas the
partitions left in main memory are more likely to produce mor
results than the ones that have been pushed into disks.

3.1 Experimental Setup and Environment

Experimental Environment. The system described in Section
2 used in our experiments is deployed on a 10-machine cluster
Each machine in the cluster has dual 2.4Ghz Xeon CPUs with 2G
main memory. These machines are connected via a pgigabit
ethernet. Due to the security settings of the cluster, inesper-
iments we cannot stream data from outside the cluster. Hemvev
this does not impact the validity of the results of our expemts.

We dedicate three machines to run thebal coordinator stream
generator andapplication serverespectively. The stream gen-
erator continuously generates stream input tuples foriggi¢o
process, while the application server processes the orgpults.
Other machines are deployed as processors as necessalng for t
given experiment.

Data Characteristics of Long-running Queries. Similar to [7,
22,23, 25], we use synthesized data in our experiments tblbe a
to control various factors of the input streams. We dgfiiremul-
tiplicative factoras the average number of tuples with the same

State spill refers to the process of pushing memory residentiCin value per stream for a given time period. This join multi

states into disks temporarily when memory overflow happ&ngen

plicative factor is closely related to the number of joinulés For

a monotonic increase of memory usage during run-time, these®x@mple, we assume each input stream of a three-way join has 5

spilled states will be kept in disk (inactive) until the memover-
flow has been addressed. State spill thus requires a selgartip

tuples with a join column valué after processin@000 tuples.
Thus, a total ob x 5 x 5 = 125 tuples will be generated with

disk phaseduring which disk resident states need to be brought @ join column value oft. Clearly, after processing anoth00

back to memory for further processing - so that missing tesue
produced while preventing duplicates. Thigte cleanup process

tuples, each stream would have seen 10 such tuples withgdie v
1 in total. Thus, the total output generated at that point edd

can be performed at any time when memory becomes available.10 > 10 x 10 = 1000. As we intuitively see, the output rates (as

Note that multiple partition groups may exist given one itiart

well as states of stateful operators) monotonically ineeeduring

ID. This is because once a partition group has been pushed int SUch long-running execution. That is, the join multiplicatfac-

disk, new tuples with the same partition ID may continue touac

tor increases as more input tuples get processed. We thure defi

mulate to form a new partition group in main memory. If needed the termjoin multiplicative factor increase ratg-), or simplyjoin

this partition group could be pushed into disk again.

rate, to describe that the join multiplicative factor increasedter

The tasks that need to be performed in the cleanup can be deProcessing every tuples. Herek is referred asuple rangeof

scribed as follows: (1) Organize the disk resident panitiooups
based on their partition ID. (2) Merge partition groups witle
same partition ID and generate missing results. (3) If a mma&m-
ory resident partition group with the same ID exists, themgae

this memory resident part with all disk resident ones. Weehav

observed that incremental view maintenance algorithmpdag

the input stream. The join rate of partitions can also be ddfin
similarly. Note that given a uniform distribution of join kees, the
join rate of each partition is the same as the join rate of thelev
input stream. This no longer holds for non-uniform disttibos.

3.2 State Spill Evaluation



We first investigate the sensitivity of how much state is to be
pushed in each spill process (Figures 5 and 6). We run the-thre
way join query, described in Section 3.1, on one single nmechi
The input rate is set to 30 ms per input stream. The tuple rafge
each input is set to 30K. The join rate is set to 3. The staté spi
is triggered whenever the memory usage of the machine is over
200MB. A k%-push means that k% of the main memory states
are chosen to be pushed to disk. We varjrom 10 to 100 in
this experiment. We randomly choose partition groups from t
operator state for this experiment since we investigatentipact
of which amount of state is to be pushed in each adaptatiom As
comparison, we also provide the throughput of the query when
is fully processed in main memory (labeled as 'All-Mem’).

