WPI-CS-TR-04-18 July 2004

D-CAPE: A Self-Tuning Continuous Query Plan Distribution
Architecture

by

Timothy Sutherland
Elke A. Rundensteiner

Computer Science
Technical Report
Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

D-CAPE: A Self-Tuning Continuous Query Plan Distribution A rchitecture

Timothy Sutherland, and Elke A. Rundensteiner
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA 01609
Tel.: (508) 831-5857, Fax: (508) 831-5776
{tims, rundenst@cs.wpi.edu

Abstract

While practically all reported results on stream query ares are for central systems, it is apparent that due to thefini
resources on a single query processor, future Data Streamadgament Systems must distribute their workload to meltipl
guery processors to meet the requirements of modern day quenkloads and increasing volumes of data streams. This
paper discusses a new scalable Distributed ContinuousyXagstem (D-CAPE) that has the ability to distribute queanpl
over a large cluster of machines. We describe the architeatfi the new system and policies and protocols for flexible
query plan distribution and redistribution to improve oa#performance. We also present techniques for self-migunery
plan re-distribution such as Balance and Degradation radisition algorithms. D-CAPE's architecture is flexibld|lawving
different distribution algorithms such as Round Robin anduping Distribution and operator reallocation policies be
incorporated with ease. D-CAPE provides an operator rezdkion algorithm that is able to seamlessly move an ope(ajor
across any query processor in our computing cluster.

The core contribution of this work is our extensive expentakevaluation using our software system, not a simulation
We observe that executing a query plan distributed overiptellimachines causes no overhead compared to processing it
on a single query processor, even for extremely lightly éshohachines. Distributing a query plan among a cluster ofgue
processors can boost performance up to twice that of a chrgdistream engine. Our experimental study uncovers Heat t
limitation of each query processor within the distributestwiork is not primarily in the volume of the data nor the numbe
of query operators, but rather in the number of remote datanestions per processor. The overhead of migrating query
operators is shown to be very low, allowing for a potentifigguent dynamic redistribution of query plans during exem.

Keywords: Distributed Streaming, Distribution Algorithms,Onlineéistribution Algorithms, Experimental Results, D-
CAPE.

1 Introduction

Recently, a growing area of research in the database conymsittie study of persistent queries over streaming dates. Th
core functionality of data stream monitoring is being cdimsContinuous Query Processing new effort is being under-
taken by the database community to derive a new generalalassitinuous query engines called Data Stream Management
Systems (DSMS). Data Stream Management Systems executegjor data that is continuously arriving, and then return
the result of the query to the end user in a real-time stregufaishion.

Query Plan 1

22
22

Query
Input Data
Streams Output
} Query Plan 2 '_>
, 1*
, 1*
} Query Plan n ‘_>

Figure 1. Traditional Continuous Query Processor

A DSMS may need to operate on several thousand queries agorarestreams of data for applications such as online
auctions, web servers, or to monitor stock market trende D8MS typically answers queries about the state of the data
over a period of time, and all queries are based on a partialsds, as new data is always arriving. For instance the ignest
“What is the highest stock price on the New York Stock Exchangr the last two hours?tan be answered by the DSMS,
with the answer of the question always changing over timeis Toncept is different than the traditional database model
where data is already in persistent storage and a query éxldsksed on this stored data. Traditional databases have the
advantage of knowing how much data there is to query overthaidthe data will not change (in most cases) during the
guery. On the other hand, a DSMS must be able to consume alptata set and give a result based on data seen thus far.

1.1 Motivation

Current Continuous Query Systems such as Stream [6], Ni&g§a{16], Aurora [1], and our WPI continuous query
system, CAPE [33], operate over streams of data on a singt@epsor and output results to the best of their ability. tleor
for Continuous Query Systems to operate in real-time, isgeatial that all data is kept in main memory, as once data is
written to persistent storage, the system slows down ceralidy. Current research that focuses on the issue of nEmmi
persistent storage use in a continuous query system ireluatd Shedding [1], Operator Scheduling [7][37] and Opmerat
State purging [24].

The potential benefits and applications of data stream psirtg are becoming more apparent and popular for many
applications in different business areas. These appicstinclude monitoring remote sensors [30], and onlinesaation
processing [39]. However, as the popularity of these systemreases, and more queries are registered and data stream
grow larger, it will beessentiato improve the processing power of these applications.

However, even with the current research, single CPU systeensot likely to be sufficient at handling future DSMS as 1)
streaming data gets larger and faster as network speedvirmrd) queries get larger, more complicated and plentfud,

3) more sophisticated and complex operators are incogaiato streaming systems (such as data grouping or statisti
summaries).

Given the finite amount of CPU speed and memory on a singlesyst distributed architecture will be better suited
to handle the load, variability, and complexity of streagnitata. Very recently, research is now under way in detengini
methods to distribute these query plans over a cluster afgssing nodes [34][20].

1.2 Our Overall Approach Towards Data Stream Processing

To alleviate this problem, an extension of CAPE called D-EARs been developed that exploits a cluster of processors
to aid in the processing of continuous queries. This papsudises the implementation of D-CAPE, that extends our cur-
rent DSMS, CAPE [33] to work over a cluster of query procesaming a centralized controller. D-CAPE is designed to
effectively and efficiently distribute query plans and ntonthe performance of each query processor with minimal-com
munication between the controller and query processors.bielle synchronization messages, thus minimizing packets
sent between query processors. These messages are atguantal at run-time to aid in minimizing the communication
cost of D-CAPE. We process data by creating “pipes” betwesmygprocessors to allow the data streams to flow, and then
filling these pipes with data streams once execution bedfinan also reallocate query operators, or complete sufispgtaa
different query processor at runtime during times of heaagd| or if it is determined by D-CAPE, using a cost model, that
the reallocation will boost the performance of the DSMS. BRE has a specialized algorithm for reconnecting thesespipe
during the reallocation process, to ensure no data is |labtheat data never stops flowing through the query plans.

