
Dynamic Plan Migration for Continuous Queries Over Data
Streams ∗

Yali Zhu, Elke A. Rundensteiner and George T. Heineman
Department of Computer Science, Worcester Polytechnic Institute,

100 Institute Road, Worcester, MA 01609
{yaliz, rundenst, heineman}@cs.wpi.edu

ABSTRACT
Dynamic plan migration is concerned with the on-the-fly
transition from one continuous query plan to a semantically
equivalent yet more efficient plan. Migration is important
for stream monitoring systems where long-running queries
may have to withstand fluctuations in stream workloads and
data characteristics. Existing migration methods generally
adopt a pause-drain-resume strategy that pauses the process-
ing of new data, purges all old data in the existing plan, until
finally the new plan can be plugged into the system. How-
ever, these existing strategies do not address the problem of
migrating query plans that contain stateful operators, such
as joins. We now develop solutions for online plan migra-
tion for continuous stateful plans. In particular, in this pa-
per, we propose two alternative strategies, called the moving
state strategy and the parallel track strategy, one exploiting
reusability and the second employs parallelism to seamlessly
migrate between continuous join plans without affecting the
results of the query. We develop cost models for both mi-
gration strategies to analytically compare them. We embed
these migration strategies into the CAPE [7], a prototype
system of a stream query engine, and conduct a compara-
tive experimental study to evaluate these two strategies for
window-based join plans. Our experimental results illustrate
that the two strategies can vary significantly in terms of out-
put rates and intermediate storage spaces given distinct sys-
tem configurations and stream workloads.

1. INTRODUCTION
Many applications require the monitoring of data streams

using standing queries, including sensor networks, stock and
medical monitoring systems [2–4, 16, 19]. In those systems,
data may stream in from several often distributed network
locations, with unpredictable changes in arrival rates and in
value distributions. Queries posed over such streaming data

∗The research was partly supported by the RDC grant 2003-
04 on ”On-line Stream Monitoring Systems: Untethered
Healthcare, Intrusion Detection, and Beyond.”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2004 June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 . . .$5.00.

are usually long-running and an originally selected query
plan may later become sub-optimal or even produce poor
performance due to these changes. A stream query engine
must cope with such changing characteristics of the stream-
ing environment.

On-the-fly query re-optimization, one critical technology
focusing on addressing this problem, has attracted much re-
cent research attention [2,3,5,13,18,21]. Such a solution usu-
ally takes two steps. First, the optimizer dynamically selects
a new yet equivalent query plan based on system statistics
gathered at run time. This is referred to as the dynamic
query optimization process. Then the system needs to be
migrated from the query plan that it is currently running
to the semantically equivalent yet more efficient plan that
the optimizer has chosen. We refer to the latter process as
dynamic plan migration.

A migration strategy must guarantee that it will not alter
the results produced by the system during as well as after
the plan transition. This correctness implies that results
are neither missing nor contain duplicates. Traditionally,
a dynamic plan migration strategy [3], even if supposedly
dynamic, takes the following steps: 1) pause the execution of
the current query plan, 2) drain out all existing tuples in the
current query plan, 3) replace the current plan with the new
plan, and restart the execution. We refer to this traditional
approach as pause-drain-resume strategy. The purpose of
the draining step is to free the intermediate tuples in the
query plan so to prevent any missing output tuples.

The pause-drain-resume migration strategy may be ad-
equate to dynamically migrate a query plan that consists
of only stateless operators, such as select and project. A
stateless operator does not need to maintain intermediate
data nor other auxiliary state information so to be able to
generate complete and correct results. So all intermediate
tuples in such a stateless query plan exist only in intermedi-
ate queues and can be cleaned completely by the drain step
during the migration process. On the contrary, a stateful
operator, such as join, must store all tuples that have been
processed thus far from one input stream so to be able to
join them with future incoming tuples from the other input
stream. For a long-running query as in the case of contin-
uous queries, the number of tuples stored inside a stateful
operator, such as a join operator, can potentially be infinite.
Several strategies have been proposed to limit the number
of intermediate tuples kept in operator states by purging
unwanted tuples, including a join with window-based con-
straints [3,10,15,19] and a join with punctuation-based con-
straints [8, 20]. In all the above strategies the purge of the

old tuples inside the state is always driven by the processing
of new tuples or new punctuations from input streams.

It is important to note that for a query plan that contains
stateful operators such as joins, intermediate tuples may ex-
ist in both intermediate queues and in operator states. And
as noted above, the purge of tuples in the states relies on
the processing of new data. However, in the pause-drain-
resume migration strategy, before embarking on the drain
step, the execution of the query plan is paused so that no
new tuples beyond the intermediate tuples are being pro-
cessed until the migration is over. This creates a deadlock
in the migration process: the migration is waiting for all
old tuples in operator states to be purged from the old plan,
while the old tuples in those states are waiting for new tuples
to be processed in order to be purged. This problem has not
yet been addressed in the literature, and now is the topic of
our current work.

In this paper, we propose two plan migration strategies for
continuous queries over streaming data, namely the moving
state strategy and the parallel track strategy. Both strategies
deal with the migration of a query plan that contains stateful
operators, in particular join operators.

The moving state strategy first pauses the execution of
the query plan and drains out tuples inside intermediate
queues, similar to the above pause-drain-resume approach.
However, to avoid loss of any useful data inside states, it
then carefully maps and moves over all relevant tuples in
the states of the old query plan to their corresponding loca-
tion in the new query plan. This is shown in Section 4.1.2
to be insufficient and thus we also engage in selectively re-
computing intermediate tuples. The execution of the query
plan is then resumed with the new plugged-in plan. Since no
results are outputted during the migration stage, the output
stream may experience a duration of temporary silence.

For applications that desire a smooth and constant out-
put, we design a second migration strategy called the paral-
lel track strategy. This strategy migrates in a more gradual
fashion by continuing delivering output tuples even during
migration. Instead of moving tuples to the new query plan
and discarding the old query, it plugs in the new query plan
and starts executing both query plans in parallel. We de-
velop algorithms to eliminate potential duplicates and main-
tain the appropriate order of output tuples. Once the old
plan is found to be “antiquated”, it can simply be dis-
connected and the migration stage is then over.

We analyze the performance of these two migration strate-
gies using a cost model. We also have implemented both
strategies within the CAPE stream system [7]. This enabled
us to conduct an experimental study (not just simulation)
comparing these strategies under a variety of stream work-
loads. Our experimental results show that for smaller win-
dow constraints, the moving state strategy migrates more
quickly, while for larger window constraints the inverse can
be observed. During the migration stage, they exhibit dif-
ferent behaviors in terms of output rates and intermediate
storage usage. One strategy may be more suitable than the
other depending on the system resource limitations.

The rest of this paper is organized as follows. Section
2 establish the foundations, including time-related proper-
ties and window-based state purging algorithms. We give
the problem definition in Section 3, with our two migration
strategies described in Section 4. We develop a cost-based
model and analytically compare the migration strategies in

Section 5. Section 6 is devoted to the experimental results,
followed by a discussion of related work in Section 7. In
Section 8 we draw our conclusions.