Seen from Figure 5, the more states are being pushed into the

disk each time, the smaller the overall throughput. Thissigx
pected since the states being pushed are no longer active.
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Figure 7. Throughput-Oriented Spill Evaluation

2, while the rest have a join rate of 1. The ‘push-less-prbodeic
corresponds to the case of pushing partition groups witlsrines|-
estPoutput/ Psize Value first. The ‘push-more-productive’ denotes
the pushing of partition groups with the largeRt.put/ Psize
value first. Seen from Figure 7, the push-less-productivat-st
egy has a much higher run-time throughput. This is becaase le
ing partition groups with high productivity in main memory i
more likely to generate more output results as input tuptesec
through. In Figure 7 we find that after 40 minutes of query exe-
cution, the push-less-productive partitions strategjopers about
70% better in terms of output rate. Our experiments also gonfi
that this policy helps to reduce the cleanup efforts as mank w
has been accomplished before the cleanup starts. In thes abov
experiment, the push-less-productive strategy 26e879 ms to
generatd 94, 308 tuples during the cleanup, while the push-more-
productive one generat692, 893 tuples in around59, 396 ms.

4. State Relocation Adaptation

Uneven workload may arise among machines in a distributed
environment. Thus, while one machine runs out of memory, an-
other machine may still have ample memory at its disposal for
holding additional states. Unlike state spill, having @er states
stay in main memory (even at an alternate machine in theerjust
would positively affect the overall query processing. Thetsite
relocation, which moves operator states across machirasstiman
become a preferred choice to maximally utilize all resosirce

State relocation requires knowledge from multiple machioe

Figure 6 shows the corresponding memory usage changes. Wenake an adaptation decision. In our system we have a global co

can see that the main memory utilization can be effectivelyc
trolled to avoid system crash due to memory overflow. We ago s
that the more states (a higher percentage) we push in eaptaada
tion, the fewer times we need to trigger the state-spill ssc In
Figure 6, each zag in the line represents one adaptatioegsoc
Without loss of generality, we observe that some internedia
value of push volumes in the range of 10% to 50% is most fa-
vorable given our experimental environment. It balancestiain

ordinator (GC), which monitors the performance of all query-
cessing engines (QE). Thus it has global knowledge of theative
system performance. In the distributed system used in querex
iments, the global controller coordinates the executiothefdif-
ferent query optimization strategies, and is thus resjpiagor

the state relocation process. Various schemes of relocatimng

a set of machines have been studied in the literature. Here we
proceed with a simple model, namely a pair-wised state aeloc

memory usage (number of adaptations) and the impact on over-tion scheme. Other models could fairly easy be incorporeteed

all throughput. In subsequent experiments, when we wanblt h
characteristics in our experimental runs steady to allote fiscus

on the effect of particular parameters, we choose such alenidd
range value, say 30% as default, unless otherwise stated.

Next, we study the effectiveness of productivity as metoic f
deciding which partition groups to push to disk. Figure 7veho
the impact of choosing different partition groups on theraite
run-time throughput. Here, the input stream has 1/3 of thé-pa
tions with an average join rate of 4, 1/3 with an average jata of

our framework. We refer to the machine with the maximallyduse
memory (M..) as thesender and to the machine with the least
memory used {/;..s:) as thereceiver In each adaptation, the
global coordinator moveMmaz — Mieast)/2 amount of states
from the sender to the receiver if itis observed thAt, st / Mmax
reaches a threshol}., i.e., Micast/Mmaz < 0r. Thus, ideally,
both machines will have abolf;ax + Micast)/2 Memory us-
age after the adaptation. Note that the actual partitionggdo be
moved are decided by the local adaptation controller of the m



chine with the most used memory. Given such tiered decision partitions assigned to machine 1 get 10 times more tuples tha

architecture, the global coordinator only requires toexlivery those of machine 2 for the first five minutes. After that, maet#t
light-weight running statistics, such as main memory usaddes gets 10 times more tuples than machine 1 for the next 10 ninute
helps to increase the scalability of the global coordinatars re- and so on. Thus the main memory usage of these two machines al-
ducing the possibility of it becoming a bottleneck in the iyyaro- ternates dramatically every 10 minutes. Given this sehgstate
cessing. Previous work [21] has proven the cost of commtinita  relocation may keep on moving states constantly back arnt for
in the context of our fast network to be very low. among two machines, i.e., the danger of thrashing by wasttimey

on moving states may arise. We now study the stability of our
4.1 Moving States Across Machines method in such a dynamic situation.

