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Abstract

Main memory is a critical resource when processing non-blocking
queries with state intensive operators that require real-time re-
sponses. While partitioned parallel processing can alleviate the
stringent memory demands in some cases, in general even in a dis-
tributed system main memory remains bounded. In this work, we
thus investigate the integration of two run-time adaptation tech-
niques, namely, state spill to disk and state relocation to an alter-
nate machine, to handle this memory shortage problem. We an-
alyze the tradeoffs regarding key factors affecting these two run-
time operator state adaptation techniques in a modern compute-
cluster environment. Two strategies, lazy-disk and active-disk, are
then proposed that integrate both state spill and state relocation
adaptations with different emphasis on local versus globaldeci-
sion making. Extensive experiments of the proposed query pro-
cessing system conducted on a compute-cluster (not merely asim-
ulation) confirm the effectiveness of these strategies.

1. Introduction
Characteristics of Non-Blocking Pipelined Queries.Non-blocking
query processing with data being pushed asynchronously from
various data sources into the system and producing query results
in real time as data comes through has become the focus of recent
research. Efficient processing of such non-blocking queries is the
key to the success of many applications including remote sensor
monitoring and online transaction processing [2,4].

Current research of non-blocking query processing often as-
sumes that query operators have fairly small-sized operator states,
e.g., small-window joins or even stateless operators such as select
and project [2, 4,11]. Query operators with potentially huge oper-
ator states, such as multi-joins, have not yet been carefully stud-
ied in this context. However, such operators are common in data
integration and data warehousing environments. For instance, a
real-time data integration system such as the emerging electronic
brokerage systems could help financial analysts and brokersin
making timely decisions regarding foreign and domestic ventures.
Here, stock prices, volumes, exchange rates, ask and bid offers
and external reviews are continuously sent to the integration server
during working hours, say 9AM-4PM. The server is required to
integrate these input streams and output the results to various de-
cision support systems as well as other integrated applications as
shown in Figure 1. This way, analysts and brokers make decisions
in real time based on the most up-to-date information.

Such financial data integration systems often have to connect
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Figure 1. A Real-time Data Integration System

streams from numerous market participants which may include
hundreds of banks, international corporations and other financial
institutions, matching order information based on market partici-
pants’ ids and financial instrument types. Thus such systemsmust
effectively handle multi-join integration queries. Moreover, the
larger the number of different types of information streamssuch a
system integrates, the more competitive the system often becomes,
since it can serve the needs of its users better.

Let us assume a financial data integration system built to meet
the needs of a financial consultant to a big corporation whichhas
many international ventures requiring often payments in foreign
currency. Since exchange rates of currencies fluctuate often based
on how a country’s economy is doing, such a corporation may need
to reduce the transaction exposure of its international ventures by
deciding whether to participate in the futures market and hedge the
exchange rate at which it will have to buy the currency it needs for
a future payment earlier or to wait until the payment is due and buy
the currency at the then-spot rates. To advise such a corporation
a financial consultant might want to know current exchange rates
for the currency under question from different banks and possibly
to read reports on the country’s economy. The financial consul-
tant might also be interested in finding out which brokers sell the
currency at the lowest price. An example of a multi-join query
answering one of the above mentioned inquiries is:

QUERY 1:
SELECT brokerName, min(price)
FROM bank1,bank2,bank3

WHERE bank1.offerCurrency=bank2.offerCurrency
AND bank2.offerCurrency=bank3.offerCurrency
AND bank1.offer=bank2.offer
AND bank2.offer=bank3.offer AND
bank1.timestamp$>=$bank2.timestamp+window
AND bank1.timestamp>=bank3.timestamp+window

GROUP BY brokerName

In the above example assume the data integration server is con-
nected to the networks of other banks and a company that is con-
stantly providing financial reports on countries’ economies and



currency rates in the form of continuous streams. The stringent
requirement of generating near real-time results demands efficient
main memory based query processing. This is particularly critical
for data integration type queries that are state intensive in nature
such as the multi-join integration queries mentioned above. In this
work, we thus focus on adapting operator states to address this
run-time memory shortage for queries with state intensive opera-
tors, such as multi-join queries [26]. These queries are common in
data integration related applications as shown in Figure 1.As we
need accurate query results and thus cannot afford to lose financial
data, we cannot resort to techniques such as load shedding orap-
proximations [23]. As motivated in Figure 1, we assume the query
is long running but finite. However, the techniques we study in
this work could also be applied to cases with infinite data streams
as long as operators have finite window sizes, a common situation
in continuous query processing environments.
State-Level Adaptations. One solution to address the memory
shortage, as discussed in XJoin [25], Hash-Merge Join [17],and
[15], is to temporarily push memory resident states into disks.
This approach delays the processing of certain states (the disk
resident states) until a later time when more resources would be
available. The processing of the disk resident states is referred as
state cleanup. Cleanup generates any missed results. We refer to
this pushing and cleaning process asstate spilladaptation. Given
a monotonic increase of the operator states during the run-time
phase due to long-running queries and requiring full and accu-
rate final results, there may be no opportunity to perform thestate
cleanup during the run-time phase. Thus, these disk resident states
would typically be processed after the run-time phase finishes1.