2. STATE PURGING ALGORITHMS

2.1 Window Join Operators
We employ a symmetric window-based binary join algo-

rithm [11, 22] as commonly used for join operators in con-
tinuous queries [3, 15, 19]. Without loss of generality, we
adopt time-based (not tuple-count-based) sliding window
constraints. A sample query plan for the query A ⊲⊳ B ⊲⊳

C ⊲⊳ D that consists of three join operators with input
streams A, B, C and D is depicted in Figure 1(a). The
join operator B ⊲⊳ C in Figure 1(b) has two input queues
QAB and QC , two states SAB and SC , one associated with
each input queue, and one output queue QABC . Each state
stores the tuples that fall within the current time window
from its associated input queue. For each tuple AB from
QAB, the join involves three steps: 1) purge – AB is used to
purge tuples in state SC , 2) join – AB is joined with the tu-
ples left in SC , and 3) insert – AB is inserted into state SAB.
The same process applies similarly to any tuple from QC .
We call this 3-step process as purge-join-insert algorithm.

BC

Input Queue QAB Input Queue QC

SAB SC

Output Queue QABC

CD

BC

AB

QA QB QC QD

Output Joined
Tuple ABCD

(a) (b)

Figure 1: Join Operators and Their States

Join states are limited by the sizes of window constraints.
A window constraint WAB posed over joining streams A and
B indicates that two tuples from streams A and B respec-
tively can be joined only if their timestamps are within WAB

from each other. For simplicity in the rest of the paper we
assume same (global) time window constraint as in [4] on
all pairs of streams, as the example illustrated in Figure 2
for a query A ⊲⊳ B ⊲⊳ C ⊲⊳ D, WAB = WBC = WCD =
WAD = WAC = WBD. In general, the window constraints
among join pairs may be different or even unconstrained.
However, our migration framework could be easily extended
to handle such more relaxed window constraints1 and due
to space limitations this is not described here.

A time-based window requires that each newly arriving
tuple has a timestamp. Within each stream entering the
leaves of the query plan, the tuples are assumed to be or-
dered by their timestamps [4, 15, 19]. A tuple has a single
timestamp when it first arrives in the stream, referred to
as a singleton tuple. When two tuples are joined together,

1For these situations, the window constraint between any
pair is the shortest path between the pair in a window con-
straint relationship graph as the one in Figure 2.

the timestamp for the joined tuple is an array that concate-
nates the timestamps from both joining tuples, as indicated
in Figure 3. Both timestamps are kept because either of
them might be used by other join operators in the query
plan to purge tuples. We call such a tuple with a combined
timestamp a combined tuple.

A

B C

D

WAB

WBC

WCD

WAD

WBD
WAC

Figure 2: Graph on
Window Constraints

TSA TSB

TSA TSB

TimeStamp of
Tuple A

TimeStamp of
Tuple B

TimeStamp TSAB of
Joined Tuple AB

Figure 3: Combined
Timestamp

2.2 Purge by Singleton Tuples
The algorithm to purge a state by a singleton tuple is

straightforward. For a join operator A ⊲⊳ B with window
size W, since tuples from stream A are strictly ordered, a
B tuple in state SB is purged by an A tuple if and only if
(TSA−TSB) > W . A similar algorithm can also be applied
when using a singleton tuple to purge a state with combined
tuples: If a C tuple is used to purge state SAB , a combined
AB tuple is purged by the C tuple if (TSC − TSA) > W or
(TSC − TSB) > W .

2.3 Purge by Combined Tuples
Purging a state by a combined tuple is more complex than

purging by a singleton tuple, because a combined timestamp
has multiple columns and may not be ordered by any of these
timestamp columns. By utilizing the same purge algorithm
described above, some tuples may be purged by earlier com-
plex tuples even though they may still have the potential to
join with future incoming tuples. We thus need a generic
and safe purging algorithm for both singlton and complex
tuples.

2.4 Timestamp Order
Although a sequence of tuples with combined timestamps

is not strictly ordered by any one of its timestamps, some
Timestamp Order can still be observed.

Lemma 2.1 (Timestamp Order Lemma). Let t and
t’ be two tuples in the output queue of a binary window join
operator. Both tuples have timestamps of size n, represented
as [TS1, ..., TSn] and [TS′

1, ..., TS′

n] respectively. If tuple t
appears earlier than tuple t’ in the queue, then there must
exist at least one i (1 <= i <= n), such that TSi < TS′

i.

Proof: We now give a proof by induction on the size of
timestamp array n. Suppose that the window join operator
has two input queues QL and QR, two states SL and SR,
and one output queue QLR. t and t’ are tuples in QLR.

Base case: n = 2. Let [TS1, TS2] and [TS′

1, TS′

2] be
the timestamps of tuples t and t’ respectively. Tuples with
a combined timestamp array of size 2 must be formed by
joining two sub-tuples each with a timestamp of size 1. So
t is formed by joining t1 with timestamp TS1 and t2 with

timestamp TS2. And t’ is formed by joining t1’ with times-
tamp TS′

1 and t2’ with timestamp TS′

2. Without loss of
generality, let us assume that t1 and t1’ are from QL, and
t2 and t2’ from QR. All tuples in QL and QR are singleton
tuples and are strictly ordered by their timestamps.

Since tuple t comes before t’ in QLR, t must have been
generated earlier than t’. When sub-tuples t1 and t2 are
about to be joined to generate tuple t, two cases are possible:
1) t1 is the first tuple in QL and t2 is inside SR, or 2) t1
is inside SL and t2 is the first tuple in QR. At this time,
sub-tuples t1’ and t2’ cannot both be in states. Because
otherwise they must have been joined already and tuple t’
would appear before t in QLR. So if sub-tuple t1’ with
timestamp TS′

1 is not yet in SL, then it is or will arrive in
QL. In this case we have TS1 < TS′

1 and i = 1. If sub-tuples
t2’ with timestamp TS′

2 is not in state SR, then it is or will
arrive in QR. So TS2 < TS′

2 and i = 2.
From above we conclude that for base case n = 2, there

always exists an i such that TSi < TS′

i.
Inductive Hypothesis: Assume that the timestamp or-

der lemma holds for any tuple sequence with size n <= k.
Inductive Step: We now show that the timestamp order

lemma also holds for sequences with size n = k + 1.
The timestamp array for t with size n = k + 1 can be

treated as a combination of two sub-tuples t1 and t2 with
timestamp arrays as [TS1, ..., TSj] and [TSj+1, ..., TSk+1],
respectively. Similarly, t’ can also be treated as the combi-
nation of two sub-tuples t1’ and t2’ with timestamp array
as [TS′

1, ..., TS′

j] and [TS′

j+1, ..., TS′

k+1], respectively. Since
each array is at least of size 1, it must be true that j <= k.
So both timestamp arrays have a size of at most k.

Using the same reasoning as in the base case, when sub-
tuples t1 and t2 are about to be joined to generate tuple
t, at least one sub-tuple t1’ or t2’ does not yet exist in
its respective join state. If sub-tuple t1’ with timestamp
[TS′

1, ..., TS′

j] is not in state SL, then it is or will arrive in
QL. Since t1’ must come after t1 in QL, based on Induction
Hypothesis, we know that there exists an m (0 < m <= j)
such that TSm < TS′

m. So in the case i = m. If sub-tuple
t2’ with timestamp [TS′

j+1, ..., TS′

k+1] is not in state SR,
then it is or will arrive in QR. Since t2’ comes after t2 in
QR, we can again find i = m (j < m <= k + 1 = n) such
that TSm < TS′

m.
So we conclude that the lemma holds for any tuple se-

quence in a query plan. 2

By utilizing the timestamp order lemma, we now describe
the general purge algorithm to safely purge tuples by either
a singleton tuple or a combined tuple. We attach a min-max
timestamp pair [TSmin, TSmax] to each tuple, correspond-
ing to the smallest and largest timestamps in its timestamp
array. For a singleton tuple, TSmin equals TSmax.