No operator states should be missing or corrupted in the re-  Figure 9 shows the impact of choosing the thresttgldvith
location process. To achieve that, we design an 8-stepquioto  m being set to 45 seconds. We vatyfrom 50% to 90%. A high
to coordinate the run-time operator state movement. Theaive Percentage indicates that a larger number of adaptatiotrigis
interactions between the global coordinator (GC) and eadh i  9ered with each adaptation only moving a small amount oéstat
vidual query engine (QE) (for those query engines involvethe Seen from Figure 9, the throughput when choosing diffefiens
adaptation process) are described by the sequence diajmam i almost the same. All of them experience throughput simdanat

trated in Figure 8. During state relocation, the global damator of pure main memory processing with no adaptations (All-fem
controls the overall adaptation process, while the locapgation ~ In Figure 9, a total of 24 relocations have been conductecwhe
controller in each query engine is responsible for receivirov- is set to 90%, while only 2 adaptations whnequals 50%.

ing requests from the global coordinator and performingesor
4000000

sponding actions. The state relocation process is triggeyehe — Ao 4
global coordinator whenever an overloaded query enginesis d 8500000 77—+ Threshold 90% /
tected. Note that since a split operator in charge of retiirgc 3000000 [y eSS0 7
incoming tuples to the correct instances of the partitiostateful + 2500000 —— — Threshold 60%
operators sits in front of each partitioned operator, gilds, be- £ 2000000 { oS
longing to the partition groups affected by the current &alim £ 1500000 {
process, which arrive during a state relocation processesne 1000000
porarily buffered at the query engine on which the corredpun 500000 Mﬁ”
split operator sits. Later when the adaptation processes alW o
buffered tuples are redirected to the stateful operatasdan the 1 4 7 10131619 22 25 28 31 34 37 40 43 46 49 52 55 58
new partition group mapping. Due to space limits more dedail Minues
discussion of state relocation protocols is omitted. Figure 9. Varying Thres. 0.
CDGO%??M M Serdel| Spit Operatod Reoeive*‘ Figure 9 apd other experiments we have qonducted regarding
‘ ; the minimal time-span between two consecutive relocatimms
] ComputePartiionsToMy~ firm that the cost of our pair-wised state relocation is lowHa
PartitionsTolMove context of our test environment, a modern small-range etust
iﬁiﬁ?ﬁ:& | Deccivepartions machines. Thus we conclude that potentially we could perfor
be moved [ such state relocations frequently without impacting theral per-
_ i ﬂ formance. The state relocation cost is expected to be hiftier
N P < e SendPartions 7 i underlying network is slow and unreliable.
ety ] Rece' Pertiore } Figure 10 shows the change of memory usage Witk 90%
Received | andr,, = 45 seconds. The ‘no-relocation-M1’ and ‘no-relocation-
[ Restore the mpins ReactvatePartiiops D M2’ show the memory usage respectively of machiiésandM >
topartons st : without state relocations. As can be seen, the memory cqmsum

