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Abstract

Partitioned query processing is an effective method to ggec
continuous queries with large stateful operators in a distted
systems. This method typically partitions input data intmn
overlapping portions, with each query plan instance irlsthlon
a separate machine processing only one portion of the data. D
namic redistribution of load among machines is then emmloye
to handle fluctuating stream characteristics. Howeverstixg
load redistribution solutions have made the implicit asption
that no local query optimization is conducted at runtime oy a
of the participating machines, i.e., all local query plarsiances
are static and thus remain identical. This is restrictivedgnamic
stream systems, where data partitions may experiencefisgmi
fluctuations in selectivities or arrival rates over time uthwar-
ranting local plan reoptimization. This raises the new pesh
that the heterogeneity of plan shapes among different mashi
must be tackled when doing load redistribution. To addréss t
we propose two new load balancing strategies along withesorr
sponding protocols, that can balance the workload acrosstat
machines while seamlessly handling the complexity caugéat b
cal plan changes. The PTLB strategy is plan-agnostic, réugii

aggregated resources, including both CPU and memory. Hawev
uneven workload among machines may occur over time due to
(1) the lack of initial cost information at the time when fidis-
tributing the queries, and (2) the potentially fluctuatirgure of

the incoming data streams even if the statistics could besuned

at runtime. This imbalance of workloads on different maekin
may impair the benefits of distributed processing. Thiysamic
load balancing which deals with the problem of re-distributing
workload across machines in the cluster, has emerged asialcru
technology for distributed continuous query systems [13816].

1.1 Partitioned Query Processing

Partitioned parallelism [10] is a common method for proeess
ing query operators with large states in a distributed systin-
stances of each query operator will be installed on muligkz
cessors, with the input data being partitioned among theseator
instances. The outputs from all operator instances arenadito
form the final output stream. Such partitioned paralleligrhich
have been routinely applied for traditional query proags§9,10],
has been shown to be also affective for continuous quergjs [1

For example, the continuous query plan with two joins in Fig-

no detailed knowledge of the underlying query plan. The MSLB ure 1(a) can be assigned to two machines as in Figure 1(bh Eac

strategy is plan-aware, that is, it rebalances the load bsnpar-
ing the plan shape differences on the participating machindl

machine runs instances of both join operators. To partitien
data, we add thresplit operatorsand aunion operatorto the

proposed techniques have been implemented in the DCAPE conguery plan. Theplit operatorsoperate as routers: They apply par-

tinuous query system. Our experiments demonstrate thapghe
plication of both query optimization and load balancinguks in
superior performance compared to applying either of thepaiala
tion techniques alone — as has been the state-of-the-dreinur-
rent literature. Our evaluation compares the relative apability
and efficiency of the two proposed techniques PTLB and MSLB.

1. Introduction

Continuous queries have become popular in recent years due

to demands of numerous applications, including onlineianst
financial analysis, sensor monitoring systems, etc [2,45517].
A continuous query engine takes in real-time streaming dath
sends out results in a continuous fashion. High stream irgias
and cost-intensive query operations may cause a contirgLery
system to run out of resources. Distributed continuousygpes-
cessing over a shared nothing architecture, i.e., a claftera-
chines, is a prevalent method for solving this scalabilitplp
lem|[1,7,8,13,16].

Distributing the query workload across multiple machinas ¢
greatly improve the system performance due to the avaithaloil

tition mapping functions, such as value-based mappingividel
the streams of input tuples into partitions and direct thyei-
tions to the corresponding machines. The darker shadincgites
that the operator is active on that machine.

(b) Distribution of the Partitioned Pl

(a) OriginalMulti-way Join Pla

Figure 1. Distribution of Partitioned Plan

By using the partitioned parallelism, we now have the choice
of moving only some partitions of an operator state to arratie
chine at runtime — without having to move complete operatach
time [1]. This enables fine-grained runtime adaptation.



1.2 Limitations of Existing Strategies

The load balancing strategies currently proposed in teealit
ture for partitioned continuous queries make the implisgump-
tion that the partitioned query plans on different machiregsain
identical [13, 16]. They have not considered the situatiat the
local query optimizer restructures the shape of the queay pé-
siding on its machine. Given this strong restriction, nosgrg
work on partitioned continuous query processing thus fardua-
sidered integrating the load balancing with query optirtitra
Consequently, the effects of query optimization and itséntn
load rebalancing strategies remain an open issue to date.

This clearly is a major limitation, as runtime query optianz
tion has been shown to be critical for streaming systems [%,5
20]. That is, some data partitions may experience chaiatosr
rather distinct from those of other partitions over time][14et
us consider a partition containing IBM stock quotes. Thigipa
tion may experience a high selectivity, if some major shiiftthe
market raise interest in the performance of those stockpaoed
to others. Hence, the local optimizer then would determiree t
locally optimal plan based on observed data statisticssofltta
portion. This raises the new problem that the heterogenéjian
shapes among different machines must be tackled when duang |
redistribution.

Further load balancing strategies just move workload from o
machine to another, while the total resource consumpticimen

?
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Figure 2. Problem with Simple Partition Mov-
ing During Load Rebalancing

partitioned staté’4 5 cannot be put into any join state on M2, be-
cause it does not have any matching state on that machin@lySim
discarding this unmatched partition would cause loss af.dBhis
problem of integrating load rebalancing with query optiatian
remains an unaddressed problem to date. Clearly, strategid

to be devised that can support the heterogeneity of planeshap
on difference machines during load rebalancing. This is tiev
focus of our work.