1.3 Contributions

This paper contributes to the advancement of Data Streanaddament Systems in the following ways:

e A well-designed, distributed architecture called D-CAP4S been created for continuous querying that allows for
flexible query allocation and distribution strategies.

e D-CAPE is scalable allowing for distribution of query plaaraong any number of query processors by using a multi-
tiered controller architecture.

e D-CAPE allows for any number of distribution algorithms ®drsily plugged into our system. For our current system,
we developed two distribution algorithms, Round Robin fitisttion and Grouping Distribution, to analyze the ways
different query plan distributions affect query procegsanformance.

e D-CAPE allows for any cost model to be created for monitosagh query processor. These cost models can use
the statistical data that is recorded by each query procebsut the data, query plan or individual query operator in
determining the workload for a query processor.

e D-CAPE has the ability to actively monitor each query preoedo determine its workload at runtime and reallocate
any number of query operatorsaayquery processor in the processing cluster.

e D-CAPE also allows for any operator redistribution polioybe implemented that is independent from the cost model
used to determine workload. This gives D-CAPE the flexipiiit allow any redistribution policy to operate usiagy
cost model.

e D-CAPE implements aewoperator reallocation algorithm that is able to move ope(a) across any query processors
in the computing cluster without interrupting the data flowgaery processing on any of the involved processors.

e The original CAPE DSMS was improved by creating new comptstmboost performance, and also by removing
and optimizing other components. The improvements spaakii®o jump in query processing performance from the
original CAPE design.

e Our experimental studies confirm that a DDSMS can effegtipelrallelize the execution of query operators even
during periods when a processing node is not filled to capattitis improving performance even for small query
plans.

e Experimental studies find that our DDSMS allows for largergiusans to be processed efficiently; up to 100% faster
than a typical DSMS. In some cases a centralized DSMS fadlause of the lack of processing power.

¢ \We show experimentally that the initial distribution algom used for distributing query plan workload plays a signi
icant part in the overall performance of the query plan.

e Experimental studies also confirm that the overhead foistabiiting an operator is negligible. This allows our D-
CAPE architecture to reallocate a query operator or aneeqtiery sub-plan to any query processor in the cluster.

o Experimental studies also show that D-CAPE can effectiudyitor each query processor and reallocate query oper-
ators to improve the overall performance of the query plaa.fiid that operator allocation can improve performance
over a distribution algorithm alone by up to 100%.

1.4 Outline

First, in section 2 we will discuss the current work in DSMStsyn and also earlier work in Distributed DBMS systems.
Many of these concepts will contribute to our new D-DSMS desiln section 3 we will briefly discuss the background
of Data Stream Management Systems. We will show an examp@ey dar which a DSMS is used, and outline a DSMS
operator, and how it is different from the traditional SQLeogtor. In section 4 we will outline the design of our new D-
DSMS, D-CAPE. We will experimentally show that the networlethead for our design is low, and illustrate steps that
were taken to minimize the overhead of our design. sectiois&uidses the initial distribution of query operators amang
cluster of machines, and the observed costs of distribati@n the query processor cluster. We will experimentalysthe
performance differences in the type of distribution altjoris used in D-CAPE. In section 6 we discuss operator reztilog,
and our mechanism for determining the workload of a querggssor. We discusghichoperator to move angthereto move
it. Using experimental results, we find that we can effedivaonitor query processors and improve query performarce b
using our operator reallocation strategies. Finally irtisec7 we outline our conclusions and future work.

2 Related Work

In this section we will briefly discuss some areas of relatedwin both Data Stream Management Systems and also other
areas that utilize distribution techniques, such as opgyatystems and traditional Database Management Systetris. T
related work serves as a starting point for creating our owDIMS.

Current Data Stream Management SystemsData Stream Management Systems are gaining tremendoukagtpin
the Database field as remote data streams become availaldensors and monitors, and as the type of quepgiisistent
Thatis, the query is always running in the system and ismetlito the user in real-time. A DSMS also introduces many new
and interesting problems [6][12] in current research swchigh volumes of input data [14][26], operator schedulifi[3]
and data filtering [31]. There have been many systems prdpeaeh of which contributes differently to this growingdiel

Aurora [1] is a Data Stream Management System that mostlglossembles our work. Aurora allows a user to register
several continuous queries, and monitor those resultsighrtheir built-in GUI. They treat query operators as “bdxeisich
process streams of data. Aurora’s main contribution todhgs of research is the ability for its system to scheduledies
and manage data between memory and disk using Qos-basstypnimrmation. A user is able to input a graph represemtin
what the ideal QoS for the query should look like. Aurora itedb adjust its execution (the order of boxes scheduled and
which data is stored persistently) based on this QoS. Awlsmintroducetoad sheddindgo cope with degradations of QoS
in periods of bursty data arrival.

NiagaraCQ [16] is a scalable DSMS that aims to scale the nuaflygieries that a DSMS can handle by grouping together
common parts of a query plan and also using selection opstatids advantage by reducing the amount of intermediate da
in the system. They show that by using this grouping stratégy achieve scalability in the order of thousands of agseri
This work is complementary to ours, as we can take advantafeioquery plan grouping strategies to give our systenmeve
further processing power.

STREAM [6] is a DSMS whose focus is on effectively processitaga streams with bursty arrival rates. If the input
rate is high, the system approximates query results afesidihg some data. They have developed the Chain [7] operator
scheduling algorithm that has been shown to be near-optinminimizing the memory footprint of the system. They have
also created a Continuous Query Language (CQL) [3] thaeoatBDPSMS implementations can use when defining continuous
queries, more importantly defining clear semantics forioomtus queries.