Lemma 2.2 (Purging Lemma). Assuming that time-
stamp order holds for any tuple sequence including queues
and states2 in the query plan, given two tuples tL (with n
timestamps) and tR (with m timestamps) that have min-max
timestamp pairs [TSminL

, TSmaxL
] and [TSminR

, TSmaxR
]

respectively, if (TSminL
− TSmaxR

) > W , then tR can be
purged from its state by tL.

Proof : We need to show that tR can be safely purged
because it can no longer be joined with any tuple that arrives
2In the case of hash join, tuples belong to the same hash
bucket are assumed to be ordered by their insertion time.

after tL in that sequence. Because the timestamp order
holds for any tuple t′L arriving after tL in the same sequence,
there exists an i (0 <= i <= n) such that TSiL

< TS′

iL
.

Since TSminL
is the smallest timestamp in the timestamp

array of tuple tL, we know that TSminL
<= TSiL

. Thus
TSminL

< TS′

iL
. Now for tR, given any j (0 <= j <= m)

we have TSjR
<= TSmaxR

. Since we know that (TSminL
−

TSmaxR
) > W , putting above together, we can get (TS′

iL
−

TSjR
) > W . Since the global window constraint is assumed

in any join pair, for any tuple t′L that comes after tuple tL in
the same sequence, it is outside the W window frame from
tuple tR. So we conclude it is safe to purge tR. 2

The above general purging lemma works for both singleton
and combined tuples. To our best knowledge, our timestamp
order lemma and purging algorithm are the first algorithms
to explicitly deal with the purging of a combined tuple with
multiple timestamps. In the case of singleton tuples, our
purging algorithm is essentially the same to the commonly
used purge algorithm [3, 15, 16, 19]. In some literatures [4,
6, 19], a combined tuple bears only one timestamp. This
timestamp can be either the combined tuple’s output time
from an operator [19], or the minimal timestamp [4] or the
maximal timestamp [6] of the combined tuple. In these cases
the purging of combined tuples is simplified to be the same
as purging of singleton tuples.

3. PROBLEM DEFINITION
We use the term box to refer to the plan or sub-plan se-

lected for migration. Each box consists of a set of operators
that together represent a valid connected query sub-plan.
It can be as large as the complete plan or as small as one
operator. Each box can have several box root operators each
associated with a box output queue, and several box leaf op-
erators each associated with a box input queue. Box interme-
diate queues connect operators inside a box. A queue inside
our query plan can have multiple operators as its producers
that append new tuples to the end of the queue, and multi-
ple operators as consumers that fetch tuples from the top of
the queue. Such a shared queue stores one cursor for each
consumer that points to the position of the tuple that this
consumer would fetch next.

BC

AB

QA QB QC QD

QABCD

AB

CD

BC

QA QB QC QD

QABCD

SAB SC

SA SB
SB

SC

SBC SD

SBCDSA
CD

SABC SD

Figure 4: Two Exchangeable Query Boxes

The migration problem can then be defined as the process
of transferring an old box containing the old query plan to
a new box containing the new query plan. The old and new
query plans must be equivalent to each other, indicating
that the old and new boxes have the same sets of box input
and output queues, as shown in Figure 4.

For a migration strategy to be valid, several requirements

need to be satisfied. First, it is crucial that the migration
strategy will not alter the correctness of the results of the
query plan. The same set of results, without any tuples
missing and without duplicates, should be generated for a
query plan independent from whether or not the migration
has been applied during its execution.

A more subtle problem is the order of the results. The
dynamic migration may change the structure of the query
plan, for example, switch the order of join operators, and
hence the order of the output tuples may also be affected.
In particular, the change of tuples’ order inside a box inter-
mediate queue may affect the processing of other upstream
operators in the query plan. For instance, as described in
Section 2.4, a join operator may rely on a certain timestamp
order to purge tuples in the states. If the tuples’ order is
disturbed by a migration strategy, the consequences may be
that some tuples may be purged from the states even if they
may still be useful to future tuples. Our general purge algo-
rithm is based on the timestamp order property described
in Lemma 2.1. By preserving this property, although the
exact order of the tuples may have been changed by the dy-
namic migration, the purge of the join operators can still be
executed correctly. In view of this, it is crucial to maintain
the timestamp order property. We thus aim to design our
migration strategies to guarantee this property.

4. MIGRATION STRATEGIES
We denote the time period of each online plan migration

process as migration stage, with the migration start time as
TM start and the migration end time as TM end. During the
migration stage, we refer to the states in the old box as old
states, and states in the new box as new states. All tuples
existing in the old box at TM start are called old tuples, and
any tuple entering old and new boxes after that time point
are called new tuples. That is, it is not the system time
that determines a tuple’s old or new status, but rather the
location of the tuple at TM start. If a tuple enters the old
box any time during the migration stage, although it has
arrived in the system or has been generated before TM start,
it is still treated as a new tuple by the old box. A combined
tuple that has any of its sub-tuple marked as old is referred
to as an old tuple, since it still has some contents that exist
in the old box at TM start. A combined tuple is considered
a new tuple only if all its sub-tuples are new.

4.1 Moving State Strategy
The basic idea of the moving state strategy is to safely

move old tuples in old states directly into the states in the
new box without losing any useful data. In this section, we
detail the necessary steps of the moving state strategy, in-
cluding state matching, state moving and state recomputing.

4.1.1 State Matching and Moving
State matching determines the pairs of states, one in the

old and one in the new box, between which tuples can be
safely moved. Two states can move tuples in between them if
and only if they contain tuples with the same schema. In our
query plans, a tuple’s schema is defined by all its column IDs.
We define a state’s ID as the same to its tuple’s schema, and
all tuples in one state have the same schema. If two states
have the same state ID, we say that those two states are
matching states. In Figure 5, states (SA, SB , SC , SD) exist
in both boxes and are matching states. States (SBC , SBCD)

appear in the new box only, and states (SAB , SABC) appear
in the old box only. These are thus unmatched states.

After the state matching, we can then take the state mov-
ing step to move tuples between all pairs of matching states.
A naive state moving method is that for all matching states,
we directly move the tuples from the old state to its match-
ing new state. This method, although correct, is a waste of
both time and storage. An improved method is to share a
state using the queue sharing technique described in Section
3. We create a new cursor for each matching new state that
points to the first tuple in its matching old state, indicat-
ing that all tuples in the old state are now shared by both
matching states. The cursors for the old matching states are
then dereferenced to complete this state moving process.

CD

BC

AB

QA QB QC QD

QABCD

AB

CD

BC

QA QB QC QD

QABCD

SABC SD

SAB SC

SA SB
SB SC

SBC SD

SBCDSA

Figure 5: Moving State Strategy

4.1.2 State Recomputing
Two questions remain regarding the unmatched states in

both old and new boxes: 1) Can we leave the unmatched
states in the new box empty? 2) Can we throw away the
old tuples inside the unmatched states in the old box?

To answer the first question, we need to determine whether
or not the complete set of results can be generated if the un-
matched states in the new box are left empty. We again use
the migration example shown in Figure 5, with the old box
on the left and the new box on the right. Each ABCD tuple
in the output queue QABCD can be treated as a combination
of four sub-tuples A, B, C and D, originally from QA, QB ,
QC , and QD respectively. We divide all the possible out-
comes of tuple ABCD based on the old/new status of their
sub-tuples. Figure 6 shows a list of all 16 possible cases with
their case #.