1.4 Our Research Outline

In this paper, we solve the new problems of integrating query
optimization with the partition-level runtime load balamg for

system as a whole is not decreased. On the other hand, plan opgontinuous queries. Our first research goal is to study teetsf

timization may be able to decrease the resource consumgtion

each machine, therefore decreasing the overall resounseiogp-
tion in the distributed system. For example, a plan optitiora

may dynamically switch two join operators in a plan in theefac

of changing statistics. It is well known that such optimiaatmay
drastically reduce the intermediate results, leadingse &PU and
memory costs on this machine as well as less overall respueee
quired to process this query in the distributed system.

1.3 New Research Problems

Local query optimization however complicates load rebalan
ing strategies. Traditionally, load rebalancing algarithassume

of adding plan optimization to distributed continuous qupro-
cessing. Our goal here is not to propose new methods for jplan o
timization (rewriting of query plans) nor for load balangifdecid-
ing which partitions to move when and to which other machines
— rather we adopt existing techniques for these well-stlitlisks
from the literature [1, 16]. Instead, we focus on the evadumat
of the effectiveness of plan optimization versus load batanin
isolation in terms of the relative performance gains aciy as
well as scopes of applicability. More importantly, we styubr-
formance gains achievable by their integrated forms. Tvatua-
tion is conducted through experimental studies in an astueam
query system running on a compute cluster. This is the fisstitre
on this topic in the literature.

that the shape of the query plan stays the same throughout the As our second research goal, we propose to design, implement

query execution. Therefore balancing loads among maclcaes

and evaluate advanced strategies that can conduct lodemetvay

be simply achieved by moving some load (partitions) fromreve  while taking the heterogeneity of query plan shapes onrdiffee

loaded machines to under-loaded machines. However, ths is
longer valid if local query optimization has been appliedncg
each machine can apply its own local optimization separétain
other machines, at any given time, the shapes of the quenyopla
different machines can be distinct from one another.

machines into account. Our focus here is on the protocods; th
synchronization and correctness. We design two new loachbal
ing strategies, namely PTLB and MSLB, and their correspamdi
protocols that can balance workload while seamlessly fragthe
complexity caused by local plan heterogeneity. The PTLBtstr

To illustrate the problem, we use the query example from Fig- egy is a general load balancing strategy that requires raileiet
ure 1. As depicted in Figure 2, each join operator instance ha knowledge of the underlying query plans, such as types afeepe

two states, with each state containing several partitiorithout
loss of generality, here we assume value-based partitiaeiap-
plied in the split operator). Each partitioned state corgai set of
partitions with different partition IDs. From Figure 2, warcsee

tors and shapes of query plans. We then propose the more plan-
aware MSLB strategy, which rebalances the workload by cempa
ing the detailed shapes of the query plans among differeat ma
chines. For simplicity of exposition, our techniques arplaixed

that M1 processed partitions with IDs 1, 2, 3, and M2 processe for query plans with their stateful operators being joingtsas

partitions with IDs 4, 5.
After machine M2 applies the local plan optimization, th@tw

typical symmetric window-based joins [4, 12,17, 19], gitbeir
importance and prevelance in stream queries. Plans witr oth

joins on M2 are switched. Now the query shapes on the two ma- stateful operators, such as duplicate elimination andgrguvhich

chines are distinct from each other. A new partitioned siate
has been created on M2 as the result of this plan optimizatfon
at this time the load balancing algorithm decided to moveait
titions with ID 2 from M1 to M2, the partition 2 belonging togh

could be handled in a similar vein, are left as future work.

We have implemented the proposed strategies in a continu-
ous query system called D-CAPE [13]. One key contribution of
our work is then this experimental study assessing the gexbo



methods in a real stream system. That is, we have experimen-

tally evaluated the effects of query optimization, loadalabcing,
and their integration for partitioned continuous querygessing

Here, we assume that the load balancer has selected the par-
titions to be moved from one query plan to a second query plan
by any standard techniques, such as in [16]. We call the machi

on an actual cluster of PCs. Our experiments show that the com where the first partition resides before the relocationsieder

bination of query optimization and load balancing has soper
performance compared to applying either of the two adaptati
techniques alone (as done in the current literature). A eoep
tive study assessing the relative applicability and efficjeof the

machineand the second machine treceiver machine.The ba-
sic idea for this plan-agnostic strategy is now for the cspomnd-
ing split operator to duplicate any newly arriving data Ingjimg
to these to-be-moved partitions, so that they can be sendtko b

two proposed techniques PTLB and MSLB is also conducted. The the sender and the receiver machines concurrently. Bothimes
MSLB is shown to be more efficient than the PTLB in many situ- then process this same portion of data in parallel. Thigtffioist

ations, while the PTLB is shown to win under certain condisio

For the remainder of this paper, we discuss related workdn Se
tion 2. The two proposed load balancing strategies and gheir
tocols in a distributed system are described in Sectionsd34an
respectively. Section 5 shows our experimental evaluatioffe
conclude our work in Section 6.

2. Related Work

Existing distributed stream systems [1, 7, 8] use one opesat
the basic unit for load balancing. This assumes that eactatue
is small enough to fit on one machine. Partitioned parattelsa
general query plan distribution strategy [9,10]. Flux [&ghe first
to apply partition-level load redistribution to continigoqueries.
Flux focused on single-input operators, namely, group-byey

continue until all tuples of the to-be-moved partitionsttivare re-
siding in the sender query plan at the time the relocatioriexta
have been purged out of their respective operator statefieon t
sender machine due to the arrival of the newer tuples. Thg- pur
ing itself proceeds as usual according to the operatorsislow
semantics [4,12,17]. Here we say a tuplelid if it exists in any
partition before the load balance starts. A tuplaesvif it arrives
after load balance has started. Clearly, the receiver machould
not be containing any tuples of the to-be-moved partitiarthe
relocation-start-time. Thus all its tuples will bew.