TelegraphCQ [14] is a DSMS whose main contribution is thef continuous queries with widely varying data rates
and sizes. TelegraphCQ brings us the notion that a DSMS ieaistto data arriving into the system, rather than manage data
that is already contained within the system. Telegrapizatlan adaptive processing technique called Eddies [bhtloavs
a flexible routing technique for tuples between operatoetegraphCQ also spun off another DSMS called PSoup [15] that
has the ability to integrate streaming data with data thatready been captured to disk.

CAPE [33] is being developed here at WPI. Much of our work isyv@milar to that of Aurora and Stream. We also
model the query plans as a dataflow graph where operatoreanected by data pipelines. However, instead of improving
performance by approximation[6] or load shedding[1], we &b improve system performance and minimize resources
by adapting at different levels of query plan execution. Ke towest level we can adapt within a query operator using
punctuations [24]. At the query plan level, we support qus#ayn migration [41] and adaptive scheduling techniqueg [37

Distributed Data Stream Management SystemsFlux [34] is a new dataflow operator introduced in Telegra@hG
allow to adaptively partition an expensive operator sucla &indow Join [25][28]. Flux encounters many of the same
problems that our D-CAPE system will encounter when realing query operators. That is, we have to have a mechanism
for moving thestateof a query operator to ensure that no data is lost or misckediby the operator. We move our state in
a similar manner to the Flux operator. We first stop the injuaiee from the operator. We then marshall the state to send it
across the network, and then unmarshall it after it is rexxkby the second query processor. Once the state is unnadshal
we allow the operator to run, which will pick up seamlesslgdugse the state will be the same as the original operator. The
Flux operator can complement our D-CAPE system by adaptpagititioning our stateful operators.

Aurora* and Medusa [9][20][26] is the first published workdreating an architectural model for a D-DSMS. Several
necessary design challenges are discussed, includingspelts as the Query Model, Run-Time Operation, RoutingRul
Message Transport Protocol and Load Management. They geapdpush pull” architecture where query operators may
be reallocated to only neighboring processors so as to terftript the data stream. That is, there is no central cdetrol
that synchronizes all of the query processors. Insteath, @aery processor can communicate with their neighbor whey t
have a high workload and push an operator to that neighbay @lso propose aoperator splittingstrategy where a query
operator may be replicated among several machines to irapheperformance of the operator, similar to Flux.

By working in this “push pull” architecture, Aurora* limitthe options that the DSMS has when there is a very high
workload on multiple machines. It is quite possible to havduster of machines where one machine is empty, but since
Aurora* only considers neighboring processors the machifienot get utilized. They also do not provide a mechanism to
move a set of nodes or a query sub-tree at once.

Our system, D-CAPE, is similar in nature to the Aurora* sgstbowever, we do not place any restriction on the location
of where a query operator may be reallocated to. Our arcbiteavill allow operator reallocation across any two query
processors without a loss in data flow or data contents. &milerora*, D-CAPE utilizes a centralized controller. The
centralized controller allows D-CAPE to monitesichquery processor and consider the global ramifications ofimgayuery
operators. We also show that while the controller is ceizidl it is still scalable to hundreds or more query processde
also allow our controllers to be multi-tiered such that we bave multiple controllers, each controlling a cluster afoftines
that may have have similar queries or clusters that are #tlirsame location.

Instead of focusing on operator splitting as Aurora* hasejame aim to first analyze what effects the network has on
query plan distribution and how we can exploit advantagesgiiery plan execution. We then plan, as future work, to alter
our query model to allow for operator replication whilelstbmplimentary to our architecture. There is also otherkwor
pipelined query execution [40] where non-blocking quergrapors can be pipelined to improve performance. In our work
we will be able to pipeline operators because they are nockbig, but also process them in parallel across the cluster
guery processors.

Distributed Database SystemsAlso closely related to this area of research is that of ithsted database systems. We
are able to use many of the principles [22] used in early rebefar distributed database systems [22] such as Bubba [2],
Gamma [23], and Tandem [38]. There are three main types tfldited database systems: Shared-Disk, Shared-Nothing
and Shared-Memory architectures. The main advantage @liheed-Nothing architecture is scalability. This arattitee
can be scaled up to hundreds or even thousands [22] of payseSshis is possible because they do not interfere with one
another. The Shared-Nothing architecture is also mostdadgaous in environments where the data is partitioned.aBing
partitioned data, multiple resources need not share the skisk to read the data. Also, by having non-blocking opesato
we are able to maximize parallelism since operators needarstume an entire dataset before returning output results.

In D-CAPE, we model the architecture after the Shared-Mathpproach in [22]. DSMS systems will need to be scalable,
as the number of queries and the amount of stream data groyes.|&ince the data streams agurally partitioned, it is
easy for D-CAPE to redirect the data to the proper query msmewithout affecting any other query processors in thetetu

This Shared-Nothing approach maximizes query executiongsach query processor only manages data that it needs to
complete the query. D-CAPE also makes uses of non-blockiegators which will aid in parallelism if a single query plan

is distributed among several query processors. Parenatmpein the query plan will be able to consume data that wgsibu
from the children, even though it is a partial answer. Thiéiwiprove the performance of our DSMS.

Dynamic Load Balancing. There is also a lot of research in the area of Dynamic Loadri8atg from Distributed-DBMS
systems [10][11][32] that discuss issues such as: datastensy, reallocation techniques, and communicationscoate
find that these issues are similar in the context of our DSM8,aur architecture will have to be designed in such a way to
minimize network costs [10][29] and the number of threadsaystem utilizes [11]. Because of these observed factars, w
will create query operator distributions that will aim atmmizing the number of network connections per machinectvhi
will aid in minimizing the volume of data over the network aaldo the number of threads in D-CAPE, as each network
connection will require a thread from the Operating System.