We now show that by leaving the unmatched states in
the new box empty, tuples in some of the 16 cases may
be lost. Figure 7 depicts the status of the new box right
after the state matching and moving steps. We show each
tuple inside the states and input queues by its sub-tuples’
old/new status. The two unmatched states SBC and SBCD ,
both empty, are shaded grey.

Assume that now we discard the old box and start exe-
cuting the new query plan with the unmatched states being
empty. In the join operator B ⊲⊳ C in Figure 7, only new B
tuples can be joined with old or new C tuples in SC .3 Also,

3In Figure 7 SC only contains old tuples. However, each
new C tuple inserted into SC may have been joined with B
tuples, and after a while the state SC may contain both old
and new tuples.

only new C tuples can be joined with old or new B tuples in
SB . Hence only combined BC tuple with its two sub-tuples’
old/new status as (new, old), (old, new) or (new, new) can
be generated by the join operator B ⊲⊳ C and later be in-
serted into state SBC . The combination (old, old) would
never be generated and inserted into SBC . This means that
among the 16 cases in Figure 6, cases #1, #2, #5 and #9
cannot be generated by the query plan after migration, be-
cause those cases all require that both sub-tuples B and C
are old. The same kind of problem occurs when leaving the
other unmatched state SBCD empty.

By leaving unmatched states in the new box empty, we
lose the all-old combinations of sub-tuples in these states.
This leads to the loss of some result tuples as shown in the
example above. So before restarting the execution of the
query plan, some computations need to be undertaken first
for the unmatched states in the new box in order to gain
back those all-old combinations. We refer to this step as
state recomputing. We have designed a recursive algorithm
shown in Algorithm 1 to compute the unmatched states in
the new box. It is designed for binary join operators to keep
it simple, but could easily be modified to suit multiple-input
join operators as well.

16
15

14
13
12
11
10
9
8
7
6
5
4
3
2
1

Case #

NewNewNewNew
OldNewNewNew

NewOldNewNew
NewNewOldNew
NewNewNewOld
OldNewOldNew
OldNewNewOld
NewOldOldNew
OldOldNewNew
NewOldNewOld
NewNewOldOld
OldOldOldNew
OldOldNewOld
OldNewOldOld
NewOldOldOld
OldOldOldOld
DCBA

Figure 6: Possible Old/New Status for Tuples in
Output Queue ABCD

AB

CD

BC

QB QC QDQA

Old
...

Old
...

Old
...

New
...

SA

SD

SB SC

SBCD

SBC

New
...

New
...

New
...

Old
...

Figure 7: Empty Unmatched States in the New Box

4.1.3 Safe State Discarding
Now we need to address the question if it is safe to discard

the old tuples inside those unmatched states in the old box.
As for the example in Figure 5, we have to determine if we
can discard the old tuples in states SAB and SABC inside
the old box on the left. To answer this question we need to

know if any of those old tuples in the unmatched old states
may have the potential to join with any new tuples.

Taking the unmatched old state SAB in the old box as an
example, clearly it can be discarded if the following condi-
tion holds: All sub-tuples A and B of the AB tuples in SAB

also exist in states SA and SB respectively. This is because
the states SA and SB are already shared by the new states in
the new box. This way no data would be lost by discarding
the unmatched old state SAB . However, we can show that
the above condition cannot be guaranteed. For example, in-
side the join operator A ⊲⊳ B in Figure 5, some tuples A and
B in SA or SB may have already been purged by newer tu-
ples from the input queue QB and QA. Before these tuples
are being purged from SA and SB , they may have already
joined with other B and A tuples and the joined AB tuples
may have already been inserted into SAB. Hence not all
sub-tuples A and B in SAB are necessarily present in SA

and SB . After the state matching, moving and recomputing
state, if we discard the unmatched old state SAB , some tu-
ples in state SAB that may still be able to join with a new
tuple C may then be lost. Then the results of the query plan
may be incomplete.

Algorithm 1 Recomputing unmatched states

During matching state step, mark a state as “matched” if
it has a matching state.
To start, set current op = new box root operator

recompute states(current op)
while current op has more state do

get the next state Si of current op;
get the child operator child op that has its output queue
associated with Si;
if child op is not new box operator then

continue;
end if
if Si is unmatched then

get child op l state;
get child op r state;
if either state of child op is unmatched then

recompute states(child op);
end if
Si = window join(child op l state, child op r state);
mark Si as “matched”;

end if
recompute states(child op);

end while

We can still discard the unmatched old states if the follow-
ing condition is met: The tuples in an unmatched old state
that contain sub-tuples that do not exist in any matched
states are impossible to join with any future incoming tu-
ples. We again use the example in Figure 5 to illustrate how
this condition can be met. It is clear that at TM start, the
query plan in the old box has only processed tuples with
timestamp up to TM start. In the unmatched old state SAB ,
all the sub-tuples A and B that do not exist in SA and SB

must have timestamps earlier than (TM start − W) (other-
wise they cannot have been purged from SA and SB). So
if we can guarantee that all new C tuples from QC have
a timestamp larger or equal to TM start, then they are not
able to join with any tuples in SAB that contain sub-tuples
A and B that do not exist in SA and SB.

Caused by either a scheduling algorithm or the availability

of system resources, tuples may not be processed immedi-
ately after they arrive and may rather be accumulated in the
input queues. So at TM start, tuples in QC may have time-
stamps earlier than TM start. If we want to safely discard
any unmatched states in the old box, one practical method
is to finish processing all the accumulated tuples in the old
box’s input queues that have arrived before TM start. This
works fine if all the old box input queues are stream input
queues, which means they are input queues to the leaf op-
erators. However, if the old box contain only a sub-tree of
the complete query tree and the box input queues are not
the stream input queues of the whole query plan, we need
to identify all the queues (from box input queues down to
the stream input queues) that may have some contribution
in terms of forwarding tuples to the old box. The accu-
mulated tuples that arrive before TM start in the involved
stream queues then need to be processed and pushed up the
query tree until reaching the output queue of the old box.45

The method cleanAccumulatedTuples() completes this task.
Its psuedo-code is omitted here for space reasons.

4.1.4 Overall Moving State Algorithm
Putting all the pieces together, we now show the complete

algorithm for our moving state strategy in Algorithm 2.

Algorithm 2 Moving State Migration

cleanAccumulatedTuples();
connect input and output queues of old and new boxes;
match states(old box, new box);
move states(old box, new box);
recompute states(root op of new box);
disconnect old box from current query plan;
start executing query plan with new box;

Once the moving state migration starts, after cleanAc-
cumulatedTuples(), no new results are produced until the
steps of matching, moving and recomputing states are fin-
ished. The length of this output silence is closely related to
the amount of tuples that need to be moved or recomputed
during the migration stage. This duration of output silence
may be less desirable for applications that are in favor of a
more steady output rate. To solve this problem, we design
the second migration strategy, the parallel track strategy,
to continuously deliver outputs even during the migration
stage.

4.2 Parallel Track Strategy
The basic idea for the parallel track migration strategy

is that at the migration start time, the input queues and
output queue are connected and shared between the old box
and the new box, using the queue sharing technique depicted
in Section 3. Both boxes are then being executed in parallel,
while waiting for all old tuples in the old box to be gradually

4We have further optimized this step by finding the largest
timestamp of the first tuple (or TM start, whichever is
smaller) in all the involved stream input queues, and push
up all accumulated tuples in these queues that have times-
tamps no later than this largest timestamp.
5We have also developed another method to gain back all
the sub-tuples in the unmatched states that do not exist in
the matched states and insert them back to the matched
states. Due to space limits, detailed discussion is omitted.

purged. During this process, new outputs are still being
continually produced by the query plan.