When the to-be-moved partitions on the sender machine con-
tain only newtuples, it can be shown that it is safe to discard the
old partitions from sender. This is because all old parigibave
finished their duty in terms of contributing to the genenait6 out-
put results from the sender machine. Since we have beemtpedi

assume that all query instances have the same query shapes. Othe same data belonging to these to-be-moved partitioreteet

research instead proposes load balancing strategiesliwitiethe
heterogeneity of plan shapes with stateful join operatonsray
different machines.

Continuous query optimization has been studied in recearsye
[2,6,11,18].[18] proposes a rate-based algorithm to agéroon-
tinuous multiple joins to achieve high output rate. [3] prses
heuristics-based join ordering algorithms for mjoin thanhsider
dependent join selectivities. [15] introduces the Eddyraaph of
adaptively executing a query by routing tuples among opesat
Eddy’s always-adapting solution makes it suitable for dlyigly-
namic environment. These solutions all focus on optimiziag-
tinuous queries based on statistics collected at runtime.

Our own earlier work on dynamic plan migration [20] is the
first to deal with the problem of safely transferring the eutty
running plan to the new plan generated by the optimizer. &ais
lier work in part has inspired our solution now proposed foe t
distributed scenario. However, the two problems are sicanifly
different. The former focuses on migrating the states of m cu
rently running query plans in a central environment, thabise
machine. Here instead, we are addressing the distributathso
where the plans to “balance load” between are residing d@imdis
machines. One, this now requires carefully synchronizexddio
nations both within and also among the participating maehio
assure correctness. Two, we now focus on relocating only ind
vidual partitions of states while leaving others behindat th, we
are relocating partial state between query plans. Thisésmtrast
to the centralized migration, where the complete operdticg
with their full state) are simply migrated into other operator
other positions within the query plan.

3. Plan-Agnostic Load Balancing Strategy

3.1 Basic ldea: Duplicated Processing

ceiver machine in parallel when the load balancing firststal

the new tuples belonging to these partitions now in the semde
chine exist in the receiver machine as well. So if the oldipians

are discarded from the sender machine at this time, no udefal
will be lost.

We must ensure that no duplicate tuples are being generated.
If we use the parallel track strategy described above, adtho
the sender machine will generate all output tuples from dHeet-
moved partitions that consist of at least aid sub-tuple, it may
also generate the all-new sub-tuple combination, dugitathe
output results from the receiver machine.

To solve this duplication problem, the root join operatothef
sender machine can prevent@wtuple from joining with another
newtuple. Hence if the join predicate is evaluated on two tuples
that are botmew we simply skip the join step in the regular purge-
join-insert symmetric join algorithm. The purge and insgps
are however still undertaken as usual.

For this strategy, all old tuples (tuples with at least ortesuib-
tuple) need to be purged from the to-be-moved partitionppSse
thath (h >= 1) is the height of the query tree on the sender
machine. We analyze the time spent on the parallel tractegya
denoted henceforth &, in two cases:

1) h = 1. In this case the query tree has only one level of join
operators. For a join operator on the sender to purge alluple$
in the to-be-moved partitions from one of its two states, jtie
operator must process new tuples from another input thiaear
the next W time units. Therefore relocation tifier = W.

2) h > 1. This means that on the sender there is at least
one join operator which is above another join operator. Wthen
load balance begins, W time window’s new tuples from the inpu
queues are needed to purge old tuples inside the to-be-npawved
titions of leaf operators on the sender machine. Howevehese
new tuples are used to purge old tuples, they may also join wit
some of the old tuples and the results are being insertedheto
state of the join operators above the leaf operators. Bectngs



joined tuples contain aald sub-tuple, they are treated alsl tu- Each partition ID represents all the partitions on the serde
ples and need to be purged as well. In order to do so, the sendechine with that same partition ID. In fact, each partitiorstdte
machine needs to process another W time window’s new tuples t can have a partition with the selected ID. Therefore eactitipar

completely purge theseld tuples from the old partitions. So in
this case, relocation timEpr = 2W.

In summary, the lower bound of time spent on finishing the
parallel track process BW for a query with more than one join
operator, given thatl” is the window size of the query. The lower
bound is W if the query contains only one join operator.

3.2 Distributed PTLB Protocols

In this section, we describe the distributed Parallel Trlao&d
Balancing (PTLB) protocol we have designed to apply the ba-
sic idea described above to solve the problem of load baignci
among machines with heterogeneous plans in a distributde en
ronment. The distributed protocol is critical because wedrneare-
ful coordination among sender machine (the one sends tlie par
tions), receiver machine (the one receives the partiticangj the
distribution manager (the one that makes the load rebaldece
cision) in order to guarantee correct load rebalancing.s Thto
ensure that no on-the-fly data is missing, duplicated ougbed.

We have designed a 5-step PTLB communication protocol to
achieve the PTLB once our system has made the decision tp appl
load rebalancing. This decision making model is calledrithist
tion manager (DM). Each step contains a message passingdietw
DM and one of the query processors. The query example in&igur
2 is used here to illustrate the execution of the protocol.

Steps 1 and 2 of the PTLB protocol involve communications
between the distribution manager and the sender machira-to ¢
culate the partitions that need to be moved from the sendibeto
receive. These steps are depicted in Figure 3. When the DM
makes the decision to invoke load balancing, it has alreatbue
lated three variables used in the load balancing processetider
machine which has the highest memory consumption (dengted b
Mpaz), the receiver machine which has the least memory con-
sumption (denoted by,..s:), and the amount of partitions in
terms of memory the sender should send to the receiver. There
fore, in the first step of load balancing, the DM sends a reques
computePartitionsToMou® the sender (assumed to be M1 in Fig-
ure 3), with the amount of partitions that need to be movedrip
receiving such a request, the sender machine selects tit@par
whose total memory consumed is close to the amount of memory
that is to be moved. In step 2, the sender then sends the Ibe of t
selected partitions, denoted gartitionsToMoven Figure 3, back
to the DM.