There is also work in the area of Dynamic Load Balancing of \@elvers [17][18][19][21] which use a central con-
troller for communicating with each processing node. Theystems typically use a Round-Robin approach [17] for gsce
scheduling or even a QoS-aware approach [18]. The advantE#ghe Round-Robin approach is that every machine is
guaranteedo have work to do. The disadvantage of this approach is thett process may have different sizes and thus
Round-Robin may not be optimal in cases where many largeepses are scheduled on one processor. QoS-aware ap-
proaches will typically perform better, however there isrenork in determinindnowto determine quality of service and
further determinavhich processing node is performing up to a certain QoS level. Wehes Round-Robin approach as one
of several possible distribution patterns in our work to enstnd how even a simplistic approach will fare in our DSMS
domain. Future work will include designing a QoS-awareritigtion algorithm.

The Web Servers in [18][19][21] all use a central controtleat may be tiered depending on the number of processing
nodes. This is similar to our D-CAPE system where we allofedint controllers for a cluster, and using a second-level
controller on top of each cluster controller. These work8ie steps that can be taken to minimize the communication
between a controller and its processing nodes, such thafoitteoller does not become a bottleneck. In D-CAPE we can
utilize a similar approach to processor communication,é@wthe type of communication in a DSMS will be quite diffete
Web Server controllers procefiged sizejobs for each processor whereas D-CAPE query processoesthasxecute on
gueries ofvarying sizebecause of data variability.

3 DSMS Background

In this section we will discuss the background of Data Stréemagement Systems. First, we will present a streaming
data example. We will then discuss the query plan of a DSMShamda new class of query operators are necessary for data
streams. Finally, we will discuss the basic non-distridwtechitecture of our DSMS, CAPE, the Constraint-aware Aidap
Processing Engine.

3.1 Example Stream Query

In order to understand the realm of queries that a DSMS is tdnswer let us look at an example. Consider a traffic
grid as shown in Figure 2. Each sensor, as indicated in Figurellects the data shown in Figure 3.

The sensor data collected is just a sampling of the datanstr@aoduced by the sensor. It is important to note that not
only may there be many sensors, but there also could be heultipds from each sensor, recording different types of.data
Our query will make use of the Traffic Flow data. We will use Gonous Query Language (CQL), a query language similar
to SQL, that extends traditional query semantics by allowor time based joins and aggregation along with other featu
[-

Suppose we ask the query: "Return all cars and their curréti khat have travelled down Road 2 and taken a LEFT turn
onto Road 1 within a 2 minute time period.” Using CQL we wousl the following specification:

SELECT Rl.carl D, R1.MPH
FROM Sensor2 as R2 [Range 2min], Sensor 1 as Rl [Range 2m n]
WHERE Rl.carlD = R2.carlD AND Rl.type = "Car";

The corresponding query plan is seen in Figure 4. This qulary gonsists of a Join, Select, and Project operator, gimila
to SQL query operators. The functionality of these opegatall be discussed in Section 3.2. In Table 3.1 we see example
data that may be collected by the two sensors. T represarigthstampmssociated with the data.

Sensor 1
Sensor 2

Sensor 5

Sensor 4

Figure 2. Example Traffic Pattern.

Traffic Fl ow Schema {
Time tinmestanp,
String carlD,

Type type,

int MPH

i

Figure 3. Traffic Sensor Schema

Applying the query plan in Figure 4 on the input data in Tablew8e will process the data in the following manner.

The Join operator is responsible for joining any two tuples bccured within 2 minutes of each other and also pass the
join predicateR1.carlD = R2.carlD The output of the join operator is then fed into the Seleetrafor, which filters out all
tuples that do not pass the predicRte.type = "Car”. Finally, the Project operator projects the colurRiscarID, R1.type
which can then be returned to the user. Data is continuatiggssed as more data is received from the Sensors, until the
query is removed from the system.

3.2 Streaming Query Operators

In our example in Section 3.1 we saw two different types ofrafms in our query plan. These can have different
characteristics than a traditional SQL-type operatorstFBome streaming operators hatatewhich is maintained by the
operator during runtime. This state is the data that musebembered by the operator to complete its operation. A join
operator as in Section 3.1 is an excellent example of suctparator. The join operator is responsible for rememberihg a
tuples that have arrived within the last two minutes. Sebgrsihce streaming operators have different charactesishan
traditional query operators, we have to alter the impleitgan of traditional operators and add other semanticsltoval
them to process for real-time continuous data. They mustleta output incremental results as new data arrives from
each stream. We can break streaming query operators dowiwiatcategories: stateful and stateless. We must give some
operators the ability to remember what it has done in the yasan internal state, while other operators do not need this
ability.

