D-CAPE: Distributed and Self-Tuned Continuous Query
Processing

Timothy M. Sutherland,Bin Liu, Mariana Jbantova, Elke A. Rundensteiner
Computer Science Department, Worcester Polytechnic Institute,Worcester, MA 01609

(tims | jbantova | binliu | rundenst)@cs.wpi.edu

Categories and Subject Descriptors

H.2 [DATABASE MANAGEMENT Systems.]:
Distributed Databases

General Terms
Design, Performance

Keywords

Distributed Continuous Query Processing,
Distributed Stream Query Engine. Self-Tuning.

1. INTRODUCTION

Efficient continuous query processing is critical for mappla
cations, including monitoring remote sensors networKitrafan-
agement, and online transaction processing. To overcosogiiee
limitations and achieve real-time responsiveness, coatis query
systems research focuses on issues such as load sheddicigtion-
driven operator-state purging [4], operator schedulirjgaf plan
optimization and on-line migration [9].

However, when real-time yet accurate results are critinzahs
as in stock market analysis, then there is a limitation totveimy
of the above optimization techniques can accomplish. Hettise
tributed processing must be applied to support requireldisidiy.

It has been already proven in traditional database syst8hibdt
distributed processing results in high scale-up and sppechpa-
bilities due to aggregated resources. The design of a lalitdl
continuous query system is characterized by an extra cotityle
considered in the design of our D-Cape engine. In such amyste
data streams may be infinite and initial cost statistics athmudata
streams are typically unknown. Moreover, cost statist@m#tioue

to change over time.

Our research on distributed stream processing addressesitw
ical questions: (1) How to initially distribute query plags/en
little or possibly no cost information, and (2) How to efficity
adapt the query distribution corresponding to runtime remrmen-
tal changes. Even though research is now under way in degigni
distributed continuous query systems [2], [1], resultsatedas far
as we know, are based on simulations. Our work offers engpiric
results of distributed continuous query processing usmgaual
software system [5], [6].

D-Cape, a distributed continuous query processing athite,
employs stream query engines over a cluster of sharedrgpiind-
cessors. We employ a dedicateidtribution manager to manage

Copyright is held by the author/owner.
CIKM' 05, October 31-November 5, 2005,Bremen,Germany.
ACM 1-59593-140-6/05/0010.

the distribution, monitoring, and runtime redistributioh query
plans, thus separating the control responsibility from dlceual
query processing task. Unlike Aurora*/Medusa [2], [1] whiD-
cus on research issues of a large area network, D-Capegarget
local cluster environment connected with a high speed mitwo
However, D-Cape’s controllers can be multi-tiered such tha
can have multiple controllers, each controlling a clu§iar.exper-
iments illustrate that D-Cape’s design is light-weight, gective.

Contributions. Contributions of this work include:

e A well-designed distributed architecture D-CAPE for effec
tive query distribution, light-weight monitoring, and efnt
run time redistribution of continuous queries.

e Assuming no initial cost statistics jal anced network-aware
algorithm is introduced that incorporates query plan toggl
and workload concerns into the initial distribution deaorsi

e In addition, D-CAPE offers alegradation-based redistribu-
tion policy that is effective at run-time redistributiondeal on
observed throughput of query operators and machine loads.

e Our work is among the first to report experimental measure-
ments on an actual distributed continuous query processing
software system (not a simulation).

2. SOFTWARE ARCHITECTURE

Each machine in D-CAPE has a CAPE query processor [6] in-
stalled, which performs the query processing tasks (Fitjura set
of query processors is managed by a dedicalenlibution man-
ager (Figure 2).

EachCAPE Query Processoris composed of seven modules. The
execution engine oversees the execution of query plans based on
information fromstatistics gathererand decisions by the scheduler.
Thestream feeder is a separate thread responsible for taking tuples
received by thetream receiver and placing them in the proper in-
put queues of operators. Thigeam distributor sends tuples to the
next query processor or to an end-user application. cneec-

tion manager, the interface between thgiery processor and the
distribution manager, handles requests such as activating operators
on a processor, or sending the current status of the praciest®
distribution manager.

The Distribution Manager synchronizes the management of the
installation and execution of query plans across the commguatus-
ter. Theruntime monitor listens for statistical updates from each
query processor. Theonnection manager executes the connec-
tion protocol to establish remote connections betweeryguer of

CAPE Engine (Query Processor)

Distribution
Manager

I

Stream Query
Redistribution

T

Query Plan 1.... Query plan n

IIII\

Connection
Manager

Statistics
Gatherer

Execution
Scheduler

—

‘ Execution Engine ‘

[A—]
Stream Tuple Storage| Stream
| Distributor, Manager Feeder

agl
4
Streaming
data II

Figure 1: Query Processor Architecture

Distribution Manager

Stream
Receiver

Legend
Control Flow: .
Data Flow: melp

Runtime
Monitor

Connection
Manager

Query Plan
Manager

CAPE

Engine

(Query
Processor)

Distribution Decision

L o2

|

Figure 2: Distribution Manager Architecture

operators assigned to different query processors. distegbution
decision maker decides how to distribute the query plans. There are
two phases to this decision. First, an initial distributiercreated

at startup when only limited cost statistics about the queans

are known. Then, at run-time, query operators are rediggibto
other query processors.