Distribution Managef

(2) PartitionsToMove
List of partition IDs to b
moved, i.e., {1,2,3}

Local
Adaptation
Controller

Sende’s Machin

Figure 3. PTLB: Compute Partitions to Move.

ID indicates one partition from each state. Our mechanisto is
choose all the partitions in all the states with the sameitjmart

ID as a whole unit to move. This avoids joins across multiple
processors. For example, as shown in Figure 2, we denotathe p
tition with ID 2 in partitioned staté’4 as partitionA-. If we only
move partitionA, from M; to M-, then after the load balancing,
the newly coming tuples to partitioA., which is now located on
M- would have to probe and join partitiaB2, which is still lo-
cated onM;. Therefore in our load balancing process, the unit
to move between two machines is not a single partition, bat is
partition groupthat contains all the partitions with the same ID on
the sender machine.

Steps 3 and 4 exploit parallel processing principles. IpSte
the DM sends ®uplicatePartitionsto the sender machine as well
as all the machines with active split operators. Upon récgithe
message, an active split operator will add entries to thstiegj
partition mapping table, which map each of the to-be-mowad p
titions to the receiver machine. This allows the split oparso
hereforth forward tuples that belong to these selectedtipas to
both the sender and the receiver machines. Whenever a tuple i
forwarded to a sender machine, the split operator sets arildgeo
tuple asnew This indicates that this tuple is also being sent to the
receiver machine. The flag on all other tuples, includingtipdes
being sent to the receiver machine in parallel, are by desatito
beold.

Upon receiving th®uplicationPartitions the join operators on
the sender machine process as follows in order to avoid pnogu
duplicate results from the sender and the receiver.

e For all join operators except the root join operator on the
sender machine, aewtuple is being treated the same as
anold tuple. When a joined tuple is outputted from a join
operator, the joined tuple is set to be nemly whenall its
sub-tuples ar@ewas well. Otherwise, the tuple is still set
to beold.

At the root join operator, when two tuples are to be joined,

if both tuples are marked as new, they a@t joined to-
gether. Instead, the tuples are just used to purge pasdition
and are then inserted to the corresponding partitions. i$his
because the new-to-new joins are to be done on the receiver
machine.

The sender machine sends AltOldPurged message back
to the DM when all old tuples have been purged from all the
partitions that belong to the set of to-be-moved partitions

As the last step of the PTLB protocol, Step 5 the DM sends a
DeletePartitionamessage to the sender machine and all machines
with active split operators. Each active split operator wiken
remove the entries that map the to-be-moved partition IDtheo
sender machine. This allows the split operator to forward e
ples belonging to these partitions to the receiver machihe dhe
split operator then puts aBndOfPartitionsflag to all the output
gueues connecting to the sender machine. When a join operato
has received thEndOfPartitionsflag from all its input queues, it
can delete the to-be-moved partitions from its states. @imegp-
erator also forwards aBndOfPartitionsflag to its parent. When
the root join operator has received all tRadOfPartitionsflags
from its input queues, the PTLB process is considered to be ov



Algorithms 1 and 2 sketch the high level interactions betwee
the distribution manager and the processors on each madhine
ing the runtime PT load balancing process. Algorithm 1 dbssr
the basic operations of the distribution manager. Sinyil#lgo-
rithm 2 describes the steps performed on a participatinggzsor
during the PTLB process. Here, tkendandwait are primitive
operators designed to send or wait for messages acrossmasachi

Algorithm 1 PT-State-Rebalance:Manager(sender, receiver, amt)

/*It controls load balance process by sending control mgesa
to participating machines and waiting for corresponding re
sponses.*/

1: sendComputePartitionsToMoyamt) msg tesender

2: wait until getPartitionsToMovemsg;

3: send DuplicatePartitionsto sender & machines with active
split operator(s);
wait until getAllOIdPurgedmsg from the sender machine;
sendDeletePartitionsamsg to sender & machines with active
split operator(s);

4.
5:

Algorithm 2 PT-State-Rebalance:Processor()

/* To receive messages, perform corresponding actionsretudn
message(s) to the distribution manager.*/

1: while (keepGoingdo
2:  wait for control message of PTLB protocol;
3:  switch(protocol)
4:  ComputePartitionsToMove /*compute partitions to be
moved/
5: compute partitions to move;
6: sendPartitionsToMovemsg to Distribution Manager;
7:  DuplicatePartitions /*send new tuples to both machites
8: split operators start sending new tuples to both machines
9: root join operator waits for old tuples to be purged;
10: root join operator sendsllOldPurgedmsg to DM;
11: DeletePartitions /* Delete to-be-moved partitiofis
12: split operators stop sending tuples in the given panti
to the sender machine;
13: join operators on sender remove given partitions;

14: end while

In summary, the PTLB is a general strategy that does not need
to care about the detailed properties about the plan itseth as
the types of the operators and the shapes of the plans. Titndisi
fies the process of load balancing, especially when the plapes
can be different between the sender and the receiver. lhalsthe
advantage of not having to stop the query execution in tHeeto-
moved partitions at any point of time. It thus does not haweeial
with on-the-fly tuples. However, this simplicity comes witlprice
of both CPU and memory overhead, which will prevail as long as
the balancing process is ongoing. The whole process caratake
long as 2W timeframe to finish. This is undesirable for cambims
queries with large windows, which are in fact the ones thastmo
likely need to be executed in a distributed system in thefieste.