When the old box contains only new tuples, it is safe
to discard the old box. This is because all old tuples have
finished their duty in terms of contributing to the generation
of output results from the old box. Since we have been
executing the new box in parallel with the old box when the
migration first starts, all the new tuples now in the old box
exist in the new box as well.

4.2.1 Correctness of the Results
Correctness of the results involves two aspects: the out-

puts are complete and do not contain duplicates. We use the
example in Figure 4 to show that by going through parallel
track migration to transfer the query plan from the left to
the right, all 16 possible sub-tuple combinations of any out-
put tuple ABCD, as listed in Figure 6, can still be obtained.
In our parallel track strategy, both old and new boxes are
running in parallel until all the tuples with old status are
purged from the old box. By this time, the output tuples
that contain any old sub-tuple, as in the cases #1-#15, have
already been generated by the old box, either before (case
#1) or during the migration stage (cases #2-#15). Since the
new box starts its execution right after TM start, its states
are initially all empty, and all the new tuples fed into the
old box are also being processed by the new box. All output
tuples from the new box will have all their four sub-tuples
marked as new, reflecting case #16 in Figure 6. Thus all 16
cases are covered by either the old box or the new box.

4.2.2 Duplicate Elimination
We must also ensure that no duplicate tuples are being

generated. If we use the parallel track strategy described
above, although the old box will cover all 15 cases consisting
of at least one old sub-tuple, it may also generate the all-
new sub-tuple combination belonging to case #16 in Figure
6, duplicate to the output results from the new box.

To solve this duplication problem, a naive approach would
be to discard from the old box any tuples with all-new sub-
tuples. However, this method is too aggressive and will lose
some must-have tuples. For example in the join operator
B ⊲⊳ C, we cannot discard any combined tuple AB from
input queue QAB with both sub-tuples A and B marked as
new, because this AB tuple may still be able to join with
an old C tuple in state SC , and generate output tuples that
belong to either case #8 or case #14 in Figure 6. Even
if the AB tuple ends up joining with a new C tuple, the
joined tuple ABC, with all its sub-tuples marked as new,
may still join with an old D tuple in state SD. So the final
joined tuple ABCD belongs to case #15, which can only be
generated by the old box.

Thus the root join operator of the old box is the only safe
place to eliminate duplicates. This is done by preventing a
new tuple from joining with another new tuple. Hence if
two tuples that are about to join are both new, we simply
skip the join step in the regular purge-join-insert symmetric
join algorithm. The purge and insert steps are however still
undertaken as usual.

4.2.3 Timestamp Order Preservation
As described at the end of Section 3, the timestamp order

must be preserved to ensure that the correct results are be-
ing generated. During the parallel migration stage, both the

old and the new box share the same output queue into which
both will insert output tuples. Keeping the timestamp or-
der of the tuples in the output queue requires that both the
old and the new box coordinate with each other to output
tuples in the proper order.

Two characteristics of our parallel migration strategy as-
sist in developing a valid method for preserving timestamp
order. First, since each box is executed as a valid sub-query
plan, the timestamp order among the output tuples from
each box is preserved. Secondly, any output tuple from the
old box will be guaranteed to have at least one sub-tuple
being old, and all output tuples from the new box will have
all sub-tuples as new. This means that any tuple generated
by the new box will have at least one of its timestamps to
be later than any tuple generated by the old box.

Taking advantage of those two characteristics, we develop
an easy yet effective method to preserve the timestamp or-
der in the parallel track strategy. During the migration stage
while both boxes are executing, we only output tuples gen-
erated by the old box into the shared output queue. Any
output tuples generated by the new box are instead held in a
temporary buffer. When the old box is removed, all output
tuples held in the temporary buffer are then inserted into
the output queue all at once.

4.2.4 Overall Parallel Track Algorithm
As described above, although join operators in both boxes

are executed in parallel during the migration stage, besides
the regular join operation, they may have other tasks to fin-
ish: The old box root operator needs to avoid joining two
new tuples to prevent duplicate results, and the new box
root operator needs to hold any results during the migra-
tion stage in a temporary buffer to preserve the timestamp
order. We use the W Join() method for the regular purge-
join-insert symmetric window join algorithm described in
Section 1. The methods used by the operators in the old
box and the new box are referred to as W Old Join() and
W New Join() respectively.

Algorithm 3 Parallel Track Strategy

Pause execution of old box at TM start;
Connect input and output queues of old and new boxes;
Start a separate thread to run Monitor Old Box();
while No signal from thread Monitor Old Box() do

Old operators run W Join Old();
New operators run W Join New();

end while
Disconnect old box from current query plan;
Operators in new box resume running W Join();

To determine when to finish the migration, each operator
has an IF FINISHED flag initialized to be false. During the
migration stage, each operator in the old box checks at inter-
vals to see if all old tuples have been purged from its states.
Once this is the case the operator sets its IF FINISHED flag
to be true. The system also runs a light-weighted monitor
method called Monitor Old Box() in a separate thread to
check at intervals all the IF FINISHED flags of the opera-
tors in the old box. If an all-true scan is detected, it sends a
signal to the main thread to tell it to finish the migration by
disconnecting the old box from the current query plan. The
complete algorithm for the parallel track migration strategy
is shown in Algorithm 3.

Table 1: Terms Used in Cost Model
Term Meaning

N Number of operators in the old box
M Number of operators in the new box

Tm Time spent for each string comparison
Tc Time spent to create a new cursor
λA Average tuple input rate from QA

λB Average tuple input rate from QB

σAB Reduction factor of join operator A ⊲⊳ B

W Global time window constraint
Tj Time spent to join a pair of tuples
Ts Time spent to insert one tuple into a state

|SA| Number of tuples in state SA

|SB | Number of tuples in state SB

5. COST ANALYSIS
In this section, we describe cost models for estimating the

migration length and the system processing time required
by each migration strategy.

5.1 Analysis of Moving State Strategy
To estimate how long it takes to finish a moving state

migration, we need to add up the time spent on each migra-
tion step, including clean accumulated tuples, state match-
ing and moving, and state recomputing. The cost model
utilizes the binary nested-loop join algorithm with global
window constraint for simplicity, but it can easily be ex-
tended to cover other join algorithms. We also assume that
the system has enough computing power and memory re-
sources to keep up with the query processing without much
delay given the incoming data load.

Given the sufficient-system-resources assumption, new tu-
ples are generally being processed immediately without be-
ing accumulated in the input queues. So the time spent on
the cleanAccumulatedTuple() method is likely to be small
compared to other migration steps and is thus not counted
in the model. The time spent on state matching and moving
is related to the total number of states in both boxes. State
matching is basically a string matching between two lists of
state IDs. Moving a state is creating a new cursor to a state
so to enable its sharing between two matching states. Thus
its costs are minimal.

A list of terms and their meanings used in our model are
listed in Table 1. The time spent on state matching Tmatch

and state moving Tmove can be calculated as below. Here
we use the minimum of N and M to estimate the number of
matching state pairs.