An alternate solution is to distribute state intensive operators
to multiple machines with each machine processing a partition of
the input data. This is referred to aspartitioned parallel process-
ing [10, 14, 18, 20]. Then, we would move state partitions across
machines when only a subset of machines is overloaded while oth-
ers may exhibit available memory resources. For simplicity, we
call this type of adaptationstate relocation. As advantage, the
adapted states remain in main memory and thus active once the
relocation is completed. However, this type of adaptation will not
always solve the overall memory shortage problem since eventhe
aggregated main memory of multiple machines remains limited.
Contributions. While previous work studied the state relocation
and state spill adaptations separately [17, 20, 25], we now investi-
gate both state level adaptations in an integrated manner. Clearly,
such a comprehensive solution is needed since state spill may not
be efficient due to the access of slow secondary storage, while state
relocation alone often cannot fully resolve the memory shortage
problem. We analyze the tradeoffs regarding the factors to be con-
sidered when adapting states ofmulti-inputoperators using either
of these two techniques in a practical cluster environment.

The main contributions of this work are:

• A comprehensive integrated solution is designed to maxi-
mize the run-time query throughput in environments where
the memory of the distributed system is not sufficient for the
query processing. In particular, we propose two integration
strategies, namely,lazy-diskandactive-disk, to apply both
spill and relocation adaptations.

• The integration of these two techniques requires 1) a proto-

1We assume applications here for which out-of-order delivery of
output tuples is acceptable.

col to coordinate decision making at both local and global
control agents, and 2) an assessment of the tradeoffs to know
when to favor one technique over the other. A new partition
group level productivity metric is designed to select the best
partitions to be used by either adaptation process.

• The integrated adaptation strategies have been implemented
in the framework of a distributed software architecture with
a coordinator as a global adaptation controller agent in charge
of monitoring and coordinating the work of each query pro-
cessor and its local adaptation controller.

• Extensive experimental evaluation to compare these proposed
strategies in the new context of continuous data stream pro-
cessing has been conducted on a modern PC-compute clus-
ter – that is, the observations are not just derived based on
simulation-based studies. The experimental results confirm
the effectiveness of the proposed strategies.

The rest of the paper is organized as follows. Section 2 overviews
the basics of our approach. Sections 3 and 4 analyze the statespill
and relocation solutions, respectively. Section 5 presents the inte-
grated adaptation strategies, along with their experimental evalua-
tion. Sections 6 and 7 discuss related work and conclusion.

2. Basics of Our Approach
Partitioning State Intensive Operators. We review partitioned
processing for multi-input state intensive operators. Throughout
this work, we use a symmetric multiple-way hash join operator
[26] as a representative example of state intensive operators due to
joins being one of the most common class of queries. Other state
intensive operators can also be addressed in a similar manner as
long as their functionality can be distributed to multiple machines
with each machine only processing non-overlapping partitions. As
discussed in [10, 20], asplit operator is inserted in front of each
input stream of such a partitioned operator. This split operator
partitions an input stream and sends the appropriate partitions to
each machine that houses an instance of this partitioned operator.
For simplicity, we will henceforth refer to each instantiation of the
operator that runs in a particular machine as aninstanceof the
partitioned operator.

For example, assume we process a three-way join query (A ⊲⊳
B ⊲⊳ C) as shown in Figure 2 (a). The join is defined as A.A1 =
B.B1 = C.C1 where A, B, and C denote the three input streams and
A1, B1, andC1 are the join columns. As shown in Figure 2(b),
the query is partitioned and run on two machines. TheSplitA op-
erator partitions the input stream A based on the columnA1, while
theSplitB operator partitions the input stream B based onB1, and
so on2 A unionoperator, if needed for appropriate result merging,
can be inserted into the output streams of all instances of the par-
titioned operator to combine the results into one stream forfurther
processing. Stateless operators such as split and union areevenly
distributed among all available machines during such a partitioned
processing as they consume very limited memory and thus tend
not to be the bottleneck in terms of resource consumption.

2To keep the discussion focussed, we assume here that each parti-
tioned join operator has all its join conditions defined on the same
domain for each input. This is trivially true for binary operators
and typically also assumed for m-way continuous join opeators by
the stream literature. Trees of such operators, each with its own
join columns, can be naturally supported [15]. Further, strategies
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Figure 2. Example of Partitioned Processing

Adaptation without Re-Hashing. To effectively adapt partitions
without ever having to rehash any of the existing partitionsat run
time, each split operator divides each input stream into a much
larger number of partitions than the number of available machines.
We identify each partition by a uniquepartition ID, i.e., 1, 2,. . ., n
(with n the number of distinct partitions). For example, we might
work with 500 partitions over 10 machines. Adaptation such as
spilling or relocating is now done at the granularity of these 500
partitions. This method has first been applied in the early data
skew handling literature [7] as well as in the recent partitioned
stream processing work Flux [20].
Partition-Group Granularity for Adaptation. We organize op-
erator states based on input partitions as done in [15]. Single input
query operators, such as the ones tackled in Flux [20], have to
adapt partitions from one input stream only. However, the multi-
input operators we focus on have in their states partitions from
different input streams with the same partition ID. Thus, multiple
ways of organizing partitions are possible.