It also incurs the extra overhead of having to store the sahe s
of tuples for these to-be-moved partitions on both the senme
chine and the receiver machine. To overcome these shorgsmi
we design the second runtime load balancing protocol, thémgo
state protocol, which is described in the next section.

4. Load Balancing With Plan-Aware Strategy

4.1 Basic Idea: Moving Partitions

The basic idea of themoving state stratedyg to safely move to-
be-moved partitions on the sender machine directly intsthtes
on the receiver machine without losing any useful data. isxtac-
tion, we describe the necessary steps of the moving stategy
including state matchingstate moving@ndstate recomputing

Q

B QA&
Figure 4. Example of Moving States From Old

Plan (left) to New Plan (right).

State matchingletermines the pairs of states, one in the sender
and one in the receiver machine, between which tuples can be
safely directly moved. Two states can move tuples in between
them if and only if they contain tuples with the same schema. |
our query plans, a tuple’s schema is defined by all its colubm |
We define a state’s ID as the same to its tuple’s schema, and all
tuples in one state have the same schema. If two states have th
same state ID, we say that those two statesnaatching states
In Figure 4, state$Sa, Sg, Sc, Sp) exist in both boxes and are
matching states. StatéSzc, Secp) appear in the new box only
(the box on the right), and statéSag, Sarc) appear in the old
box only (the box on the left). These are thus unmatchedsstate

After thestate matchingwe can then take thetate movingtep
to move tuples between all pairs of matching states. Thelslefa
how these move is achieved is describe in Section 4.2.

Assume that now the chosen partitions have indeed been moved
safely, then the partitions on the receiver machine staetexe-
cuted with the unmatched states being empty. In the joinatper
B 1 C'in Figure 5, onlynewB tuples can be joined witbld or
newC tuples inSc.* Also, only newC tuples can be joined with
old or newB tuples inSs. Hence only combined BC tuple with its
two sub-tuples’ old/new status as (new, old), (old, new)raw,
new) can be generated. The combination (old, old) would meve
be generated.

Therefore, before restarting the execution of the query pta
the receiver machine, we need to gain back thalseld combi-
nations viastate recomputing This can be done by recursively
recomputing the unmatched states from bottom to top.

4.2 Distributed MSLB Protocols

In Figure 5S¢ only containsold tuples. However, eachewC
tuple inserted intoSc may have been joined with B tuples, and
after a while the stat§- may contain bottold andnewtuples.
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all tuples that belong to the to-be-moved partitions. Theans
that no more tuples that belong to these partitions will coifitee
sender machine then sendBeactivatednessage back to the DM
as Step 4.

Steps 3 and 4 not only deactivate to-be-moved partitioresy, th
also allow the operators on the sender machine to finish psotg
all on-the-fly tuples in these input queues that belong tedtte-
be-moved partitions. This clean-up stage is necessargukec
if the partitions were to be moved right away without the olea
up, the on-the-fly tuples won't be able to join with these athe
moved partitions on the sender machine. We thus may miss some
of the query results due to load balancing process.

The actual partition movement is achieved in Steps 5, 6 and 7,
as depicted in Figure 6. The DM first waits for tBeactivated
message from all the involved machines. After that, as Stépeb
DM sends &SendPartitionsnessage to the sender machine. Upon
receiving such a message, as Step 6 the sender machine packs a

The key of the distributed moving state load balance (MSLB) the partition groups with the selected IDs and sends therheo t

strategy is that now we need to carefully synchronize thégar
ipating machines, including the distribution manager (Dkfe

sender and the receiver in order to achieve the load balgncin

without resulting in any loss, duplicate or incorrect queggults.

receiver machine usingReceivePartitionmessage.

After receiving theReceivePartitionsnessage from the sender,
along with all the partition groups, the receiver machirenthon-
ducts the following process:

Hence we have developed an 8-step communication protocol to
achieve the MS load rebalancing. Each step consists of one or
more message exchanges between distribution manager (M) a
one of the query processors.

Steps 1 and 2 in the MSLB protocol correspond to communi-
cation between the distribution manager and the senderineach
Basically the DM requests the sender machine to calculattbh
of the partition groups that needs to be moved to the receieer
chine. Steps 3 and 4 denote exchanges between the DM and pro-
cessors to deactivate to-be-moved partitions before treyeally
moved between machines. These steps are necessary bédwause t
processing of the to-be-moved partitions needs to be stbppe
fore they can be safely moved to another machine. In Stepe3, th
DM sends adeactivatePartitionsnessage, along with the to-be-
moved partition IDs calculated in Steps 1 and 2, to sender ma-
chine and all machines with active split operators. In thigne-
ple, both machines have active split operators and thuswitith
receive such message from the DM.

On machines with active split operators, after receivireds
activatePartitionsmessage, an active split operator will take the
following three actions in that order: 1) First, it removhs to-be-
moved partition IDs from its partition mapping table, satthewly
arriving tuples belonging to these partitions will no longe for-
warded to the sender machine. 2) Because after the firshaatiy
new tuple belonging to these partitions won't be forwardedrty
machine, the split operator needs to create buffers to teampo
hold these new tuples. 3) Lastly, the split operator insamtsnd-
OfPartitionInputFlaginto each output queue that connects to the
sender machine. After all active split operators on a machas

e First, the receiver machine extracts all the partitionsnfro

the received partition groups.

It then applies thetate partition matchingtep, as described

in Section 4.1, to match each single partition’s schema with
the existing states on the sender machine. If a match is
found, the single partition is then inserted to the staté tha
has the same schema. At this point, this single partition
should have a partition ID different from any existing par-
titions in that state. If a single partition cannot be matthe
with any state, this single partition is then discarded & th
receiver. Using the example in Figure 2, the moved parti-
tion group contains four single partitio342, Pg2, Pca

and Pap2. The first three single partitions will be inserted
into statesP4, Ps and P on machine M2 respectively,
while the single partitionP4 g2 is discarded since it does
not match any states on machine M2.