Every operatob hasN; input queue(s) an@; output queue(s). The amount of the input can be define»}ldqasEf\Q1 ng,

Data Input Streams

Sensor1 _-7 ,
i

7~ Join [Window: 2min]
Road2.carlD =
Road1.carlD

Project
Road1.carlD,
Road1.MPH

Query Result

Select
Road1.type = "Car"

Sensor 2

Figure 4. Query Plan Constructed from CQL Statement.

| Sensor 1 |
T carlD type | MPH
0| 9034TR | Car 55
0 FED 1 Truck | 42
1 || SOXFAN4 | Car 50
1| 8325DL Car 35
1| 345DGE | Car 65
1| UMASS1 | SUV | 45

| Sensor 2 |
T (min) carlD type | MPH

0 1345FD | Car 34
1 MV 1223 | Truck | 53
2 SOXFAN4 | Car 65
2 1492 CC | Car 32
3 UMASS1 | SUV 23
4 1353 DW | SUV 56

Table 1. Example Traffic Data.

wheren; is defined as the amount of input at tHé queue. The quantity of the output can be definechas Z?-:"l m;j.
Similarly, m; is defined as the amount of output in tj#¢ queue. The termn/n is known as theselectivity(o) of the
operator, more simply known as the probability of a tuplespasg thepredicate(p) of the operator. The selectivity is an
important attribute of a query operator since it directlyirols the number of tuples outputted to its parent. Opesatith
smaller selectivities tend to improve query plan perforogabecause the number of tuples are reduced, thus redueing th
total number of tuples to be processed. There is also fixedamoeading/writing to queues, which we will defineas

3.2.1 Stateless Streaming Query Operators

Stateless operators are similar to traditional DBMS opesasince they have the ability to perform without needmgriow
what they have done in the past. Typical stateless operiatdtgle: Select, Project or XMLTagger.

In Figure 5 we show how a stateless operator processes dagaprdcessing cost associated is linear in the volume of
input data. The larger the input data, the longer it will telk@rocess the data. For everyuples that are dequeuedtuples
are subsequently evaluated and thenvthieiples that are evaluated to true are placed in the oper@itpst queue.

Project and XMLTagger operators have a selectivity of 1 ethik selectivity of a Select operator varies between zeto an
one depending on the select predicate. The processingassstsiated with a stateless operator are shown in Equdtiamg
2. As you can see, the only variant in the cost is the numbemftituples, since the processing cost is fixed, and detedmin
by the type of the operator and the speed of the query procdssw the work.

Output of Join Operator

T (min) || Rl.carlID | Rl.type| R1.MPH | R2.carlD | R2.type| R2.MPH
(1,2) SOXFAN4 Car 50 SOXFAN4 Car 65
1,3) UMASS1 SuUvV 45 UMASS1 SuUvV 23
Output of Select Operator
T (min) || Rl.carID | Rl.type| R1.MPH| R2.carlD | R2.type| R2.MPH
(1,2) SOXFAN4 Car 50 SOXFAN4 Car 65
| Output of Project Operator |
T (min) || Rl.carlID | R1.MPH
1,2) SOXFAN4 65
Table 2. Output from Query Plan
<« n——> <« m—
~
Perform a boolean
evaluation on each of
the n tuples
J
Figure 5. Single Stream Operator.
cost = (n*xw)+ (p*xn) + (o(n) *w) Q)
=nx*(w+p)+ (o(n) *w) 2

3.2.2 Stateful Streaming Query Operators

Stateful operators retain all tuples that are still in thergif'window” of acceptance by the user. Using the query inti8ac
3.1 an example window would be 2 seconds. There are many siem#or determining how to calculate a window for an
operator including Moving Window [8] and Sliding Window [R&or our purpose, we will assume that our operators utilize
a sliding window. In a sliding window, all tuples occuringthiin ¢ time units of each other are in the same window. The
window “slides” as new data is read into the operator thaelagher timestamps.

Figure 6 illustrates the processing of data in a binary wimglmin operator. Execution proceeds as follows. First we
dequeuer; tuples from the left queue and; tuples from the right queue. We then purg§ the state of the lefts}) and
right (s2) states from the total number of state®y looking at the first tuple dequeued from both queues, ctisgdy. If the
first tuple in the left queue is out of the window of the firstiim the right state of the operator, we purge those tuplés ou
of the right state. The tuples can’t possibly be evaluatédi®due to being out of the window. We do the same for the right
gueue and the left state. We then perform a join on all of thesifrom the left queue with the right state. We then move the
tuples from the left queue into the left state, since theyeHaen evaluated. We can now join the tuples on the right queue
with the left state, and once finished move the tuples fronmitte queue to the right state.

The processing cost is much higher for a stateful operatearty, the size of the time window has a direct effect on the
cost. The larger the window, the larger the cost of the operas we will spend more time purging tuples out of the state

‘<7n14>

Left Queue

Left State

Perform a boolean evaluation on all
tuples in n1 and n2 that are in the
same time window. Keep track of

tuples still in window by placing them

in the operators state.

Right Queue

Right State

<« n2—>

Figure 6. Multi Stream Operator.

and more time processing the join. The cost of a statefulgpirator is shown in Equation 3

Is|
cost = (n xw) + (w*Zsl) +px(ngxs2+ngxs1)+ (o(n) *w) 3
i=1
The total cost includes the time it takes to read the n tuples from the input queues, the time it takes to purge the

state, and the cost of evaluating each join predicate anthg/those that pass to the output queue. Most of the protgssi
cost of the stateful operator is that of purging the two stated the time it takes to evaluate the join predicate. Mainy jo
implementations aim to improve the cost by using hash-bstedes or hash-joins. Nonetheless the operator still grivee
far more costly than a stateless operator, especially astdite size increases.

3.3 The Data Stream Management System: CAPE

Now we introduce our DSMS, CAPE. CAPE is a continuous quesfesy developed at WPI [33]. It can process any
number of user queries on multiple streams and report thatireg data to the user applications. This core architecisir
similar to that of [1][6] [16].

Each query is translated into an algebraic query plan asrsio®ection 3.1 that then is processed by our runtime engine.
The query plan can be thought of as a directed acyclic graplerevthe nodes represent query operators and the edges
represent queues. The operator(s) that connect directlyet@nd user application(s) are called thets and those that
connect to an input stream are calledves Each leaf is directly connected to an external data strelerevthe source
data is generated, typically by a remote computer or datsoseAll query operators in CAPE operate in a pipelined, non-
blocking manner [40]. That s, every operator is capablerofipcing results after consuming a partial input data sguré
4 illustrates an example of a query plan. Intra-operatoa dasults are stored as tuples in main memory queues. Queues
serve as the connections between operators and define tes that tuples take during execution.