L tion alternatively changes due to our input data patternithw
Figure 8. State Relocation Protocols Diagram relocation-M1’ and ‘with-relocation-M2’ indicate the memy us-
age after the state relocations. We can see that the main memo
. . usage remains largely balanced due to the relocation. Agply
4.2 Evaluation of State Relocation state relocation maximizes the opportunity for full membaged
We study the following two parameters in evaluating theestat processing. It thus has the potential to result in a higherail/
relocation: (1) threshold,. , and (2) minimal time-span between throughput since the cost of state relocation is not experes
two consecutive relocations,,. The global coordinator triggers  shown by Figure 9.
state relocation if and only if whejcqst / Mmar < 6 and the Figure 11 illustrates the benefits of state relocation. Tiery
time elapsed since the last relocation is greater than is run over three machines. We change the initial distrisuti
Figure 9 explores the threshold-related aspect of the afpoes- of partitions to make one machine process 60% of all panttio
tions. The query as described in Section 3.1 is run in two ma- while the other two have 20% of partitions respectively. \&&)s
chines. Each machine processes about half of all partitidhs = 80% andr,, = 45 seconds. In this setup, state spill is triggered
maximal memory of each machine is set large enough to have thewhen the main memory usage of the machine is over 200MB.
query completely run in main memory. We use a worst case sit-  Seen from Figure 11, the throughput of the ‘no-relocati@se
uation in terms of input stream fluctuations having each mgch  drops after running for 40 minutes. This is because main nmgmo
alternatively change its demand of main memory. For example of the machine having 60% of the partitions overflows andstar
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Figure 11. Relocation vs. Spill

pushing states into disks. On the other hand, the ‘witheagion’
adapts these states to other machines having all stateskapin
memory. Thus, it generates output continuously at a maxiatal
in the run-time phase instead of waiting until the clean agst

5. Integrating State Spill and Relocation Adap-

tations

When aggregated memory of all machines is not sufficient for
the query processing, state spills cannot be avoided argefon
simply by relocating states across machines. This is becsarse
machines or even all machines may suffer from memory overflow
In this section, we thus propose two solutions to combinda bot
state spill and relocation into integrated strategies diatemaxi-
mizing run-time throughput in such memory-constrainedremnv
ments. Each strategy description is accompanied by pseddoc
for more clarity. Variables used in the integrated stras'galgo-
rithms are explained in Tables 1 and 2.

5.1 Lazy-Disk Control Strategy

In the lazy-disk strategy, state spill is postponed ungiréhis
no main memory in the cluster that can hold the states from-ove
loaded machines. That is, when the global coordinator ebser
that Mjcost/ Mmaz < 6r, the state relocation adaptation is cho-

Variable name Description

ss marks state spill mode or events

SI marks state relocation mode or events

threshold™ tunable thresholds determining when states are to be

threshold™ <™ relocated among QEs or spilled at a potentially locally

threshol@”°¢ overloaded QE

maxproduct estimated maximum QE productivity per time period

min_product estimated minimum QE productivity per time period

sr_timer determines the frequency of statistics evaluation seattioet
GC by all QEs. The statistics are used to handle uneven load
distribution situations

s_timer determines how often memory at a QE is measured to dgtect
and prevent memory overflow problems by triggering a logal
state spilling process

Ib_timer load balancing timer determining how often the GC sholild
evaluate the statistics sent to it by the QEs. T'

Table 1. Variables for Lazy- and Active-Disk
Strategies

QE Modes of Operation
State-relocation mode (snode)

Description

Indicates that GC has triggered the sta
relocation protocol which is carried out by thi
GC and all affected QEs.

Indicates that a QE is in the process
spilling states to disk to free memory. It i
triggered in different ways based on the se-
lected adaptation strategy.
Normal query plan execution. No menj-
ory overflow problems detected, and thus po
adaptation is currently attempted.

D ®
b

State-spill mode (smode)

Normal mode (normaimode)

Table 2. Execution Modes of a Query Engine

ory usage. We push the less productive partitions (with kmal
Poutput/ Psize values) to disk in the state spill process, while we
choose the productive partitions (with lar§g.+put / Psize Values)

to move in the state relocation adaptation. With produgpigsi-
tions likely to be kept in main memory, this strategy aims to-p
duce high throughput in the run-time phase. This strategjgde

is driven by our experimental observations in Section 3ainely,

to keep as many states as possible in main memory.