After the partition matching step, all the states that do not
have a matching partition inserted will require a partition
recomputation to regain the partitions that have the moved
partition IDs. This can be done by recursively recomputing
these single partitions in a bottom up fashion. Again using
the example in Figure 2, the staf& - does not have any
matching partition. So the partitioRzc2 that should have
been moved from the sender machine would now be recom-
puted by joining the moved single partitiof%;> and Pc-.
Note that we only need to join partitions with the same ID
as the to-be-generated partition.

taken these three actions, the machine sendsactivatedmes-
sage back to the DM as Step 4.
On the sender machine, after receivingdeactivatePartitions

After the partitions are being moved and recomputed, as Step
7 the receiver machine send®aceivednessage back to the DM.

This partition moving procedure is general, that is, it vebalso

message, the sender machine sets each join operator onghat m work when local plan optimization had not been invoked in the

chine to count the number &ndOfPartitioninputFlagthis oper-

system, meaning the shape of query plans stay unchanged. In

ator has received. When a join operator has received the samehat case, all partitions transfered between two machirikdey

number of theEndOfPartitionInputFlagsas its input queues, it

forwards this flag to its parent operator. When the root jgn o

erator has received such flags from all its input queuesnibens

that all operators on the sender machine have finished mioges

matching partitions on the receiver machine. Therefore arti-p
tion recomputation is necessary.

As the last step (Step 8) of the MSLB protocol, the DM sends

a ReactivatePartitionsnessage to all machines with active split
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Figure 6. MSLB: Move & Recomp. Partitions.

operators. Upon receiving such a message, the split opavdto
start forwarding new tuples belonging to the moved-pariii to
the receiver machine. The tuples in the temporary buffeltsago
be forwarded to the receiver machine all at once, after wtiieh
temporary buffers are removed from the machine. The praafess
MS load balancing is then finished.

Algorithms 3 and 4 sketch the high level interactions betwee

the distribution manager and the query processors on each ma20:

chine during the distributed MSLB process. Algorithm 3 diszs
the basic operations of the distribution manager.

Algorithm 3 MS-State-Rebalance:Manager(sender, receiver, amt)

/*It controls load balance process by sending moving pro-
tocols to local machines and waiting for corresponding re-
sponses.*/

1: sendComputePartitionsToMoyamt) msg tasender

2: wait until getPartitionsToMovemsg;

3: sendDeactivatePartitiongo sender & machines with split op-
erator(s);

: wait until get allDeactivatedmsgs;

. sendSendPartitionsnsg tosender

: wait until getReceivednsg;

. sendReactivatePartitionsnsg to machines with split opera-
tor(s);

~N o ol h

Similarly, Algorithm 4 describes the steps performed onma pa
ticipating processor during the state relocation procedse al-
gorithm waits for control messages in the MSLB protocol. It
performs corresponding actions based on the messagesrit-has
ceived.

Discussionin summary, the MS load rebalance strategy selects
partitions to move and then directly moves these partitfoois
the sender machine to the receiver. Different from the PTit#ts
egy, it needs to have the knowledge of the detailed infoionati
about the query plan. However, it directly moves partitifnasn
the sender and the receiver without delay, therefore it ebrase
the burden of the sender right away, which is supposed tode th
over-loaded machine of the two. It also does not incur theaext
overhead of having to send new tuples to both the sender and th
receiver, as in the PTLB strategy.

5. Experimental Evaluation

Algorithm 4 MS-State-Rebalance:Processor()

/* To receive messages, perform corresponding actionsretudn
message(s) to the distribution manager.*/

1: while (keepGoingdo

2:  wait for control messages of the MSLB protocol,

3.  switch(received protocol)

4:  ComputePartitionsToMove

5: compute partitions to move;

6: sendPartitionsToMovensg to Distribution Manager;

7:  DeactivatePartitions

8: deactivate partition inputs;

9: sendDeactivatedmsg to Distribution Manager;

10:  SendPartitions/*send out partitiony

11: wait on-the-fly tuples being processed;
12: send partitions viReceivePartitionsnsg to receiver;
13: ReceivePartitions /*receive, insert and recompute parti-

tionst/
14: extract single partitions from partition groups reeeiy
15: insert matching single partitions to correspondingesta
16: recompute single partitions in unmatched states;
17: sendReceivednsg to Distribution Manager;
18: ReactivatePartitions/*resume & redirect inputs for moved
partitions*/

19: reactivate moved partitions;

redirect moved partitions’ input;
21: end while

Our experimental evaluation focuses on two studies. Rinst,
show the benefits of adding local plan optimization in the dis
tributed continuous query processing along with the loddrza
ing adaptation. Second, we compare the performances ofvthe t
proposed load balancing strategies.

5.1 Experimental Setup

We have implemented the dynamic query optimization and the
two proposed load balancing strategies in a distributedimen
ous query processing system called D-CAPE [13]. The D-CAPE
system consists of a distribution manager, a stream gemexatl
arbitrary number of query engines. Each machine runs a arery
gine. The distribution manager collects statistics frorheguery
engine and initiates global load balancing among machiiiés.
stream generator generates tuples with arrival pattermelad as
the widely adopted Poisson process. System parametersasuch
stream input rates and global time windows are varied toatefle
the changes in workload and data characteristics.