CAPE is made up of four primary components as shown in Figutdn@Stream Receivéas responsible for receiving data
from all Stream Sources and placing the tuples in the queny. Sitream Sendds responsible for sending the result data to

10

the end user. Th8tatistics Gatherestores, calculates, and sorts statistics about any panjoégy plan, such as operators,
gueues, and entire query plans. These statistics can bdarsedny types of calculations in the system, such as degidin
how well a particular query plan is running given a cost mpdekeven simply how many tuples are in main memory at a

given time.

CAPE Query Processor <« Query Plan
Generator
Execution Statistics
Scheduler || | Gatherer ‘:ﬂ? g f%)
3 X S |2 |2
- N >S5
Y
Execution 2@4_ Stream
Engine Receiver
I Storage
Stream Manager
Sender
End User Legend:
' Stream Data Control Flow——p

Data Flow meipy-

Figure 7. Architecture of CAPE Continuous Query System.

The Execution Schedulés responsible for deciding which operator should be exatat a given time. Several different
scheduling algorithms, including Round Robin, First InsEiDut, and Chain [7] have been incorporated into CAPE. These
algorithms use statistics that are gathered from the qulary o determine which operator to schedule next. CAPE has
its own novel scheduling strategy, which is referred to addaptive ScheduldB7]. The Adaptive Scheduler dynamically
selects which scheduling algorithm to run during execubiased on how the current scheduling algorithm is performwiitiy
respect to the other scheduling algorithms that are avaifap use. This is CAPE’s approach to provide the best ptessib
service on a single machine. The scheduler can improve ipeafice based on various requirements, such as minimizing
memory or maximizing the output rate. Thxecution Engindies at the heart of CAPE. It is responsible for overseeing
the execution of the query plan. The Execution Engine tbksS3tatistics Gatherer to obtain the latest statistics,aahd
the scheduler which scheduling algorithm should be usetl nessence, it is the engine of CAPE that uses information
obtained from the other modules to run the system. Here isedi Wwalkthrough of the Execution Engine’s tasks during

execution:
1. Ask the current scheduling algorithm to choose the negtyjaperatorOp, to run.

2. If the workload forOp > 0, then update the statistics fOp’s input and output queues and pass the workload to the
operator. If the workloae- 0, then there is starvation and the strategy will pick anodperator.

3. Run the operator. When the operator has processed ala¥stgned work, control is returned to the Execution Engine
4. Ask the Statistics Gatherer to update statistics foloumbperators and other query plan information.

5. Repeat steps 1-4 for the duration of the query.

11

4 D-CAPE: The Distribution Stream System Architecture

Next the design of the new D-CAPE system will be introducee. Will first discuss the assumptions and restrictions for
this version of implementation of the system. Then we wiladiss the general architecture of the system.

4.1 Assumptions and Restrictions

Several assumptions are made in this work so to allow us tesfon the mostimportant concerns of this new system. First,
it is assumed that all processors have 100% up-time, andgtribdted system will not have to worry about an unrespansi
processor. If a query processor is to fall, it is remedied loyimg the workload that was on the unresponsive processor to
another query processor. Using this assumption, data wilbst, and future work will be needed to come up with ways to
recover this lost data, similar to [26][35]. In our experimtagion, if a query processor were to fail, we restart theeexpent
so the experimental results are not tainted with this losdaté. Also, it will be assumed that the query plan is already
optimized using query re-write rules, and that each opeiasrheduled using the same scheduling strategy. Thatis)ot
the goal of the new distributed system to achieve betteop@dnce on individual machines, but rather to improve diera
performance based on the distribution techniques.

4.2 Distributed Architecture Overview

The most important aspect to this paper was to develop a Reailhitecture that could be used in future versions of the
system. Without a sound architecture, the shelf-life of #yistem will be short lived. Our main goal was to allow thigkvo
to be used for a long period of time as a foundation for imprg\data stream processing performance.

In 1992 David DeWitt and Jim Gray outlined the architectueeessary to create parallel database systems [22]. They
found that query plans can be more efficient if running in afpel; pipelined manner by using the natural data flow texgen
of a query plan and distributing query operators. Databaaadgement Systems did have a major flaw when it came to
pipelined execution: Most of the existing implementatiohsjuery operators were blocking. However since Data Stream
Systems have developed non-blocking operators [25] thdtramusly provide output data, we are now in a position ke ta
advantage of paralelized pipelined query execution.

DeWitt and Gray go on to say that another important requirgrisethat partitioned execution needs partitioned data.
Partitioned data allows for easy data transfer, withoutiised to scan incoming data to determine where it belongs. i§hi
an easy requirement for our DSMS to meet, since the datanséraee already generated over multiple machines, and can be
redirected to any query processor in our network, witholgcdiihg other processors and their execution.

We found that the requirements needed over 10 years agdlanestled today. By parallelizing execution and directing
data streams to individual query processors, we are ahi@tmive query execution, as will be seen in experiments titrout
this section. We developed a robust, component-based apto designing this architecture. It is developed in aethar
nothing manner; that is, the only way data is shared is thrdhg Interconnection Network. Each CPU and Memory is
private to each query processor. Figure 8 illustrates telzachitecture of the new D-CAPE System.

This is an extended version of the original CAPE system éhipoed in Section 3.3. Similar to the original system, there i
still a Statistics Gatherer, Execution Engine, and Execuicheduler and Stream Sender/Receiver. We also addedtwo n
components to the query processor itself, including@banection ManagerlndStream FeedefThese components will be
discussed in detail in Section 4.3.