(a) Select partitions from one 
individual input steam

(b) Select partitions from all 
input streams with the same ID

A B C

A1 B1 C1

A B C

A1 B1 C1

Figure 3. Composing Partition Groups

As proposed in XJoin [25], we could choose partitions from
one input at a time and adapt them independently (Figure 3(a)).
However, this strategy has two potential drawbacks in partitioned
processing of multi-way join queries. (1) It increases the complex-
ity in the cleanup process. This is because if partitions have been
pushed to disk, this requires us to keep track of the timestamps of
when each of these partitions was pushed, and the timestampsof
each tuple in order to avoid duplicates in the cleanup process. For
example, tuples from partitionA1 have been pushed into disk at
time t during execution. As done in previous work [15], we use
A1

1 to denote this part of partitionA1. Then all the tuples fromB1

andC1 with a timestamp greater thant have to join with theA1

1

in the cleanup process. GivenA1, B1, andC1 could be pushed
into the disk more than one time, the cleanup needs to be care-
fully synchronized with the timestamps of the input tuples and the
timestamps of the partitions being pushed. (2) Worse yet, ifstate
relocation were to move partitions from individual inputs to dif-
ferent machines, this then would force us to process tuples for that

for handling single n-ary join with different join columns can be
devised.

partition with across machine joins. For example, if we haveparti-
tionA1 in machineM1, while partitionsB1 andC1 are in machine
M2, then a newly incoming tuple that belongs toA1 has to access
both machinesM1 andM2 to produce the join result. Instead, if
we were to put all three partitionsA1, B1, andC1 in the same
machine, we could access one machine only to produce this join
result. Thus this would tend to be more efficient.

Accordingly, we group the partitions with the same partition ID
across all input streams of an operator together as the smallest unit
to be adapted, as illustrated in Figure 3(b). This avoids theexpen-
sive processing of queries across multiple machines. It also greatly
simplifies the cleanup process as discussed above because neither
timestamps nor other metadata has to be kept at the operators. For
simplicity, we henceforth call all partitions with the sameparti-
tion ID even when from different inputs onepartition group, or
in short, partition if the context is clear. As unlike [15] where the
focus is on dependencies at the partition level across operators in
a pipeline, here we focus on distributed query processing, thus the
idea of ”across-state-partition” even makes more sense as it keeps
the join local to a machine and thus much cheaper compared to
alternate partition choices. While the techniques proposed in this
work are equally applicable to the granularities of partitions and
partition groups, without loss of generality we henceforthwill as-
sume the later granularity for simplicity reasons.
Partition Group Productivity Metrics. The usage of partition
groups as adaptation unit helps to simplify statistics collection by
reducing it to the granularity of each partition group — compared
to either full operator-level (too coarse-grained) or tuple-level (too
fine-grained and thus not practical).

Here, we propose a new metric to be employed by the policies
of both adaptation techniques, calledpartition group productivity.
For each partition group, we record its current size, represented by
Psize. We also record how many tuples have been generated from
this partition group, denoted byPoutput. We define theproductiv-
ity of each partition group asPoutput/Psize. Given a similar size
Psize, a smallPoutput/Psize value indicates that only few output
results have been generated so far.

The productivity value of each partition group reflects the in-
put data that has been processed so far. They are updated when
new data gets processed. As commonly assumed in databases for
lack of any knowledge about the future, we also assume here that
the values we observed so far would be indicative of the trends of
behavior of the partition groups in the near future. Clearly, alter-
nate ways of computing the productivity value exist. For example,
we can maintain snapshots of historical values and assign higher
weights to more recent values using an amortized weight func-
tion to compute a tuned partition productivity value, depending on
the perceived stability of the operator’s behavior. Alternative cost
models could be easily plugged into our system in the future if
it turns out to be necessary, as the particular policies of run-time
state adaptation are independent of cost model details .
Distributed Software Architecture: Local and Global Adapt a-
tion Controllers. We analyze our run-time adaptation strategies
based on a distributed system with the following architecture (Fig-
ure 4): A dedicatedglobal coordinator(GC) is in charge of a set
of query engines(QE) running on different machines. The global
coordinator distributes the query and connects operators that are
distributed into different query engines. It collects and analyzes
running statistics of each processor. It also makescoarse-grained
adaptation decisionssuch as how many states to relocate from one
processor to the other but not which partition groups. A query en-



gine takes care of executing the portions of the continuous query
plans assigned to it. Each query engine reports statistics to the
global coordinator. Alocal adaptation controllerat each engine
is responsible for choosing partition groups to adapt (to bespilled
or relocated). It also engages in the protocol to relocate operator
states from or to a query engine on another machine.
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Figure 4. System Architecture

In this architecture, the state relocation decision is madeby the
global coordinator based on the collected system statistics, while
the detailed decision of choosing which partitions to spill/relocate
is handled by the local adaptation controller in each processor. As
discussed in [21], the global coordinator is very scalable and not
likely to become a bottleneck since it collects only light-weight
statistics from the processors. Unlike Flux [20], which puts all
the adaptation and partitioning functionalities into eachindivid-
ual Flux query operator, our architecture naturally facilitates tiered
adaptation decision making. Below we exploit this propertyto de-
sign effective adaptation strategies.

3. State Spill Adaptation
The integrated adaptation strategies proposed in this paper are

based on two independent query processing optimization techniques,
namelystate spillandstate relocation. Thus, before presenting our
integrated solution, we first study each individual technique in our
targeted cluster environment.

State spill refers to the process of pushing memory resident
states into disks temporarily when memory overflow happens.Given
a monotonic increase of memory usage during run-time, these
spilled states will be kept in disk (inactive) until the memory over-
flow has been addressed. State spill thus requires a secondcleanup
disk phaseduring which disk resident states need to be brought
back to memory for further processing - so that missing results are
produced while preventing duplicates. Thisstate cleanup process
can be performed at any time when memory becomes available.
Note that multiple partition groups may exist given one partition
ID. This is because once a partition group has been pushed into
disk, new tuples with the same partition ID may continue to accu-
mulate to form a new partition group in main memory. If needed
this partition group could be pushed into disk again.

The tasks that need to be performed in the cleanup can be de-
scribed as follows: (1) Organize the disk resident partition groups
based on their partition ID. (2) Merge partition groups withthe
same partition ID and generate missing results. (3) If a mainmem-
ory resident partition group with the same ID exists, then merge
this memory resident part with all disk resident ones. We have
observed that incremental view maintenance algorithms [13] can

be applied to merge partition groups and produce missing results.
The details of the cleanup process are omitted for space reasons.