All experiments are run on a 10-node clusters. Each node has
dual 2.4Hz Xeon CPUs with 2G main memory. We use the query
in Figure 1 as the experiment query. The join operators have i
stances installed on all machines. Split and union opeyatos
added to the plan accordingly. We devote one machine each to
run the distribution manager, the stream generator andithae-
plication that receives query results. The remaining nadesbe
utilized to execute the query plan.

5.2 Benefits of Local Query Optimization

Ouir first goal for experimental evaluation is to show thataloc
query optimization does boost the performance of par&#ib6Q
processing. To show the added benefits of local optimizatien
compare the query performances in the following four sg#tin



e No-Adapt In this setting, the same query plan is executed
from the beginning to the end. Neither local optimization

nor load balancing is applied to the query execution.

LM-only: Only Local Machine query optimization (LM) is
applied as the form of adaptation during query execution.

PTLB-onlyor MSLB only Only PTLB or MSLB is applied
as the adaptation method during query execution.

LM-PTLBor LM-MSLRB Both query optimization and load
balancing are applied during query execution.

In this set of experiments, each of the three stream inpuesafss
A, B and C) is partitioned into 100 partitions. The initiabpint
rates are all set to be 100 tuples/sec. The initial plan jsirsams
A with B then C. At the 30th second, the input rates of B and C
are both changed to 5 tuples/sec. This motivates the switttteo
two join operators to get a more efficient plan by dynamic plan
optimization. The partition functions in the split openatare ini-
tially set so that one machine in the system gets 50% of tlaé tot
workload, while the rest of the workload is divided evenlycanm
all machines. This indicates that load balancing is necgdsa
obtain a good query performance.

We show the results of applying LM with PTLB in Figures 7
and 8, which compare the performances of the four settings de
scribed above in terms of query throughput and total tuphes i
system, respectively, when PTLB is applied as the load balan
ing strategy. Here the term “total tuples” accounts for afiles
across all machines, not just tuples on one machine. Thigsho
the system performance as a whole.

The performance comparisons in term of throughput (accumu-
lated) is shown in Figure 7. It is clear that the executionhwit
neither forms of adaptation performs the worse. When apglyi
the PTLB-only the performance improves about 100% because
the workloads are more balanced on all machines. The eracuti
with only local plan optimizationl(M-only) but no load balanc-
ing also generates about twice the number of tuples geidebgte
No-Adapt This shows that local plan optimization, as a runtime
adaptation technique, can be as powerful as the widely wsat |
balancing. Lastly, the execution with both forms of adapudi®.M-

MSLB) has the best performance, producing about 330% more tu-

ples than theNo-Adapt This illustrates that combining the two
techniques can lead to a better performance than applythgrei
adaptation alone.
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Figure 7. Accumulated Throughput Compar-
isons (PTLB).

The total number of tuples in the system is a good indicator
for how well the query performs. A build-up of tuples in thessy

tem indicates that the query engine is not able to keep uptihgth
current workload. Figure 8 depicts the comparison of togal s
tem tuples among the four settings. The two settings withlloc
plan optimization (M-only andLM-PTLB) have much lower sys-
tem tuple build-up than the other two settin@3 (B-onlyandNo-
Adap). This is because both settings can apply query optimizatio
as soon as the changes in stream input rates are first detébeed
reduction of system tuples happens RFLB-onlyas well but is
much more behind the above two settings because it needsalto de
with a much higher tuple build-up. THeo-Adapthas about the
same highest build-up a&TLB-onlyand number of tuples slowly
drops as a result of slower stream input rates. But this drap m
happen too slow and thus too late for a system with limitedwarho
of memory. Both théTLB-onlyandNO-Adapthave higher likeli-
hood of causing system overflow than the other two settingis T
set of results shows that load balancing itself may sometimee
very limited impact on lowering the total memory cost of tlys-s
tem. Plan optimization, even if local, can be much more aatti
when it comes to releasing the burden of memory in the system.
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Figure 8. Total Tuples Comparisons (PTLB).

When MSLB is applied as the load balancing strategy, we ob-
serve very similar patterns in both performance charts egpeaoed
to the corresponding performance charts depicted in Figuiend
8, respectively. Further discussions on this set of resuéiomit-
ted here due to space limits.

In summary, our experiments have shown that applying query
optimization can be very effective when processing disted
continuous query plans. Furthermore, we have made thenfollo
ing three observations based on our tested scenarios:dl joery
optimization can be as effective as load balancing in by avipg
partitioned continuous query performance in distributgstems.

2) query optimization can decrease the total system resaamc-
sumptions while load balancing only balances the workload b
does not decrease it. 3) Combining both adaptation techaiqu
can significantly improve query performances beyond whatlevo
be achievable by only applying each adaptation indiviguall

5.3 Comparing PTLB and MSLB

In this evaluation, we compare the runtime performances of
the two proposed load balancing techniques, namely PTLB and
MSLB. We vary window sizes and stream rates, in order to com-
pare the two strategies in a range of parameter settings, Ibw,
medium to high. The stream rates are set to be one of the three
values: 30, 40 or 50 tuples/sec, while the window sizes drtose
be one of the four settings: 15, 30, 45, 60 second. Therefere w
have 3 x 4 =12 different experimental settings. During oyresx
ments, we run each setting for at least 5 times, and get thagae



of the total throughput as the throughput of that settingl. tidé

other environment setup is the same as in the previous sectio 140
For each setting, we run the experiment with no adaptation to
serve as base performance. We then run the experiment by appl
ing either PTLB or MSLB to adapt the query plan. The average
throughputs of PTLB runs and MSLB runs are then divided by the
base average throughput to get the scatedughput ratio The
throughput ratio for the run with no adaptation is 1 sinces itli-
vided by itself. The larger the throughput ratio is, the &ethe
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query performs as compared to the run without adaptation.
Figures 9, 10 and 11 depict the results of the 12 settings with g 201
different combinations of window sizes and stream rateschEa . ‘ ‘ ‘ -
figure compares the throughput ratio of the base case, th&PTL W=15sec W=30sec W=45sec W=60sec
run and the MSLB run. Figure 9 shows the results of the 4 ggttin Arrival Rate = 40 tuples/sec

in which the stream rates are set to be 30 tuples/sec. We ean se  Figure 12. Average Lengths of Load Balance

that as the size of the window grows, the difference of awerag (A = 40).