5.2 Evaluation of Lazy-Disk Control

Similar to the experiment shown in Figure 11, a lazy-diskmada
tation approach has the potential to fully utilize all ashie main
memory in the cluster. Figure 12 shows the performance of the
lazy-disk approach in a memory constrained environmente Th
query, refer to Section 3.1, is deployed on three machinesséy/

a skewed initial distribution with one machine being assy@/3
of all partitions, while other two machines share evenlyrést 1/3
of partitions. In this setup, if we do not apply state relamatthen
only one machine gets overloaded. We call this ‘no-relocati
approach. Using the lazy-disk approach, all three machirikks
eventually get overloaded due to giving priority to statice-
tion. Only once the memory across all machines is exhausiéd w
this strategy trigger the state spill processes. Seen friguré
12, the lazy-disk approach has a higher overall throughipan t
the ‘no-relocation’ since the lazy-disk approach makekufsg of
available main memory in the cluster during the query preioes

sen. This aims to have as many states as possible kept in main  Even if the query workload is extremely heavy, i.e., each ma-

memory. While the local adaptation controller observes tha
memory usage of the machine is going to overflow, it then &igg
the state spill on that particular machine. Algorithm 1 dibss

chine in the cluster does not have sufficient memory to psottes
partitions assigned to them, a lazy-disk approach still berse-
fits. To illustrate, we again deploy the query into three niraeh

the sequence of steps performed by the GC and all QEs affectecand have one machine get more partitions than the othersufive r

by our first proposed solution, calléakzy-diskapproach.

the query for 6 hours, so that each machine has a large ambunt o

The lazy disk approach focuses on the main memory usage,states beyond the available main memory. We again compare th

that is, both types of adaptations are purely driven by mamm

performance of lazy-disk and no-relocation. In this expeunt,



Algorithm 1 Lazy-Disk Strategy
EVENTS AT GC

1: sr_timer_expired:

2: sr_timer.reset()

3 process_stats()

4: calculate_cluster_load()

5: mazx_load := get max load among all query engin€gk;)

6: min_-load := get min load among all query engineg3 ;)

7. if min_load/maxload < threshold®" then

8: QE_receiver:getQ E(min_load)

9: QE_sender:getQE(max_load)

10: relocateamount:zompute Amount(mazx_-load, min_load)

11: trigger start_sr(relocate_.amount) event at GC
EVENTS AT QE

12: epto:

13: if mode = normal_mode then

14: mode := sr_mode

15: parts-move.list = computePartsToMove(parts_-to-move)

16: cptverigy = true

17: trigger ptv(parts_to-move) event at GC

18: else(must be in state spill mode)

19: wait until mode # ss_mode

20: mode := sr_mode

21: parts_to-move = computePartsToMove(relocate_amount)

22: cptv_trig.r := true

23: trigger ptv(parts_to_move) event at GC

24: ss_timer_expired:

25: ss-timer.reset()

26: if QE_-memory > threshold™°™ then

27: if mode = normal_-mode then

28: mode := ss_mode

29: spill.amount = computeSpill Amount()

30: stateSpill(spill_.amount)

31: mode = normal_mode

32: else(don’t spill now, wait until next timer expires)
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Figure 12. Lazy-Disk vs. No Relocation
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the overall results generated by the two approaches artasiasi
they have similar amount of states being pushed to disk. Mexyve
the clean up stage of these two approaches are dramatidally d
ferent. The no-relocation approach takes more than 16Qthdsc
to produce 2,023,781 tuples in the clean up stage. This &usec
most work is done by one machine. While the lazy-disk apgroac
only takes less than 400 seconds to clean up, since worleahbir
evenly distributed among all three machines before cleatants.