Within our framework, the state spill process is local to a query
engine. Here we utilize a throughput-oriented state spill strategy
that aims for a high run-time output rate – though other metrics
would be possible. That is, we aim to generate as many output
results as possible given part of the memory resident statesare to
be pushed into disks (temporarily inactive). As our experiments
confirmed, a high overall throughput run-time phase also reduces
the efforts in the cleanup process as more work would have been
already completed.

To achieve maximal throughput, the state spill policy must de-
cide which partition groups to push when memory overflows. Dif-
ferent flush policies have been discussed in the literature.For ex-
ample, XJoin [25] flushes the largest partition. Our spill policy
uses the metrics as defined in Section 2 to rank partition groups
by their productivities and then selects partitions that are less pro-
ductive to be pushed in each spill process. The intuition is that the
partitions left in main memory are more likely to produce more
results than the ones that have been pushed into disks.

3.1 Experimental Setup and Environment

Experimental Environment. The system described in Section
2 used in our experiments is deployed on a 10-machine cluster.
Each machine in the cluster has dual 2.4Ghz Xeon CPUs with 2G
main memory. These machines are connected via a privategigabit
ethernet. Due to the security settings of the cluster, in ourexper-
iments we cannot stream data from outside the cluster. However,
this does not impact the validity of the results of our experiments.
We dedicate three machines to run theglobal coordinator, stream
generator, andapplication serverrespectively. The stream gen-
erator continuously generates stream input tuples for queries to
process, while the application server processes the outputresults.
Other machines are deployed as processors as necessary for the
given experiment.
Data Characteristics of Long-running Queries. Similar to [7,
22, 23, 25], we use synthesized data in our experiments to be able
to control various factors of the input streams. We definejoin mul-
tiplicative factor as the average number of tuples with the same
join value per stream for a given time period. This join multi-
plicative factor is closely related to the number of join results. For
example, we assume each input stream of a three-way join has 5
tuples with a join column value1 after processing2000 tuples.
Thus, a total of5 × 5 × 5 = 125 tuples will be generated with
a join column value of1. Clearly, after processing another2000
tuples, each stream would have seen 10 such tuples with join value
1 in total. Thus, the total output generated at that point would be
10 × 10 × 10 = 1000. As we intuitively see, the output rates (as
well as states of stateful operators) monotonically increase during
such long-running execution. That is, the join multiplicative fac-
tor increases as more input tuples get processed. We thus define
the termjoin multiplicative factor increase rate(r), or simplyjoin
rate, to describe that the join multiplicative factor increasesr after
processing everyk tuples. Here,k is referred astuple rangeof
the input stream. The join rate of partitions can also be defined
similarly. Note that given a uniform distribution of join values, the
join rate of each partition is the same as the join rate of the whole
input stream. This no longer holds for non-uniform distributions.

3.2 State Spill Evaluation



We first investigate the sensitivity of how much state is to be
pushed in each spill process (Figures 5 and 6). We run the three-
way join query, described in Section 3.1, on one single machine.
The input rate is set to 30 ms per input stream. The tuple rangeof
each input is set to 30K. The join rate is set to 3. The state spill
is triggered whenever the memory usage of the machine is over
200MB. A k%-push means that k% of the main memory states
are chosen to be pushed to disk. We varyk from 10 to 100 in
this experiment. We randomly choose partition groups from the
operator state for this experiment since we investigate theimpact
of which amount of state is to be pushed in each adaptation. Asa
comparison, we also provide the throughput of the query whenit
is fully processed in main memory (labeled as ’All-Mem’).

Seen from Figure 5, the more states are being pushed into the
disk each time, the smaller the overall throughput. This is as ex-
pected since the states being pushed are no longer active.
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Figure 6. Varying k%. Impact on Memory Usage.

Figure 6 shows the corresponding memory usage changes. We
can see that the main memory utilization can be effectively con-
trolled to avoid system crash due to memory overflow. We also see
that the more states (a higher percentage) we push in each adapta-
tion, the fewer times we need to trigger the state-spill process. In
Figure 6, each zag in the line represents one adaptation process.

Without loss of generality, we observe that some intermediate
value of push volumes in the range of 10% to 50% is most fa-
vorable given our experimental environment. It balances the main
memory usage (number of adaptations) and the impact on over-
all throughput. In subsequent experiments, when we want to hold
characteristics in our experimental runs steady to allow usto focus
on the effect of particular parameters, we choose such a middle
range value, say 30% as default, unless otherwise stated.

Next, we study the effectiveness of productivity as metric for
deciding which partition groups to push to disk. Figure 7 shows
the impact of choosing different partition groups on the overall
run-time throughput. Here, the input stream has 1/3 of the parti-
tions with an average join rate of 4, 1/3 with an average join rate of
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Figure 7. Throughput-Oriented Spill Evaluation

2, while the rest have a join rate of 1. The ‘push-less-productive’
corresponds to the case of pushing partition groups with thesmall-
estPoutput/Psize value first. The ‘push-more-productive’ denotes
the pushing of partition groups with the largestPoutput/Psize

value first. Seen from Figure 7, the push-less-productive strat-
egy has a much higher run-time throughput. This is because leav-
ing partition groups with high productivity in main memory is
more likely to generate more output results as input tuples come
through. In Figure 7 we find that after 40 minutes of query exe-
cution, the push-less-productive partitions strategy performs about
70% better in terms of output rate. Our experiments also confirm
that this policy helps to reduce the cleanup efforts as more work
has been accomplished before the cleanup starts. In the above
experiment, the push-less-productive strategy uses26, 879 ms to
generate194, 308 tuples during the cleanup, while the push-more-
productive one generates992, 893 tuples in around359, 396 ms.