The Distribution Manager resides on a machine separate ditbthe query processors and is responsible for communi-
cating with each query processor to tell it what data streamasquery plan operators it is responsible to process, ardenh
to send it when it is done. This is achieved in four steps aficoeidiscussed in detail in Section 4.3.

1. Send initial configuration information to each query @ssor

2. Distribute query plans among the query processors usitigtdbution pattern a way to distribute query operators
among a cluster of machines based on query plan properties.

3. Listen to status updates from each query processor byviegeackets of statistical data needed to calculated the
workload of a processor.

4. Determine if any of the query processors has too high ofrklead and redistribute it, if necessary.

12

Statistics
CAPE Query ProcessorA//v Ceilayr
Execution | —» Execgtion < Connection |&————* Djstribution
Scheduler/ Engine \Manager Manager
Stream Stream N
Sender Feeder R Y
Stream
Tuple Storage Receiver
Manager A
Query Plan
> A Generator

— |]

Internet Query 1 Query2.. Queryn

Legend:

Stream Data Control Flow——»

Data F|OW#

&

Figure 8. D-CAPE Architecture

Each of these steps will be discussed in detail in sectidht$%.3.

To increase the potential scalability of a D-CAPE, we hawatad the Distribution Manager such that it can operate in
a tiered environment. Figure 9 illustrates how the Distiitiu Manager can operate in such an environment. In thedutur
it may make sense to have clusters of machines in differeatilons process different workloads. In this case, it may no
make sense to have a single distribution manager managderslasross the Internet. Instead, we can create one distrb
managers for each cluster location, and then have a distnbmanager on a higher tier that is responsible for aliogat
query plans to each distribution manager in the lower tidiis Tvay, we have the flexibility of distributing the query pt&a
on any of the query processors available to us, yet we caneditbinate network update costs by localizing distribution
managers to work more closely with a particular processingter.

4.3 A D-CAPE Query Processor

Before discussing the Distribution Manager in detail, wstffjo into the details of the query processor, and in pasgicul
the improvements that were made for D-CAPE. At the end ofgbdion, we will show experimental studies that show the
limitations of a query processor.

As shown in Figure 8 there are seven main components in thg gquecessor: The Execution Engine, Statistics Gatherer,
Execution Scheduler, Stream Receiver, Stream Distrib@toeam Feeder, and Connection Manager. Each of these eompo
nents are integral to the execution of the query plan. Furibee, it is important that these components are implendente
in such a way as to maximize performance. Each of these coemp®icommunicates with one another to minimize the
cost of context switching between components. We will nosedss each component and how they have been improved for
D-CAPE.

Execution Engine The execution engine was improved from Section 3.3. It naakes fewer calls to the statistics
gatherer to maximize processing time. We also implemerttedability to record the statistics upon completion into a

13

Tier 1 Tier 2

Query Processor

Query Processor —

Distribution
Manager
Query Processor /

Query Processor Distribution
Manager

Query Processor

Distribution
Query Processor Manager

Query Processor

Figure 9. Example of D-CAPE configured to run in a tiered envir onment.

Microsoft Excel Spreadsheet for quick analysis by the upenwquery completion.

Statistics Gatherer. The statistics gatherer was improved from Section 3.3 Bycimg the number of calls it would take
to insert/remove data to/from the statistics gatherer.r@wee this should increase performance to some degreegiefipe
for long running queries.

Stream Feeder The stream feeder is responsible for taking tuples reddiyethe stream Receiver and placing them in
the proper input queue of the operator. This is a hash-basgl@imentation. As a tuple is taken from the pool of received
tuples, its corresponding queue is looked up in a hash taldetermine where the tuple belongs. Once this tuple is areglje
the thread will let the Execution Engine know that there igembata to process. The Stream Feeder is a thread designed to
ensure that all queues in the query plans have data to prodeissvay if one stream has a higher data rate, and thus a queue
that is more full, we can wait to put that data in an input queni the operator will actually need it.

Stream Receiver The stream receiver is implemented in a separate threatliphes are received, tells the stream feeder
that there is new data waiting to be fed into the input queBgsgmplementing the tuple receiver in this manner, the strea
feeder is only running when there is actually data to praas€PU cycles are not wasted in doing empty work.

Stream Distributor. The stream distributor is responsible for sending tupbethé next query processor or to an end-
user application. This too is hash-based; hence lookutalmnstant time. The distributor waits for a message fram th
Execution Engine, indicating that there are tuples to béaenoss the network. By waiting for a message from the Exacut
Engine, CPU Cycles are not wasted on the Tuple Distribut@mthere is no work to do.

Connection Manager. The Connection Manager is the interface between the querepsor and the distribution man-
ager. It is responsible for handling requests such as #ctivaperators on the processor, or sending the currentsstdt
the machine to the distribution manager. Table 4.3 listglifierent connection requests that can be made to the Ctionec
Manager.

The Connection Manager has been designed to allow for ameepleset of commands to be implemented for the future.
The most important job of the connection manager is to bdablaiand to respond quickly.

14

| Type | Description
Activate Activate an Operator.
DeActivate | Turn off an Operator.
SendData | Send data to another QP.
ReceiveData| Receive data for processing.
StopSend | Stop sending data to another QP.
StopReceive | Stop listening for data.
SendStatistics Send one or more statistics to the DM
Shutdown | Shut down the query processor
Restart Remove all query plans and data, wait for new plans from the DM

Table 3. Connection Request Types.