Tmatch = 4NMTm and Tmove = 2min(N, M)Tc

In order to estimate the time spent on the state recomput-
ing step, we develop a general model to estimate the time to
recompute a single state. This model can then be applied to
each state that needs to be recomputed to get the total re-
computation time. Assume we have a join operator A ⊲⊳ B

with two input queues QA and QB, two states SA and SB ,
and one output queue QAB. Without loss of generality, the
tuple A and B each can be either a singleton or a combined
tuple. Suppose that the state SAB needs to be recomputed.
This is done by joining tuples from SA and SB using the
purge-join-insert symmetric join algorithm but skipping the
purge step. The time spent on this recomputing process can
be formulated as: TSAB

= Tj |SA||SB | + Ts|SA||SB |σAB .
Given the time window W and input rates from inputs A

and B, the state sizes of SA and SB , represented as |SA| and
|SB |, can be estimated as: |SA| = λAW , and |SB | = λBW .

Putting the above formulae together, we get the time for
recomputing SAB from SA and SB as:

TSAB
= TjλAλBW

2 + TsλAλBW
2
σAB

= λAλBW
2(Tj + TsσAB)

(1)

If another unmatched state above SAB needs to be recom-
puted, according to Equation 1, the output rate λAB is then
required. This can be estimated using Equation 2.

λAB = λA|SB |σAB + λB|SA|σAB = 2λAλBWσAB (2)

If we denote TS as the total time spent on recomputing
all unmatched states in the new box, the total migration
length of the moving state strategy TMS can be estimated
using the following model:

TMS = Tmatch + Tmove + TS (3)

5.2 Analysis of Parallel Track Strategy
We denote TPT as the length of the migration stage for

the parallel migration strategy. For this strategy, all old
tuples (tuples with at least one old sub-tuple) need to be
purged from the old box in order to finish the migration
stage. Suppose that h (h >= 1) is the height of the query
tree inside the old box. We analyze the time spent on the
parallel track migration stage in two cases:

TM-start

TM-end

Timeline

New New

OldOld

New New

W

W

Old Old

Figure 8: 2W to purge all old tuples

1) h = 1. In this case the query tree has only one level
of join operators. For a join operator inside the old box
to purge all old tuples from one of its two states, the join
operator must process new tuples from another input that
arrive in the next W time units. Given that the system has
enough computing power, TPT = W .

2) h > 1. This means that in the old box there is at least
one join operator which is above another join operator. Fig-
ure 8 depicts the old and new tuples along a timeline. The
migration start and end time is marked beside the timeline.
From the figure we can see that when the migration begins,
W time window’s new tuples from the box input queues are
needed to purge old tuples inside the states of box leaf op-
erators. However, as these new tuples are used to purge old
tuples, they may also join with some of the old tuples and
the results are being inserted into the state of the join opera-
tors above the box leaf operators. Because the joined tuples
contain an old sub-tuple, they are treated as old tuples and
need to be purged as well. In order to do so, the old box
needs to process another W time window’s new tuples to
completely purge these old tuples from the old box. So in
this case, TPT = 2W .

Other even older tuples may exist in the old box when the
migration first starts, represented by the first line of “old”
in Figure 8. These tuples will be purged by the first W new
tuples after migration starts, and will not be able to join
with any of the new tuples.

As a summary, given sufficient system processing power,
TPM has a linear relationship with the global window size
W. It can be formulated as:

TPT =



W if h = 1
2W if h > 1

(4)

Equation 4 shows that in order to complete a parallel
track migration, both old and new boxes need to process
at most 2W worth of new tuples. However, this is valid
only when the system has enough processing power so that
a tuple arrives in the system can be processed immediately.
If the system processing power is not sufficient, the actual
migration length may be longer than 2W. We now give the
cost model to estimate the cost of system processing time
during the parallel track migration. As in the cost analysis
for the moving state strategy, we have developed general
formulae to estimate the processing time spent on any join
operator (let us denote it as A ⊲⊳ B) in the old box and any
join operator (let us denote it as B ⊲⊳ C) in the new box.

We first compute TAB, the total cost of processing tuples
in 2W timeframe in operator A ⊲⊳ B inside the old box. It is
easy to see that for each new tuple A, the average number
of tuples B that will be purged from state B is λb

1

λa
, and

vice versa. The same method in Equation 2 can be applied
to compute the tuple output rate from operator A ⊲⊳ B.

TAB = Cost of Purge + Cost of Insert + Cost of Join

= 2W [Ts(
λa

λb

λb +
λb

λa

λa + λa + λb) + Tj(λa|SB | + λb|SA|)]

= 2W [2TjλaλbW + 2Ts(λa + λb)]

(5)

One major difference between operators inside the old and
the new boxes is that the states of operators inside the new
box all start empty. The sizes of the states keep on increas-
ing with no tuples being purged until the Wth time unit,
after which tuples begin to be purged and the state size
on average is limited by the window size W. This leads to
different methods of computing processing cost and tuple
output rate for a join operator inside the new box. These
are described in Equations 6 and 7.

TBC = Cost for the first W + Cost for the second W

= W [Ts(λb + λc) + Tj(λa

Z W

0

λbtdt + λb

Z W

0

λatdt)]

+ W [2TjλaλbW + 2Ts(λa + λb)]

(6)

λBC =


R t

0
2λbλcσbctdt if t ≤ W

2λbλcσbcW if t > W
(7)

6. EXPERIMENTAL RESULTS

6.1 Experimental Setup
We embed our migration strategies into the CAPE sys-

tem [7] and conduct various experiments to compare their
performance. We use the query in Figure 4 as the foreground
query on which the migration is performed to transfer the

plan from the left to the right. System parameters such as
stream input rates, operator reduction factors and global
time window are varied to reflect the changes of workload
and data characteristics. The query engine also simultane-
ously executes multiple background queries with their sys-
tem parameters kept stable.

Our stream data generator generates tuples with arrival
patterns modeled as the Poisson process. The mean inter-
arrival delay between two consecutive tuples is exponentially
distributed in order to model the Poisson arrival pattern. In
each experiment, the stream generator continuously gener-
ates streams for 50,000ms. All query plans are being exe-
cuted for a time period much longer than the global window
in order to pass the warm-up phase. A migration strategy is
then activated by the change of system parameters for the
foreground query plan.

All implementation is done in Java. The experiments were
run on a machine running windows 2000 with Pentium-III
processor at 500MHz and 384M of main memory.

6.2 Length of Migration Stage
In this section, we analyze the experimental results related

to the measured length of the migration stage and compare
them with the estimation models described in Section 5.

Both old and new query plans in Figure 4 have a height h
= 3. According to the Equation 4 in Section 5.2, the total
length of the migration stage of the parallel track strategy
should be TPT = 2W .

Given the same query plans, by applying the Equations
1, 2 and 3 from Section 5.1, we can estimate the length of
the migration stage for the moving state strategy as:

TMS = λBλCW
2(Tj + TsσBC)

+ 2λBλCλDW
3(TjσBC + TsσBCσBCD)

(8)

From the above results, we see that TPT grows linearly
with W. However, TMS is controlled by several parameters,
including input rates from QB , QC and QD, reduction fac-
tors σBC and σBCD, and the global time window W, with
which it has a polynomial relationship.

The above estimations are based on the assumption that
the system has enough processing power to handle incoming
tuples without much delay. We judge the availability of sys-
tem processing power in our experimental setup by compar-
ing the total system running time vs. the stream generator
running time. In our experiment, the stream generator in
each experiment runs for 50,000 ms, generating stream tu-
ples according to the given mean inter-arrival time. The sys-
tem stops executing the query plan when there are no more
tuples to process. If the system finishes at about 50,000ms
as well, it implies that the system has enough processing
power to keep up with the given parameter configurations.