4. State Relocation Adaptation
Uneven workload may arise among machines in a distributed

environment. Thus, while one machine runs out of memory, an-
other machine may still have ample memory at its disposal for
holding additional states. Unlike state spill, having operator states
stay in main memory (even at an alternate machine in the cluster)
would positively affect the overall query processing. Thus, state
relocation, which moves operator states across machines, may then
become a preferred choice to maximally utilize all resources.

State relocation requires knowledge from multiple machines to
make an adaptation decision. In our system we have a global co-
ordinator (GC), which monitors the performance of all querypro-
cessing engines (QE). Thus it has global knowledge of the overall
system performance. In the distributed system used in our exper-
iments, the global controller coordinates the execution ofthe dif-
ferent query optimization strategies, and is thus responsible for
the state relocation process. Various schemes of relocation among
a set of machines have been studied in the literature. Here we
proceed with a simple model, namely a pair-wised state reloca-
tion scheme. Other models could fairly easy be incorporatedinto
our framework. We refer to the machine with the maximally used
memory (Mmax) as thesender, and to the machine with the least
memory used (Mleast) as thereceiver. In each adaptation, the
global coordinator moves(Mmax − Mleast)/2 amount of states
from the sender to the receiver if it is observed thatMleast/Mmax

reaches a thresholdθr, i.e., Mleast/Mmax < θr. Thus, ideally,
both machines will have about(Mmax + Mleast)/2 memory us-
age after the adaptation. Note that the actual partition groups to be
moved are decided by the local adaptation controller of the ma-



chine with the most used memory. Given such tiered decision
architecture, the global coordinator only requires to collect very
light-weight running statistics, such as main memory usage. This
helps to increase the scalability of the global coordinator, thus re-
ducing the possibility of it becoming a bottleneck in the query pro-
cessing. Previous work [21] has proven the cost of communication
in the context of our fast network to be very low.

4.1 Moving States Across Machines
No operator states should be missing or corrupted in the re-

location process. To achieve that, we design an 8-step protocol
to coordinate the run-time operator state movement. The overall
interactions between the global coordinator (GC) and each indi-
vidual query engine (QE) (for those query engines involved in the
adaptation process) are described by the sequence diagram illus-
trated in Figure 8. During state relocation, the global coordinator
controls the overall adaptation process, while the local adaptation
controller in each query engine is responsible for receiving mov-
ing requests from the global coordinator and performing corre-
sponding actions. The state relocation process is triggered by the
global coordinator whenever an overloaded query engine is de-
tected. Note that since a split operator in charge of redirecting
incoming tuples to the correct instances of the partitionedstateful
operators sits in front of each partitioned operator, all tuples, be-
longing to the partition groups affected by the current adaptation
process, which arrive during a state relocation process aretem-
porarily buffered at the query engine on which the corresponding
split operator sits. Later when the adaptation process is over all
buffered tuples are redirected to the stateful operators based on the
new partition group mapping. Due to space limits more detailed
discussion of state relocation protocols is omitted.
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Figure 8. State Relocation Protocols Diagram

4.2 Evaluation of State Relocation
We study the following two parameters in evaluating the state

relocation: (1) thresholdθr , and (2) minimal time-span between
two consecutive relocationsτm. The global coordinator triggers
state relocation if and only if whenMleast / Mmax < θr and the
time elapsed since the last relocation is greater thanτm.

Figure 9 explores the threshold-related aspect of the aboveques-
tions. The query as described in Section 3.1 is run in two ma-
chines. Each machine processes about half of all partitions. The
maximal memory of each machine is set large enough to have the
query completely run in main memory. We use a worst case sit-
uation in terms of input stream fluctuations having each machine
alternatively change its demand of main memory. For example,

partitions assigned to machine 1 get 10 times more tuples than
those of machine 2 for the first five minutes. After that, machine 2
gets 10 times more tuples than machine 1 for the next 10 minutes,
and so on. Thus the main memory usage of these two machines al-
ternates dramatically every 10 minutes. Given this setup, the state
relocation may keep on moving states constantly back and forth
among two machines, i.e., the danger of thrashing by wastingtime
on moving states may arise. We now study the stability of our
method in such a dynamic situation.

Figure 9 shows the impact of choosing the thresholdθr with
τm being set to 45 seconds. We varyθr from 50% to 90%. A high
percentage indicates that a larger number of adaptations istrig-
gered with each adaptation only moving a small amount of states.
Seen from Figure 9, the throughput when choosing differentθr is
almost the same. All of them experience throughput similar to that
of pure main memory processing with no adaptations (All-mem).
In Figure 9, a total of 24 relocations have been conducted when θr

is set to 90%, while only 2 adaptations whenθr equals 50%.
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Figure 9. Varying Thres. θr

Figure 9 and other experiments we have conducted regarding
the minimal time-span between two consecutive relocationscon-
firm that the cost of our pair-wised state relocation is low inthe
context of our test environment, a modern small-range cluster of
machines. Thus we conclude that potentially we could perform
such state relocations frequently without impacting the overall per-
formance. The state relocation cost is expected to be higherif the
underlying network is slow and unreliable.

