
D-CAPE: Distributed and Self-Tuned Continuous Query
Processing

Timothy M. Sutherland,Bin Liu, Mariana Jbantova, Elke A. Rundensteiner
Computer Science Department, Worcester Polytechnic Institute,Worcester, MA 01609

(tims | jbantova | binliu | rundenst)@cs.wpi.edu

Categories and Subject Descriptors
H.2 [DATABASE MANAGEMENT Systems.]:
Distributed Databases

General Terms
Design, Performance

Keywords
Distributed Continuous Query Processing,
Distributed Stream Query Engine. Self-Tuning.

1. INTRODUCTION
Efficient continuous query processing is critical for many appli-

cations, including monitoring remote sensors network traffic man-
agement, and online transaction processing. To overcome resource
limitations and achieve real-time responsiveness, continuous query
systems research focuses on issues such as load shedding, punctuation-
driven operator-state purging [4], operator scheduling [7] and plan
optimization and on-line migration [9].

However, when real-time yet accurate results are critical such
as in stock market analysis, then there is a limitation to what any
of the above optimization techniques can accomplish. Hence, dis-
tributed processing must be applied to support required scalability.
It has been already proven in traditional database systems [3] that
distributed processing results in high scale-up and speed-up capa-
bilities due to aggregated resources. The design of a distributed
continuous query system is characterized by an extra complexity,
considered in the design of our D-Cape engine. In such a system,
data streams may be infinite and initial cost statistics about the data
streams are typically unknown. Moreover, cost statistics continue
to change over time.

Our research on distributed stream processing addresses two crit-
ical questions: (1) How to initially distribute query plansgiven
little or possibly no cost information, and (2) How to efficiently
adapt the query distribution corresponding to runtime environmen-
tal changes. Even though research is now under way in designing
distributed continuous query systems [2], [1], results to date, as far
as we know, are based on simulations. Our work offers empirical
results of distributed continuous query processing using an actual
software system [5], [6].

D-Cape, a distributed continuous query processing architecture,
employs stream query engines over a cluster of shared-nothing pro-
cessors. We employ a dedicateddistribution manager to manage

Copyright is held by the author/owner.
CIKM’05, October 31–November 5, 2005,Bremen,Germany.
ACM 1-59593-140-6/05/0010.

the distribution, monitoring, and runtime redistributionof query
plans, thus separating the control responsibility from theactual
query processing task. Unlike Aurora*/Medusa [2], [1] which fo-
cus on research issues of a large area network, D-Cape targets a
local cluster environment connected with a high speed network.
However, D-Cape’s controllers can be multi-tiered such that we
can have multiple controllers, each controlling a cluster.Our exper-
iments illustrate that D-Cape’s design is light-weight, yet effective.

Contributions. Contributions of this work include:

• A well-designed distributed architecture D-CAPE for effec-
tive query distribution, light-weight monitoring, and efficient
run time redistribution of continuous queries.

• Assuming no initial cost statistics, abalanced network-aware
algorithm is introduced that incorporates query plan topology
and workload concerns into the initial distribution decision.

• In addition, D-CAPE offers adegradation-based redistribu-
tion policy that is effective at run-time redistribution based on
observed throughput of query operators and machine loads.

• Our work is among the first to report experimental measure-
ments on an actual distributed continuous query processing
software system (not a simulation).

2. SOFTWARE ARCHITECTURE
Each machine in D-CAPE has a CAPE query processor [6] in-

stalled, which performs the query processing tasks (Figure1). A set
of query processors is managed by a dedicateddistribution man-
ager (Figure 2).

EachCAPE Query Processoris composed of seven modules. The
execution engine oversees the execution of query plans based on
information fromstatistics gathererand decisions by the scheduler.
Thestream feeder is a separate thread responsible for taking tuples
received by thestream receiver and placing them in the proper in-
put queues of operators. Thestream distributor sends tuples to the
next query processor or to an end-user application. Theconnec-
tion manager, the interface between thequery processor and the
distribution manager, handles requests such as activating operators
on a processor, or sending the current status of the processor to the
distribution manager.

The Distribution Manager synchronizes the management of the
installation and execution of query plans across the computing clus-
ter. Theruntime monitor listens for statistical updates from each
query processor. Theconnection manager executes the connec-
tion protocol to establish remote connections between every pair of

Distribution
Manager

Stream Query
Redistribution

GUI

Stream
Distributor

Stream
Feeder

Stream
Receiver

Connection
Manager

Statistics
Gatherer

Execution
Scheduler

Execution Engine

Streaming
data

End User

Tuple Storage
Manager

Legend:
Control Flow:
Data Flow:

CAPE Engine (Query Processor)

Query Plan 1 … Query plan n
Internet

…

Figure 1: Query Processor Architecture
Distribution Manager

Connection
Manager

Query Plan
Manager

Runtime
Monitor

Distribution Decision
Maker

Distributed Strategy
Repository

Cost Model
Repository

Configuration
Repository

CAPE
Engine
(Query

Processor)

Figure 2: Distribution Manager Architecture

operators assigned to different query processors. Thedistribution
decision maker decides how to distribute the query plans. There are
two phases to this decision. First, an initial distributionis created
at startup when only limited cost statistics about the queryplans
are known. Then, at run-time, query operators are redistributed to
other query processors.