5.3 Active-Disk Control Strategy

State spill in the lazy-disk approach idacal decision This

state spill decision to the global coordinator at a globaléé we
could instead spill the globally least productive partiscamong
all machines. This should free more aggregated main memory
space across the cluster for the globally most productivitipas.
Corresponding to this idea, we now design #utive-diskap-
proach which actively controls state spill adaptation$atglobal
(instead of at the local) level. The global coordinator nhaonsi
both the main memory usage and the average productivity cdte
machines in the cluster. Here, thgerage productivity rat¢R)
of one machine is defined as the total number of tuples that hav
been generated by this machine during the sampling timdetivi
by the number of partition groups in the machine. Algorithae2
scribes the pseudocode for the distributed protocol ttkastplace
at the global coordinator and the query engines during aweact
disk adaptation process.

Algorithm 2 Active-Disk Strategy
EVENTS AT GC

1: ib_timer_expired:

lb_timer.reset()

3. process_stats()

4:  calculate_cluster_load()

5.  max_load := get max load among all query engine€3E;)
6: min_load := get min load among all query engine@ ;)
7:  if min_load/maxload < threshold®" then

8. QEreceivergetQE(min_load)

9 QE_sender:getQE(max_load)

relocateamount:zompute Amount(max_-load, min_load)

11: trigger start_sr(relocate_.amount) event at GC
12:  else
13: maz_product := get max productivity among all query engin€3 ;)
14: min_product := get min productivity among all query engineg ;)
15: if max_productivity / min_product > thresholdP™°?
16: QE-sender:getQE (min_product)
17: spill_amount:=computeAmountToSpill();
18: trigger start_ss(spill_.amount) event at QEsender

EVENTS AT QE
19: cptu:
20: mod := sr_mode
21: parts_move_list := computePartsToMove(parts_to-move)
22: cptutrigor = true
23: triggerptv(parts_to_move) event at GC
24 start_ss:
25. mode := sr-mode
26:  stateSpill(spill_.amount)

27 mode := normal_mode

As in the lazy-disk approach, #/;c. st / Mmaz < 0» We run out
of local main memory, then the state relocation is triggergain
aiming to have all data in memory whenever possible. However
if Micast/Mmaz > 0r, then we compare the average productiv-
ity rate of each machine. If one machine has a much lower aver-
age productivity rate, for exampl&® ez /Rmin > A, We force
the partitions of the lower average productivity rate maehb be
pushed into disks. This would leave main memory space for the
highly productive partitions in other machines to be retedanto
these machines. This would help the overall performanceesin
high productive partitions remain in main memory. The glaima
ordinator does not select the globally least productiveitpars
to be pushed to disk as this would require the collection ofemo

means the decision is made by the query processor as the gnemorstatistics, increasing network costs and reducing sdaiabi

overflow happens at a local machine. However, the prodiytivi

However, pushing more states than necessary could be coun-

of partitions among machines might not be the same. For exam-terproductive, resulting in a decrease of the overall perémce

ple, the least productive partition in one machine, the ichatd to

as well. In the active-disk strategy, we set the maximal arhou

be pushed to disk there, may still be much more productive tha of states being pushed by the global coordinator to be less th

many other partitions in another machine. Thifisye raise the

Mauery — Meruster, WhereMg,ery denotes the estimation of the



overall memory consumption for the query, whité.;,, sz is the
overall available memory of the cluster. This aims to assoae
data that fits into memory is left there.

5.4 Evaluation of Active-Disk Control

We postulate that the active-disk approach could further im
prove run-time query throughput if the global coordinatoserves
major differences of productivity among machines. Figidstiows
one comparison of lazy- versus active-disk approach. B eRi

We set partitions assigned to machime (with a join rate 4) to
have a small tuple range (15K), while set the partitionsgeesi
to the other two machines (with a join rate 1) to have a largéetu
range (45K). This setup further differentiates the aveageuc-
tivity values of machines. Having a smaller tuple rangedatés a
larger join factor value given the same number of input tsif&ee
Section 3.1). It thus further increases the number of outgples.
As expected, the active-disk approach has a major througimsu
provement compared with that of the lazy-disk approach fsge

periment, we set the tuple range of the input stream to 30K. We ure 14). In these experiments skewed data was used.