Figure 10 shows the change of memory usage withθt = 90%
andτm = 45 seconds. The ‘no-relocation-M1’ and ‘no-relocation-
M2’ show the memory usage respectively of machinesM1 andM2

without state relocations. As can be seen, the memory consump-
tion alternatively changes due to our input data pattern. ‘with-
relocation-M1’ and ‘with-relocation-M2’ indicate the memory us-
age after the state relocations. We can see that the main memory
usage remains largely balanced due to the relocation. Applying
state relocation maximizes the opportunity for full memorybased
processing. It thus has the potential to result in a higher overall
throughput since the cost of state relocation is not expensive as
shown by Figure 9.

Figure 11 illustrates the benefits of state relocation. The query
is run over three machines. We change the initial distribution
of partitions to make one machine process 60% of all partitions,
while the other two have 20% of partitions respectively. We setθr

= 80% andτm = 45 seconds. In this setup, state spill is triggered
when the main memory usage of the machine is over 200MB.

Seen from Figure 11, the throughput of the ‘no-relocation’ case
drops after running for 40 minutes. This is because main memory
of the machine having 60% of the partitions overflows and starts



Figure 10. Memory Usage
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Figure 11. Relocation vs. Spill
pushing states into disks. On the other hand, the ‘with-relocation’
adapts these states to other machines having all states keptin main
memory. Thus, it generates output continuously at a maximalrate
in the run-time phase instead of waiting until the clean up stage.

5. Integrating State Spill and Relocation Adap-
tations

When aggregated memory of all machines is not sufficient for
the query processing, state spills cannot be avoided any longer
simply by relocating states across machines. This is because some
machines or even all machines may suffer from memory overflow.
In this section, we thus propose two solutions to combine both
state spill and relocation into integrated strategies aimed at maxi-
mizing run-time throughput in such memory-constrained environ-
ments. Each strategy description is accompanied by pseudocode
for more clarity. Variables used in the integrated strategies’ algo-
rithms are explained in Tables 1 and 2.

5.1 Lazy-Disk Control Strategy
In the lazy-disk strategy, state spill is postponed until there is

no main memory in the cluster that can hold the states from over-
loaded machines. That is, when the global coordinator observes
that Mleast/Mmax < θr, the state relocation adaptation is cho-
sen. This aims to have as many states as possible kept in main
memory. While the local adaptation controller observes that the
memory usage of the machine is going to overflow, it then triggers
the state spill on that particular machine. Algorithm 1 describes
the sequence of steps performed by the GC and all QEs affected
by our first proposed solution, calledlazy-diskapproach.

The lazy disk approach focuses on the main memory usage,
that is, both types of adaptations are purely driven by main mem-

Variable name Description
ss marks state spill mode or events
sr marks state relocation mode or events
thresholdsr tunable thresholds determining when states are to be
thresholdmem relocated among QEs or spilled at a potentially locally
thresholdprod overloaded QE
max product estimated maximum QE productivity per time period
min product estimated minimum QE productivity per time period
sr timer determines the frequency of statistics evaluation sent to to the

GC by all QEs. The statistics are used to handle uneven load
distribution situations

s timer determines how often memory at a QE is measured to detect
and prevent memory overflow problems by triggering a local
state spilling process

lb timer load balancing timer determining how often the GC should
evaluate the statistics sent to it by the QEs.

Table 1. Variables for Lazy- and Active-Disk
Strategies

QE Modes of Operation Description
State-relocation mode (srmode) Indicates that GC has triggered the state-

relocation protocol which is carried out by the
GC and all affected QEs.

State-spill mode (ssmode) Indicates that a QE is in the process of
spilling states to disk to free memory. It is
triggered in different ways based on the se-
lected adaptation strategy.

Normal mode (normalmode) Normal query plan execution. No mem-
ory overflow problems detected, and thus no
adaptation is currently attempted.

Table 2. Execution Modes of a Query Engine

ory usage. We push the less productive partitions (with small
Poutput/Psize values) to disk in the state spill process, while we
choose the productive partitions (with largePoutput/Psize values)
to move in the state relocation adaptation. With productiveparti-
tions likely to be kept in main memory, this strategy aims to pro-
duce high throughput in the run-time phase. This strategy design
is driven by our experimental observations in Section 3.1, namely,
to keep as many states as possible in main memory.

5.2 Evaluation of Lazy-Disk Control
Similar to the experiment shown in Figure 11, a lazy-disk adap-

tation approach has the potential to fully utilize all available main
memory in the cluster. Figure 12 shows the performance of the
lazy-disk approach in a memory constrained environment. The
query, refer to Section 3.1, is deployed on three machines. We set
a skewed initial distribution with one machine being assigned 2/3
of all partitions, while other two machines share evenly therest 1/3
of partitions. In this setup, if we do not apply state relocation, then
only one machine gets overloaded. We call this ‘no-relocation’
approach. Using the lazy-disk approach, all three machineswill
eventually get overloaded due to giving priority to state reloca-
tion. Only once the memory across all machines is exhausted will
this strategy trigger the state spill processes. Seen from Figure
12, the lazy-disk approach has a higher overall throughput than
the ‘no-relocation’ since the lazy-disk approach makes full use of
available main memory in the cluster during the query processing.