3. INITIAL QUERY PLAN DISTRIBUTION
Query plan distribution in D-CAPE is defined as the initial de-

ployment of query plans across a set of query processors. Since lit-
tle or even no cost statistics about data streams and query operators
can be assumed, we make use only of the definition of queries tobe
processed and the number of available query processors. As our ex-
periments show, the initial distribution significantly influences the
overall performance [8]. Some distributions, if not carefully de-
signed, will not always increase performance beyond that ofa sin-
gle query processor or even worse, they may degrade performance.

In D-CAPE, we introduce abalanced network-aware (BNA) dis-
tribution algorithm. This distribution reduces network connections
by keeping adjacent operators on the same processor while atthe
same time it balances the load per machine measured in numberof
operators allocated on a query processor.

1 2 3 4

5
7

9

6

8

P1

1 2 3 4

5
7

9

6

8

P2

1 2 3 4

5
7

9

6

8

P3

Figure 3: Example of Connection

Figure 4 shows how the choice of an initial distribution can sig-
nificantly influence query plan performance. For this experiment a
medium workload (a query plan with 40 operators) was distributed
over 2 query processors using the BNA and the Random initial dis-
tribution. For 30 minutesQ2 produces only 50,000 tuples if the
Random distribution is used to deploy operators across query pro-
cessors. Whereas, the same query plan performs about 10 times

0

100000

200000

300000

400000

500000

600000

700000

800000

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time (m)

T
hr

ou
gh

pu
t

Random Initial Distribution

Balanced Network Aware Distribution

RID + Redist

BNA + Redist

Figure 4: BNA and Random Distribution and Redistribution, 2
QPs (Medium Workload).

better in terms of the number of tuples produced if the BNA distri-
bution is used for initial query plan deployment.

4. SELF-TUNING VIA REDISTRIBUTION
D-CAPE is designed to have the capabilities of monitoring pro-

cessing performance in a non-obtrusive manner and of seamlessly
redistributing query operators during runtime even under fluctuat-
ing network conditions [8]. One of the policies implementedin
D-Cape is thedegradation-based redistribution policy. This policy
alleviates load on machines that have shown a degradation inoutput
rate since the last time operators were allocated to the machine by
moving the most costly operators to other query processors.In this,
we give highest preference to operators that will reduce thenum-
ber of network connections from the overall distribution ifmore
than one operator is available to be moved. As Figure 4 shows,our
runtime redistribution algorithm can improve the performance of a
query plan even if a good initial distribution was used.

The protocol of moving query operators from one query proces-
sor to another seamlessly deactivates the operators to be moved in
the original processor and reactivates them in the new processor.
We package our protocol into a six-step protocol [8].

5. REFERENCES
[1] D. Abadi, Y. Ahmad, and et. al. The design of the borealis

stream processing engine. InCIDR, page to appear, 2005.
[2] M. Balazinska, H. Balakrishnan, and M. Stonebraker.

Contract-based load management in federated distributed
systems. In1st Symposium on NSDI, March 2004.

[3] D. DeWitt and J. Gray. Parallel database systems: The future
of high performance database systems.Communications of the
ACM, 35(6):85–98, June 1992.

[4] N. M. L.Ding, E.Rundensteiner, and G. Heineman. Joining
punctuated streams. InEDBT, pages 587–604, 2004.

[5] B. Liu, Y. Zhu, M. Jbantova, and E. Rundensteiner. DAX: A
Dynamically Adaptive Distributed System for Processing
Complex Continuous Queries. InVLDB Demo, 2005.

[6] E. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Pielech,
and N. Mehta. Cape: Continuous query engine with
heterogeneous-grained adaptivity. demonstration paper.In
VLDB Demonstration, pages 1353–1356, 2004.

[7] T. Sutherland, B. Pielech, Y. Zhu, L. Ding, and E. A.
Rundensteiner. An adaptive multi-objective scheduling
selection framework. InIDEAS, 2005.

[8] T. Sutherland and E. Rundensteiner. D–cape: A self-tunung
continuous query plan distribution architecture. Technical
Report WPI-CS-TR-04-18, WPI, CS Dept., 2004.

[9] Y. Zhu, E. Rundensteiner, and G. Heineman. Dynamic plan
migration for continuous queries over data streams. InACM
SIGMOD, pages 431–442, June 2004.