set the partitions assigned to maching to have a high average
join rate of 4, while partitions in the other two machines éav
low average join rate of 1. The lazy-disk approach does ngtht
the global coordinator level if the memory usage among theeth
machines is running out roughly equally at all machines. I&hi
the active-disk approach forces lower productive partgito be
pushed into disks since the average productivity of partgiin
machinem; is much larger than that of the other two, but only if

extra memory is needed. Note that in both approaches, each ma

chine triggers the state spill process as its memory usagphes
its threshold (60 MB). Here, the state relocation threséplid set
to 0.8, while the minimal time span of two relocations is set
to 45 seconds. The productivity threshdldhat triggers a ‘force
state spill adaptation’ is set to 2.

—&— Lazy-Disk
1 —=— Active-Disk

2000000 -

3000000

2500000

1500000 -

Throughput

1000000 ~

500000

0 L L R
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57
Minutes

Figure 13. Lazy-Disk vs. Active-Disk, 1

However, as we discussed earlier, we need to control the tota
amount of states being pushed by the global coordinators iEhi
because too many pushes, more pushes beyond what is ngcessar
could decrease the performance. In general, in our framewer
do set some maximum amount of states to be pushed. In the case
of our experiments we had utilized 100 MB.

6. Related Work

Continuous query processing [1,4,5,16] is closely relaterk
in that it applies a push-based non-blocking processingetasl
variety of techniques have been investigated to addressctie
ability concerns of continuous query processing, inclgdioad
shedding [23], operator-state purging [8] and adaptiveduling
and processing [16]. In this work, we instead focus on adgpti
operator states to handle the memory shortage problem.

State spill has also been investigated in a central envieoihm
The focus of [22] is on the evaluation of different flushingpse-
gies for a partitioned hash-join operator. Both XJoin [26Ha
Hash-Merge Join [17] essentially incorporate data managém
into their respective join algorithms. They adapt memorsi-re
dent states from individual input streams to disks when nrgmo
overflow happens. As discussed in Section 3, this strategg do
not work well for multi-input operators, especially in a fiéoned
parallel processing environment. Moreover, these stiedegre
designed to work in a central environment. In a distributed e
vironment where both state spill and state relocation acesie
sary, new challenges arise, such as how to integrate bofitaada
tion methods into one strategy. Our recent work [15] on stpii¢
only, also in central context, instead focuses on the ief@edden-

Seen from Figure 13, the active disk strategy experiences acies of a query plan composed of a pipeline of stateful opesat

slight drop in the throughput after it starts pushing piantis into
disks. Gradually, however, it outperforms the lazy-dislatsgy
since more high productive partitions remain in main memory
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Figure 14. Lazy-Disk vs. Active-Disk, 2

As the difference of average productivity of different minets
increases, then the active-disk approach can further wepiioe
run-time query throughput compared to the lazy-disk apgroa

Distributed continuous query processing over a sharednmth
architectures has recently received attention [1, 20]. xistiag
systems such as Aurora* and Borealis [27], and also in owr pri
work [21], operators are assumed to be small enough to fit com-
pletely within one single machine. Thus, the adaptationuichs
systems [27] focuses on balancing the load by moving complet
query operators across machines. The basic unit to be aimpte
these systems is at the granularity of a complete operathileW
in this work, we instead investigate methods of adaptaticthex
granularity of operator state partitions.

Flux [20] is among the first to discuss partitioned paralte-p
cessing and its adaptations in the continuous query contixt
makes use of the exchange architecture proposed by Vold&ho [
by inserting split operators into the query plan to achieagip
tioned processing for stateful query operators, focussingjngle-
input aggregate operators. [20] does not explicitly disaeordi-
nation techniques between state spilling and state regitotas
we do in our work. Moreover, Flux focuses on single input guer
operators. Issues for complex stateful operators likeiruilts,
such as how to organize states from different input steam h
not been addressed. As discussed in Section 5.2, our prbpose



active-disk solution makes proactive state spill decisianross [8] L. Ding, N. Mehta, E. Rundensteiner, and G. Heineman.