Even if the query workload is extremely heavy, i.e., each ma-
chine in the cluster does not have sufficient memory to process the
partitions assigned to them, a lazy-disk approach still hasbene-
fits. To illustrate, we again deploy the query into three machines
and have one machine get more partitions than the others. We run
the query for 6 hours, so that each machine has a large amount of
states beyond the available main memory. We again compare the
performance of lazy-disk and no-relocation. In this experiment,



Algorithm 1 Lazy-Disk Strategy
EVENTS AT GC

1: sr timer expired:

2: sr timer.reset()
3: process stats()
4: calculate cluster load()
5: max load := get max load among all query engines (QEi)
6: min load := get min load among all query engines (QEi)
7: if min load/max load< thresholdsr then
8: QE receiver:=getQE(min load)
9: QE sender:=getQE(max load)
10: relocateamount:=computeAmount(max load, min load)
11: triggerstart sr(relocate amount) event at GC

EVENTS AT QE

12: cptv:

13: if mode = normal mode then
14: mode := sr mode
15: parts move list = computePartsToMove(parts to move)
16: cptvtrigr := true
17: triggerptv(parts to move) event at GC
18: else(must be in state spill mode)
19: wait until mode 6= ss mode
20: mode := sr mode
21: parts to move = computePartsToMove(relocate amount)
22: cptv trig r := true
23: triggerptv(parts to move) event at GC
24: ss timer expired:

25: ss timer.reset()
26: if QE memory > thresholdmem then
27: if mode = normal mode then
28: mode := ss mode
29: spill amount = computeSpillAmount()
30: stateSpill(spill amount)
31: mode = normal mode
32: else(don’t spill now, wait until next timer expires)
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Figure 12. Lazy-Disk vs. No Relocation

the overall results generated by the two approaches are similar as
they have similar amount of states being pushed to disk. However,
the clean up stage of these two approaches are dramatically dif-
ferent. The no-relocation approach takes more than 1600 seconds
to produce 2,023,781 tuples in the clean up stage. This is because
most work is done by one machine. While the lazy-disk approach
only takes less than 400 seconds to clean up, since work is already
evenly distributed among all three machines before cleanupstarts.

5.3 Active-Disk Control Strategy
State spill in the lazy-disk approach is alocal decision. This

means the decision is made by the query processor as the memory
overflow happens at a local machine. However, the productivity
of partitions among machines might not be the same. For exam-
ple, the least productive partition in one machine, the candidate to
be pushed to disk there, may still be much more productive than
many other partitions in another machine. Thus,if we raise the

state spill decision to the global coordinator at a global level, we
could instead spill the globally least productive partitions among
all machines. This should free more aggregated main memory
space across the cluster for the globally most productive partitions.

Corresponding to this idea, we now design theactive-diskap-
proach which actively controls state spill adaptations at the global
(instead of at the local) level. The global coordinator monitors
both the main memory usage and the average productivity rates of
machines in the cluster. Here, theaverage productivity rate(R)
of one machine is defined as the total number of tuples that have
been generated by this machine during the sampling time divided
by the number of partition groups in the machine. Algorithm 2de-
scribes the pseudocode for the distributed protocol that takes place
at the global coordinator and the query engines during an active-
disk adaptation process.

Algorithm 2 Active-Disk Strategy
EVENTS AT GC

1: lb timer expired:

2: lb timer.reset()
3: process stats()
4: calculate cluster load()
5: max load := get max load among all query engines (QEi)
6: min load := get min load among all query engines (QEi)
7: if min load/max load< thresholdsr then
8: QE receiver:=getQE(min load)
9: QE sender:=getQE(max load)
10: relocateamount:=computeAmount(max load, min load)
11: triggerstart sr(relocate amount) event at GC
12: else
13: max product := get max productivity among all query engines (QEi)
14: min product := get min productivity among all query engines (QEi)
15: if max productivity / min product > thresholdprod

16: QE sender:=getQE(min product)
17: spill amount:=computeAmountToSpill();
18: triggerstart ss(spill amount) event at QEsender

EVENTS AT QE

19: cptv:

20: mod := sr mode
21: parts move list := computePartsToMove(parts to move)
22: cptv trig r := true
23: triggerptv(parts to move) event at GC
24: start ss:
25: mode := sr mode
26: stateSpill(spill amount)
27: mode := normal mode

As in the lazy-disk approach, ifMleast/Mmax < θr we run out
of local main memory, then the state relocation is triggeredagain
aiming to have all data in memory whenever possible. However,
if Mleast/Mmax ≥ θr, then we compare the average productiv-
ity rate of each machine. If one machine has a much lower aver-
age productivity rate, for example,Rmax/Rmin > λ, we force
the partitions of the lower average productivity rate machine to be
pushed into disks. This would leave main memory space for the
highly productive partitions in other machines to be relocated into
these machines. This would help the overall performance since
high productive partitions remain in main memory. The global co-
ordinator does not select the globally least productive partitions
to be pushed to disk as this would require the collection of more
statistics, increasing network costs and reducing scalability.

However, pushing more states than necessary could be coun-
terproductive, resulting in a decrease of the overall performance
as well. In the active-disk strategy, we set the maximal amount
of states being pushed by the global coordinator to be less than
Mquery − Mcluster, whereMquery denotes the estimation of the



overall memory consumption for the query, whileMcluster is the
overall available memory of the cluster. This aims to assurethat
data that fits into memory is left there.