3. INITIAL QUERY PLAN DISTRIBUTION

Query plan distribution in D-CAPE is defined as the initiat de
ployment of query plans across a set of query processorse 8in
tle or even no cost statistics about data streams and quergtops
can be assumed, we make use only of the definition of querles to
processed and the number of available query processorsurAso
periments show, the initial distribution significantly inéinces the
overall performance [8]. Some distributions, if not caligfule-
signed, will not always increase performance beyond thatsin-
gle query processor or even worse, they may degrade perfcena

In D-CAPE, we introduce balanced network-aware (BNA) dis-
tribution algorithm. This distribution reduces networknoections
by keeping adjacent operators on the same processor wtte at
same time it balances the load per machine measured in nwhber
operators allocated on a query processor.

PS
-1

23> 4>

Figure 3: Example of Connection

Figure 4 shows how the choice of an initial distribution cap s
nificantly influence query plan performance. For this experit a
medium workload (a query plan with 40 operators) was distetd
over 2 query processors using the BNA and the Random inigal d
tribution. For 30 minute€)-. produces only 50,000 tuples if the
Random distribution is used to deploy operators acrossycqurer
cessors. Whereas, the same query plan performs about 16 time

800000

—e—Random Initial Distribution
—=—Balanced Network Aware Distributi
—a—RID + Redist

—x—BNA + Redist

700000

600000

500000

put

S 400000

£ 300000

200000

100000

o

© v x o ®

Figure 4. BNA and Random Distribution and Redistribution, 2
QPs (Medium Workload).

better in terms of the number of tuples produced if the BNAridis
bution is used for initial query plan deployment.

4. SELF-TUNING VIA REDISTRIBUTION

D-CAPE is designed to have the capabilities of monitoring pr
cessing performance in a non-obtrusive manner and of sesaiyle
redistributing query operators during runtime even undesttiat-
ing network conditions [8]. One of the policies implemeniad
D-Cape is thalegradation-based redistribution policy. This policy
alleviates load on machines that have shown a degradatmrtpoit
rate since the last time operators were allocated to the imadly
moving the most costly operators to other query processothis,
we give highest preference to operators that will reducentira-
ber of network connections from the overall distributiormibre
than one operator is available to be moved. As Figure 4 shawvs,
runtime redistribution algorithm can improve the perfonoa of a
query plan even if a good initial distribution was used.

The protocol of moving query operators from one query proces
sor to another seamlessly deactivates the operators to wednm
the original processor and reactivates them in the new psoce
We package our protocol into a six-step protocol [8].

5. REFERENCES

[1] D. Abadi, Y. Ahmad, and et. al. The design of the borealis

stream processing engine.@iDR, page to appear, 2005.

M. Balazinska, H. Balakrishnan, and M. Stonebraker.

Contract-based load management in federated distributed

systems. Irlst Symposium on NSDI, March 2004.

D. DeWitt and J. Gray. Parallel database systems: Thedut

of high performance database syste@@mmunications of the

ACM, 35(6):85-98, June 1992.

N. M. L.Ding, E.Rundensteiner, and G. Heineman. Joining

punctuated streams. EDBT, pages 587-604, 2004.

B. Liu, Y. Zhu, M. Jbantova, and E. Rundensteiner. DAX: A

Dynamically Adaptive Distributed System for Processing

Complex Continuous Queries. \fLDB Demo, 2005.

E. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, B. Bé#,

and N. Mehta. Cape: Continuous query engine with

heterogeneous-grained adaptivity. demonstration paper.

VLDB Demonstration, pages 1353-1356, 2004.

[7] T. Sutherland, B. Pielech, Y. Zhu, L. Ding, and E. A.
Rundensteiner. An adaptive multi-objective scheduling
selection framework. IhDEAS, 2005.

[8] T. Sutherland and E. Rundensteiner. D—cape: A self#ignu
continuous query plan distribution architecture. Techhic
Report WPI-CS-TR-04-18, WPI, CS Dept., 2004.

[9] Y. Zhu, E. Rundensteiner, and G. Heineman. Dynamic plan
migration for continuous queries over data stream#Qm
S GMOD, pages 431442, June 2004.

(2]

(3]

[4]
[5]

[6]