multiple machines. This helps to improve the overall rumeti Joining punctuated streams.BDBT, pages 587-604, 2004.
throughput, as our experiments confirm. Unlike [20] basesion [9] S. Ganguly, W. Hasan, and R. Krishnamurthy. Query
ulation only and short 60-second experiments, our work seda optimization for parallel execution. IACM SIGMODQ
on one-hour experiments conducted on a real software system pages 9-18. ACM Press, 1992,

Distributed Eddies [24] addresses run-time optimizatioquery  [10] G. Graefe. Encapsulation of parallelism in the volcano
plans in a distributed environment. However, [24] use a com- query processing system. ACM SIGMOD pages
pletely different tuple-level optimization approach bytiag in- 102-111, 1990.
dividual tuples through the different operators in differerders. [11] J. Kang, J. F. Naughton, and S. Viglas. Evaluating windo
They address neither partition-level state spilling nortifian- joins over unbounded streams.IBDE, pages 341-352,
level relocation of operators’ states to different machine 2003,

Parallel and distributed query processing has been theficu 151 b Kossmann. The state of the art in distributed query
both academia and industry for a long time [3,9, 12]. Pariid processingACM Computing Surveys (CSUR)
parallel processing for complex operators such as joinsalss 32(4):422-469, 2000.
been studied both by others [6, 19] as well as by our prior work [13] W. J. Labio, R 'Yerneni and H. Garcia-Molina. Shrini
[14]. Correspondingly, data skew handling techniques @jeh thé vlvareho,usel updatea WindoWAﬁM SIGMOb pages
been proposed. All these provide general background fowtnk 383-395. June 1999 ’
presented in this paper. However, they are typically sthidieder [14] B. Liu an,d EA Rundensteiner Revisiting parallel
a traditional processing model assuming static queriesiquén ’ lti-ioi o ) - .h hi ‘l?tFIZ))B
properties such as push-based processing (requires aokitig Muti-join query processing via hashing. » PAges
processing), little statistics about input streams atydefinition [15] gzii_fﬂ'\?’zzﬁfznd E. A. Rundensteiner. Run-time operat

time (requires adaptation at run time) and long running @nev e ) ) i
infinite streams (high demand on system resources) diffieten state spilling for memory intensive long-running queries.
SIGMOD, pages 347-358, 2006.

this work from traditional distributed processing. )
. [16] S. Madden, M. Shah, J. M. Hellerstein, and V. Raman.
7. Conclusion Continuously adaptive continuous queries over streams. In

In this work, we have studied the mechanisms and policies of ACM SIGMOD pages 49-60, 2002. o
state level adaptations that aim to overcome the run-timm ma [17] M. Mokbel, M. Lu, and W. Aref. Hash-merge join: A

memory shortage problem for long-running non-blockingrigse non-blocking join algorithm for producing fast and early

in a distributed environment. We have proposed two strasdat join results. INCDE, page 251, 2004.

integrate disk-based (state spill) and distributed (steitcation) [18] D. A. Schneider and D. J. DeWitt. A performance
adaptation techniques in main memory constrained envieomsn evaluation of four parallel join algorithms in a

Note that such integration has not been carefully studiddeit- shared-nothing multiprocessor environmentAlbM

erature, yet it is necessary in modern cluster environmgintse SIGMOD pages 110-121, 1989.

the main memory of even a distributed system remains limited [19] D. A. Schneider and D. J. DeWitt. Tradeoffs in procegsin
Extensive experiments have been conducted with a workiftg so complex join queries via hashing in multiprocessor databas
ware system installed on a modern PC-compute cluster canirm machines. IN/LDB, pages 469-480, 1990.

the effectiveness of our proposed strategies. [20] M. A. Shah, J. M. Hellerstein, and et. al. Flux: An adagti

partitioning operator for continuous query systmes. In
ICDE, pages 25-36, 2003.
[21] T. Sutherland, B. Liu, M. Jbantova, and E. Rundensteine
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