To verify these estimations on the length of the migration
stage, we run three sets of experiments:

1) Set 1: Only W increases linearly, while all other pa-
rameters are kept constant.

2) Set 2: IB, the tuple inter-arrival time of stream B, is
decreased (indicating that input rate λB is increased) while
keeping all other parameters the same.

3) Set 3: W is increased linearly while other parameters
are kept the same. The difference from set 1 and 3 is that
set 3 has higher configurations with respect to input rates
and operators’ reduction factors.

Table 2: Parameter Configurations

Parameters Section 6.2 Section 6.3
set1 set2 set3 set1 set2

W(ms) vary 1000 vary 1000 2000
IA(ms) 100 50 100 100 50
IB(ms) 100 vary 12 100 50
IC(ms) 100 50 12 100 50
ID(ms) 100 50 12 100 50

σAB 0.1 0.1 0.1 0.1 0.2
σBC 0.05 0.05 0.1 0.02 0.05
σCD 0.02 0.02 0.1 0.02 0.05

0
2000
4000
6000
8000

10000
12000
14000

0 2000 4000 6000 8000
Global Window Size W (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

Measured T_PT Estimated T_PT

Figure 9: TPT vs. W

0

500

1000

1500

2000

0 2000 4000 6000 8000
Global Window Size W (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

Measured T_MS Poly. (Measured T_MS)

Figure 10: TMS vs. W

Figures 9 and 10 depict the results of the first experimen-
tal set. Figure 9 illustrates that TPT has a linear relationship
with W and is statistically equivalent to 2W, as is suggested
by the Equation 4 in the case of h > 1. The increasing curve
of TMS , marked as “Measured TMS in Figure 10, indicates
a close to polynomial relationship with W. A polynomial
trendline marked as “Poly.(Measured TMS)” is depicted as
well.

0

500

1000

1500

2000

2500

0 10 20 30 40 50
Arrival Rate from Input B (tuples/sec)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

T_MS T_PT

Figure 11: TMS and TPT

vs. λB

0

2000

4000

6000

8000

10000

12000

14000

0 1000 2000 3000 4000 5000
Window Size (ms)

M
ig

ra
ti

o
n

 T
im

e
(m

s)

T_MS T_PT

Figure 12: Comparison of
TMS and TPT vs. W

Figure 11 displays the results of set 2 when increasing the
input rate λB . It shows that the increase of λB has almost
no effect on TPT , which is fairly stable. However, when λB

increases, TMS increases as well.
The results of the experimental set 3 are depicted in Fig-

ure 12. At small window constraint sizes, the moving state
strategy migrates faster because the state sizes limited by
the window constraint are small. As the window size in-
creases, the parallel track migration time increases linearly,
and stays at about 2W. Since the total migration time for
the moving state strategy has a polynomial relationship with
the window size, the gap between the two lengths of migra-
tion stages is getting smaller. After a certain window size,
the parallel track strategy surpasses the moving state and
becomes the faster one of these two strategies.

6.3 Effects on Minimizing Intermediate Data
A common goal for a query optimizer is to minimize a

query plan’s intermediate data. This is usually achieved by
pushing the operators with the smallest reduction factors
down the query plan tree. In this section, we study the
performance of both migration strategies working with an
optimizer that has such an optimization goal.

We have conducted two sets of experiments with the pa-
rameters’ configurations shown in Table 2. Parameters in
set 1 are set to be low to create the situation of sufficient
system computing resources, while set 2 configures param-
eters to their high values to model the scenario that the
system computational power is not sufficient to process the
old query plan. Hence, a large delay for processing new tu-
ples is expected for the second set. In all the experiments,
we start migrating the old plan to the new plan after the
old plan has been executed for 10,000ms.

The results of the first experimental set with a low con-
figuration are shown in Figures 13 and 14. Each graph de-
picts the results for four different cases: 1) the moving state
strategy (MS), 2) the parallel track strategy (PT), 3) the
new query plan only (New), and 4) the old query plan only
(Old).

0

500

1000

1500

2000

2500

3000

0 10000 20000 30000 40000 50000 60000

Time (ms)

o

f i
n

te
rm

ed
ia

te
 tu

p
le

s

MS PT New Old

Figure 13: Intermediate Tuple Counts - Low Config

0

50

100

150

200

250

300

350

400

450

500

0 10000 20000 30000 40000 50000 60000

Time (ms)

O
u

tp
u

t R
at

e
(t

u
p

le
s/

se
c)

MS PT New OLd

Figure 14: Output Rate - Low Config

Figure 13 shows the intermediate tuple counts for the
above four cases. The new plan has a much smaller in-
termediate tuple count than the old plan throughout the
experiment. At the first 10,000ms, the three lines overlap
each other indicating that they have the same performance.
However, starting from around 10,000ms, two plans are mi-
grating to the new plan each using one of the migration
strategies. When given sufficient system processing power,
which usually indicates a small window size, the moving
state strategy starts to have the same intermediate tuple
count as the new plan case earlier than the parallel strategy.
This is because it usually migrates to the new plan faster
given a smaller window size. Both plans going through two

different migration strategies eventually have the same in-
termediate tuple count as the one running the new plan only.

Figure 14 depicts the four cases with respect to their out-
put rates. No strong advantage can be observed for either
migration strategy. This may be due to the fact that the
migration stage under a low configuration is usually short.
So even the parallel track strategy keeps on producing new
tuples during the migration stage, the plan using the mov-
ing state strategy is able to migrate to the new plan faster
so the output silence is short enough to be neglected.

The situation changes for the second experimental set
with a high configuration. Figures 15 and 16 show the re-
sults of all four cases. Since the system has insufficient pro-
cessing power to keep up with the old query plan, the new
query plan as well as the query plan with migration both
out-perform the old query plan dramatically in all experi-
mental results.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 20000 40000 60000 80000 100000 120000

Time (ms)

o

f
in

te
rm

ed
ia

te
 t

u
p

le
s

MS PT New Old

Figure 15: Intermediate Tuple Counts - High Config

0

500

1000

1500

2000

2500

0 20000 40000 60000 80000 100000 120000 140000 160000 180000

Time (ms)

O
u

tp
u

t R
at

e
(t

u
p

le
s/

se
c)

MS PT New Old

Figure 16: Output Rate - High Config

The parallel strategy has a smaller intermediate tuple
count as shown in Figure 15 and a higher output rate at
the initial stage of migration in Figure 16. This is because
the state sizes are much larger and thus the migration time
is much longer than what we have seen in the case of a low
configuration. During the state recomputing of the moving
state strategy, tuples in all states cannot be disposed until
the migration is over. There is a noticeable output silence
between 10,000ms and 20,000ms in Figure 16 for the moving
state strategy.

On the other hand, the parallel track strategy starts ex-
ecuting both the old and the new plans immediately, so in-
termediate tuples are being consumed (purged), and some
output tuples are being generated while the migration is
ongoing. Figures 15 and 16 show that although the total
time for the migration stage is still smaller in the case of
the moving state strategy, as it ends the overall execution
earlier, during the migration stage, the parallel strategy has
a better output rate and a smaller intermediate tuple count.

7. RELATED WORK
Although there is a renewed and more pressing need for

dynamic query plan optimization and migration for contin-
uous queries in streaming environments, on-the-fly query
plan re-optimization has been explored for static databases
[1,9,12,14].

[14] utilizes a run-time statistics collector and reconfig-
ures only the unprocessed portion of the running query plan
to improve performance. This solution is not very practical
for stream processing, because all operators in a long run-
ning query plan may have been executing by the time the
migration is needed. The dynamic optimization for static
databases proposed in [1] only applies to scan operators and
thus is limited in its usage.