throughput ratios between the base case and either PTLBwlin a

the MSLB run are getting larger. the cost for state moving and recomputation is high (largéest
The difference between PTLB and MSLB also changes from sijze) while the cost for processing new tuples is relatively

insignificant, when window size is small, to about 25% diéfece,  (jow stream rates). Such situation will happen when theastre

with the MSLB gaining the edge. This is because, as the window statistics changes shortly before the load balancing peoce

size grows, the total time to finish PTLB also becomes larges ( We set up an experiment to reflect this situation. For theethre

timated as 2W). This means the over-loaded machine wilicoat input streams, A, B and C, the initial input rates are 100esysiec.

to be overloaded because it needs to purge out all the olédupl At 30th second, the input rates for B and C slow down to 5 tu-

This slow relief can have a negative impact on the overallesys  ples/sec. This triggers a local query optimization on thetmire

performance. In comparison, MSLB releases the overloaded m jith the highest workload. The load balancing process is the

chine right away by moving tuples to another machine. Even if yoked. The result of this experimental setup is shown Fididre

some states are unmatched and need to be recomputed, tkis woras we can see, the PTLB starts to have better performanaetadte

will be done at the receiver Side, which is eXpeCted to be the u load ba|ancing process is triggered. This is because suehnst

derloaded machine. Therefore the impact of such recompntat  changes benefit PTLB as it lowers the cost of purging old &iple

to the overall query performance would be rather light. However, since the state size has already grown very largsat
We can observe similar but more dramatic trends in Figure 10, point, the cost of moving state tup|es and recomputing uoheat

where the stream rates are all set to be 40 tuples/sec. 3iace t states can be high. So in this case PTLB is winning.

stream rate is higher than in the previous set of results|ete

of the PTLB and MSLB versus the base case is much larger even [PTLE  + MSLB < NoAdapt |

when the window size is small. 1200000
In Figure 11, when the stream rate is set to the relativelit hig 1000000 |

50 tuples/sec, the trend is a bit different. First, when tiedaw

size is small, the different between PTLB or MSLB and the base

case is very large. On average, the PTLB produces about 90%3 sooooo |

more tuples while the MSLB produces about 100% more tuples &

than the base case. However, as the window size grows Iargeré

800000

tuples)

400000

this difference is not further enlarged. Instead, the gapden 200000

the base and the PTLB is getting narrower. This is because as 0 b ‘ ‘ ‘ ‘ ‘ ‘

both stream rates and window sizes are high, the PTLB starts t 0 S0000 100000 150000 (mz;;oooo 250000 300000 350000
take a long time and consume large amounts of system resource

in order to purge all old tuples on the already overloadedisen Figure 13. PTLB-better-than-MSLB Case.

machine. Therefore it becomes less efficient. On the othed,ha Discussion. In summary, we have demonstrated that MSLB

the MSLB is becoming more efficient in comparison to the PTLB, has petter performance than PTLB because the former stilize

demonstrating that MSLB is a better choice when parame®m h  nderloaded machine more while the latter continues usiagk

high values. . ready overloaded machine to purge old tuples. However, runde
Figure 12 compares the average total time taken by the tvib loa certain circumstances, the cost of state purging can belemal

balancing strategies in the 4 experiment settings whenr@R  than the cost of state moving and state recomputing. This may

rates are set to be 40 tuples/sec. Similar results are al#\@#  occur when the data statistics change towards the diredian

for the other 8 settings but are omitted here due to space si decreases the cost of PTLB. In this case applying PTLB can be
have been estimated, the PTLB always takes approximately 2Wmqre efficient than applying MSLB.

time to finish, while the MSLB usually takes much shorter time
complete the whole process. .
So far our experimental results have shown that the MsLB 6. Conclusions
strategy is winning. However, given certain combinatiotie Existing load balancing solutions have made the simplifyin
PTLB can perform better than the MSLB as well. This is when assumption that query plan instances on all machines atie, sta
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parisons ( A = 30).

i.e., no query optimization is conducted at runtime. Thigésrly
unrealistic for dynamic stream systems. In this paper, watpo
out that adding plan optimization to distributed continsiouery
processing is beneficial but doing so also creates new prshile
dynamic load balancing. The new problem is the heterogeneit 9]
of query plan shapes among machines as a result of applyiag lo
query optimization, which has yet to be dealt with by curstate-
of-the-art load balancing strategies. We therefore prepes new
load balancing strategies, namely the PTLB and the MSLBestra
gies, along with their corresponding protocols, that calare
the workload while seamlessly handling the complexity edusy
local plan changes in the system. The PTLB strategy is a gener
load balancing strategy that requires no knowledge of thikern
lying query plan optimization. The MSLB strategy, on theesth
hand, rebalances the workload by comparing the detailegesha
of the query plans among different machines. Both strasduige
been implemented in our prototype continuous query sysgum.
experiments show that the combination of query optimizrasiod
load balancing exhibits significantly superior performas¢han
applying each adaptation technique alone. The MSLB is shHown
be more efficient than the PTLB in most experiments.

Our future work will investigate other stateful operatassch
as groupby and duplicate elimination. Also, other inteégrafs-
sues, such as relocation decisions based on local planeshwiay
be studied.

parisons (A = 40).
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