5.4 Evaluation of Active-Disk Control
We postulate that the active-disk approach could further im-

prove run-time query throughput if the global coordinator observes
major differences of productivity among machines. Figure 13 shows
one comparison of lazy- versus active-disk approach. In this ex-
periment, we set the tuple range of the input stream to 30K. We
set the partitions assigned to machinem1 to have a high average
join rate of 4, while partitions in the other two machines have a
low average join rate of 1. The lazy-disk approach does nothing at
the global coordinator level if the memory usage among the three
machines is running out roughly equally at all machines. While
the active-disk approach forces lower productive partitions to be
pushed into disks since the average productivity of partitions in
machinem1 is much larger than that of the other two, but only if
extra memory is needed. Note that in both approaches, each ma-
chine triggers the state spill process as its memory usage reaches
its threshold (60 MB). Here, the state relocation thresholdθr is set
to 0.8, while the minimal time span of two relocationsτm is set
to 45 seconds. The productivity thresholdλ that triggers a ‘force
state spill adaptation’ is set to 2.
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Figure 13. Lazy-Disk vs. Active-Disk, 1

Seen from Figure 13, the active disk strategy experiences a
slight drop in the throughput after it starts pushing partitions into
disks. Gradually, however, it outperforms the lazy-disk strategy
since more high productive partitions remain in main memory.
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Figure 14. Lazy-Disk vs. Active-Disk, 2
As the difference of average productivity of different machines

increases, then the active-disk approach can further improve the
run-time query throughput compared to the lazy-disk approach.

We set partitions assigned to machinem1 (with a join rate 4) to
have a small tuple range (15K), while set the partitions assigned
to the other two machines (with a join rate 1) to have a large tuple
range (45K). This setup further differentiates the averageproduc-
tivity values of machines. Having a smaller tuple range indicates a
larger join factor value given the same number of input tuples (See
Section 3.1). It thus further increases the number of outputtuples.
As expected, the active-disk approach has a major throughput im-
provement compared with that of the lazy-disk approach (seeFig-
ure 14). In these experiments skewed data was used.

However, as we discussed earlier, we need to control the total
amount of states being pushed by the global coordinator. This is
because too many pushes, more pushes beyond what is necessary,
could decrease the performance. In general, in our framework we
do set some maximum amount of states to be pushed. In the case
of our experiments we had utilized 100 MB.

6. Related Work
Continuous query processing [1,4,5,16] is closely relatedwork

in that it applies a push-based non-blocking processing model. A
variety of techniques have been investigated to address thescal-
ability concerns of continuous query processing, including load
shedding [23], operator-state purging [8] and adaptive scheduling
and processing [16]. In this work, we instead focus on adapting
operator states to handle the memory shortage problem.

State spill has also been investigated in a central environment.
The focus of [22] is on the evaluation of different flushing strate-
gies for a partitioned hash-join operator. Both XJoin [25] and
Hash-Merge Join [17] essentially incorporate data management
into their respective join algorithms. They adapt memory resi-
dent states from individual input streams to disks when memory
overflow happens. As discussed in Section 3, this strategy does
not work well for multi-input operators, especially in a partitioned
parallel processing environment. Moreover, these strategies are
designed to work in a central environment. In a distributed en-
vironment where both state spill and state relocation are neces-
sary, new challenges arise, such as how to integrate both adapta-
tion methods into one strategy. Our recent work [15] on statespill
only, also in central context, instead focuses on the interdependen-
cies of a query plan composed of a pipeline of stateful operators.

Distributed continuous query processing over a shared nothing
architectures has recently received attention [1, 20]. In existing
systems such as Aurora* and Borealis [27], and also in our prior
work [21], operators are assumed to be small enough to fit com-
pletely within one single machine. Thus, the adaptation in such
systems [27] focuses on balancing the load by moving complete
query operators across machines. The basic unit to be adapted in
these systems is at the granularity of a complete operator. While
in this work, we instead investigate methods of adaptation at the
granularity of operator state partitions.

Flux [20] is among the first to discuss partitioned parallel pro-
cessing and its adaptations in the continuous query context. It
makes use of the exchange architecture proposed by Volcano [10]
by inserting split operators into the query plan to achieve parti-
tioned processing for stateful query operators, focussingon single-
input aggregate operators. [20] does not explicitly discuss coordi-
nation techniques between state spilling and state reallocation as
we do in our work. Moreover, Flux focuses on single input query
operators. Issues for complex stateful operators like multi-joins,
such as how to organize states from different input steams, have
not been addressed. As discussed in Section 5.2, our proposed



active-disk solution makes proactive state spill decisions across
multiple machines. This helps to improve the overall run-time
throughput, as our experiments confirm. Unlike [20] based onsim-
ulation only and short 60-second experiments, our work is based
on one-hour experiments conducted on a real software system.

Distributed Eddies [24] addresses run-time optimization of query
plans in a distributed environment. However, [24] use a com-
pletely different tuple-level optimization approach by routing in-
dividual tuples through the different operators in different orders.
They address neither partition-level state spilling nor partition-
level relocation of operators’ states to different machines.

Parallel and distributed query processing has been the focus of
both academia and industry for a long time [3, 9, 12]. Partitioned
parallel processing for complex operators such as joins hasalso
been studied both by others [6, 19] as well as by our prior work
[14]. Correspondingly, data skew handling techniques [7] have
been proposed. All these provide general background for thework
presented in this paper. However, they are typically studied under
a traditional processing model assuming static queries. Unique
properties such as push-based processing (requires non-blocking
processing), little statistics about input streams at query definition
time (requires adaptation at run time) and long running or even
infinite streams (high demand on system resources) differentiate
this work from traditional distributed processing.

7. Conclusion
In this work, we have studied the mechanisms and policies of

state level adaptations that aim to overcome the run-time main
memory shortage problem for long-running non-blocking queries
in a distributed environment. We have proposed two strategies that
integrate disk-based (state spill) and distributed (staterelocation)
adaptation techniques in main memory constrained environments.
Note that such integration has not been carefully studied inthe lit-
erature, yet it is necessary in modern cluster environmentssince
the main memory of even a distributed system remains limited.
Extensive experiments have been conducted with a working soft-
ware system installed on a modern PC-compute cluster confirming
the effectiveness of our proposed strategies.
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