[9,12] describe a query plan competing model to dynam-
ically change the running query plan to another plan. The
approach requires that before the query starts, several plans
have been chosen and will be executed in parallel. After a
while the plan that has the best performance thus far will
then be running alone with all other plans being discarded.
Although this approach shares some ideas with our parallel
track migration strategy, it is technically difficult or almost
impossible to come up with the candidates for query plans
before continuous queries start running. Furthermore, this
dynamic plan migration or re-configuration can be applied
only once, and is thus too limiting for a long running query.

The research in [3] proposes to utilize the pause-drain-
resume strategy for dynamic plan migration. We now put
forth that this strategy has not explicitly addressed how
to handle the case of query plans containing stateful op-
erators such as window joins with intermediate states. [18]
targets the dynamic plan migration in the context of long-
running queries in a distributed database system. The pro-
posed migration strategy cannot be undertaken whenever
an optimizer has selected a new query plan, but rather
it needs to wait until all involved operators entering their
own suspendable point. This extra wait is undesirable in a
volatile streaming environment since the new plan may be
sub-optimal again before the migration can even start.

Several dynamic query re-optimization by changing the
structure of the query plan have been proposed in [5, 21].
Most such optimization strategies alter the order of opera-
tors inside the query plan to achieve a better performance.
However, these works do not address how to migrate from
one plan to another plan at run time, once the optimizer
has picked a better plan for the system. This however is the
exact problem we are addressing in this paper.

[16] introduces adaptive query plan execution by rout-
ing tuples among operators inside a query plan. This novel
adaption method is different from the generally adopted
query plan re-optimization and migration method, in which
tuples follow the same assumed optimal processing path un-
til the structure of the plan is re-optimized. Eddy’s always-
adapting solution makes it suitable for a highly dynamic en-
vironment. However, the flexibility of Eddy comes at times
at the price of a per-tuple based overhead since extra in-
formation needs to be carried or computed to make routing
decisions. Furthermore, the eddy approach has the inher-
ent problem of having to recompute all delta intermediate
results in the case of multiple joins. This can cost large
amounts of processing time given high stream rates and join
selectivities. For an changing environment that is not highly
dynamic, the re-optimization and migration method may

have better performance given its batch processing nature.
Existing research has also shown how to migrate parts of

a query plan to other processors (machines) according to
current system statistics [17]. In this case the structure of
the query plan itself remains unchanged. This is a different
problem from the plan migration problem discussed in this
paper. Our plan migration targets the situation that the
structure of the query plan has changed, yet the execution
of the query plan remains on the same processor.

8. CONCLUSIONS
In this paper, we have described two dynamic query plan

migration strategies, namely the moving state strategy and
the parallel track strategy. Both support migration of con-
tinuous query plans that contain stateful operators, such as
joins. Each of our migration strategies has been designed to
guarantee that the correct results of the query plan are not
being altered, and the timestamp order of the tuples in any
queue is preserved. We also present a model to estimate the
length of the migration stage for each migration strategy.
Our experimental results confirm our analytical model.

Our migration strategies are designed to be generic to
work with any dynamic plan optimization algorithm. We
have tested the performance of our migration strategies with
the common plan optimization technique of minimizing in-
termediate results by pushing down operators with high re-
duction factors. The experimental results show that given
sufficient system resources, the moving state strategy usu-
ally finishes the migration stage quicker and has a better per-
formance in terms of intermediate results. However, if the
system has insufficient processing power to keep up with the
old query plan, the parallel track strategy, which can con-
tinuously output results even during the migration stage,
is observed to have less intermediate results, and a better
output rate during the migration stage.

9. ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their insightful

comments. We are grateful to Luping Ding, Timothy Suther-
land, Hong Su, Brad Pielech, Jinhui Jian and Nishant Mehta
for their enormous efforts put into the CAPE [7] system.

10. REFERENCES
[1] G. Antoshenkov. Dynamic optimization of index scan

restricted by booleans. In Proceedings of the IEEE
Conference on Data Engineering, pages 430–440, 1996.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proceedings of PODS, pages 1–16, 2002.

[3] D. Carney, U. Cetintemel, M. Cherniack, and et al.
Monitoring streams - a new class of data management
applications. In Proceedings of VLDB Conference,
pages 215–226, 2002.

[4] S. Chandrasekaran and M. J. Franklin. Streaming
queries over streaming data. In Proceedings of VLDB
Conference, pages 203–214, 2002.

[5] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In
Proceedings of International Conference on Data
Engineering, pages 345–356, 2002.

[6] M. Dalar, B. Babcock, S. Babu, and R. Motwani.
Chain: Operator scheduling for memory minimization
in stream systems. In Proceedings of ACM-SIGMOD,
pages 253–264, 2003.

[7] DatabaSe Research Group(DSRG), Worcester
Polytechnic Institute. Cape: Continuous adaptive
processing engine, http://davis.wpi.edu/dsrg/CAPE.

[8] L. Ding, N. Mehta, E. A. Rundensteiner, and G. T.
Heineman. Joining punctuated streams. In EDBT
Conference, pages 587–604, March 2004.

[9] G. Graefe and R. Cole. Optimization of dynamic
query evaluation plans. In Proceedings of
ACM-SIGMOD Conference, pages 150–160, 1994.

[10] M. A. Hammad, M. J. Franklin, W. G. Aref, and
A. K. Elmagarmid. Scheduling for shared window
joins over data streams. In Proceedings of VLDB
Conference, pages 297–308, 2003.

[11] P. J. Hass and J. M. Hellerstein. Ripple joins for
online aggregation. In Proceedings of ACM-SIGMOD
Conference, pages 287–298, 1999.

[12] Y. Ioannidis, R. T. Ng, K. Shim, and T. Sellis.
Parametric query optimization. In Proceedings of 18th
VLDB Conference, pages 103–114, 1992.

[13] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An xml
query engine for network-bound data. In VLDB
Journal, pages 11(4): 380–402, 2002.

[14] N. Kabra and D. J. DeWitt. Efficient mid-query
re-optimization of sub-optimal query execution plans.
In Proceedings of ACM-SIGMOD Conference, pages
106–117, 1998.

[15] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In Proceedings
of ICDE Conference, pages 341–352, 2003.

[16] S. Madden, M. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In Proceedings of ACM-SIGMOD, pages
49–60, 2002.

[17] K. W. Ng, Z. Wang, R. R. Muntz, and S. Nittel.
Dynamic query re-optimization. In Proceedings of
International Conference on Scientific and Statistical
Databases, pages 264–273, July 1999.

[18] K. W. Ng, Z. Wang, R. R. Muntz, and E. C. Shek. On
reconfiguring query execution plans in distributed
object-relational dbms. In Proceedings of International
Conference on Parallel and Distributed Systems, pages
59–66, 1998.

[19] R. Notwani, J. Widom, A. Arasu, and et al. Query
processing, appromixation, and resource management
in a data stream management system. In Proceedings
of CIDR Conference, pages 1–16, January 2002.

[20] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. In IEEE Transactions on Kowledge and Data
Enginerring, pages 15(3):555–568, May/June 2003.

[21] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
Proceedings of ACM-SIGMOD, pages 37–48, 2002.

[22] A. N. Wilschut and P. M. G. Apers. Dataflow query
execution in a parallel main-memory environment.
Distributed and Parallel Databases, 1(1):103–128,
1993.