4.4 Calibrating Query Processor Performance Characterists

It was very important to understand the limitations of a guyaocessor. In particular, there were three questions that
needed to be answered:

e How often can the Distribution Manager communicate with &@UWProcessor?
e How do the new components utilize the CPU? Is it better or tiian the old implementation?

e How many input/output connections can a Query Processodldan

To answer these questions, an experimental test-bed watoged. The test-bed consists of a cluster of 10 machines,
each with dual 2.4 GHz processors, 2 GB of memory, on a Gigdbérnet connection. We utilized two machines to stream
data, two machines to listen to query results, one machiaettas the distribution manager, and 5 machines to act ag quer
processors. We use two stream generators so we can senceavogime of data across the cluster. The data consists of the
server logs from the 1998 World Cup website [4]. In our 30 nénexperiments, approximately 72,000 tuples are pent
stream. Our query plans connect to a minimum of six streamsamaximum of thirteen. Our query plans consist of window
join operators and single stream operators in differentigarations, ranging from 5 operators to 80. Our join opesb@ave
a selectivity of two, that is it outputs twice as much data thénput. Our single streams operators have a selectiVipne,
to make its cost as high as possible. The query plans theessate binary trees (representing many joins linked togethe
with a height of at least five and a breadth of at least six.

For these experiments, we only utilized one query processdrcould be tested against the original version of CAPE,
and also to find the limitations of a single processor machine

Query Processor Communication CostFirst, it is important to analyze how often a query processaitd communicate
with the distribution manager before it had a significant atipon query performance. This will indicate how often the
distribution manager can communicate with each query jgsmre A limit needs to be observed, so query operators are not
reallocated too often, reducing performance. To study tiésloaded a moderately sized query plan (20 operatorsnS)joi
onto a single query processor. We then sent connection sejteeit at increasing rates, from 0 per second to 1000 per
second, to find out how often a connection request can be édmdihout degrading performance.

Figure 10 shows the throughput of the query plans with varimnnection request rates. We can observe that the query
processor can easily handle 50 connection requests pardetbis is an important number, because it indicates hognoft
the distribution manager may communicate with the querggssor. We will see in Section 6.3 that a typical query operat
takes 6-10 connect requests to properly activate it on ayquecessor. Thus we can conclude that we can easily move one
operator on a query processor per second.

This is a very high rate, in fact, in our experimentation w# arily move operators once per minute, to allow for suffitien
time for a distribution to be tested. Thus we see that movinggerator in this environment will not be a bottleneck, aglo
as we do not communicate with a query processor with more38aronnections messages per second.

CPU Utilization of the New Query Processor.Another performance test we run for the new D-CAPE query gssor
is to monitor how one individual query processor utilizes @PU versus the original CAPE system. For this experimeat, w

15

Total Throughput

25000

20000 -

—a— 0 Connects per sec

15000 —e—1 Connect per sec

10 Connects per sec
50 Connects per sec

10000 —x— 100 Connects per sec

Tuples Outputted

—e— 1000 Connects per sec

5000

Time (m)

Figure 10. Throughput of Query Processor with Increasing Co nnection Requests

ran the original CAPE DSMS and the new D-CAPE DSMS on a queaw plith 40 operators. This size query plan sends
large amounts of data over the network and really tests thattptocessing of data as well as the way tuples are sent and
received. In the D-CAPE DSMS, we ran the query plan utilizimdy one query processor so that it could be more fairly
compared to the original CAPE DSMS.

Tuple Tuple

Sender Sender Connection

Manager
1%

Query

Recording Query Statisti_cs Processor
206 Processor Recording
74%
/ 65% 2%

Statistics
Gathering
7%

Before After

Figure 11. CPU Utilization Before and after Query Processor optimization.

The primary objective for this experiment was to test if tieerquery processor utilizes the CPU more efficiently than the
original CAPE design. Figure 11 shows the differences in CBbllge between the two query processors. Query execution
gets a larger “slice” of the CPU in the new version of CAPE,athis important. Maximizing the amount of time processing
the data will provide better performance, rather than spgn@PU time performing support operations. Using the hash
based functions for the sender and receiver and by havirgtheead communicate with each other, we see improved CPU
utilization over the original CAPE implementation.

Input/Output Connections of a Query Processor.A query processor has two main goals, to process incomirgyatat
fast as possible and to send that data to the next query sarcas fast as possible. In order to maximize the performance

16

of these two tasks, it is important to find out what limitatibere is (if any) on the number of input and output connestion

a query processor could handle. We ran experiments with saregly small query plan (a single operator), as this would
provide the best scenario in terms of the number of connestibat this one query processor would be able to handle
concurrently. We then replicated that query plan sevemasion the same query processor to increase the total nufber o
connections on the machine.

40
g 35 —e—10qp
E.c;go, —=—20qp

c

38 —a—4qp
382 ——80p
[%]
[—x— 16
s 20] X ap
'_

15 """+

0’5@%0@@%'»%%,{/\%0

Time (m)

Figure 12. Output Rate of Query Processor with Increasing Co nnection Requests

Figure 12 illustrates how increasing the number of connastto and from a machine causes a decreased output rate.
We find that the cause of this is that the query processor isdépg too much time sending and receiving tuples, and not
enough time processing them. Figure 13 shows how addingeotions decreases the percentage of the CPU that the engine
can devote to the actual data processing versus the inputazonnection handling. Using these experiments, ouhinas
can safely handle 8-12 input/output connections withayrtificantly degrading performance. This will have to be takdo
consideration when we consideowto distribute a query plan.

Connection
Manager
1%

Connection Sender
Manager 12%
1%

Query

Statistics Processor

Recording— 63%
2%

Query
Processor
74%

8 Connections 32 Connections

Figure 13. CPU Utilization with a Varying Number of Network C ~ onnections

4.5 Distribution Manager

The basic job of the Distribution Manager is to synchronize inanagement of the query plans and data, and to then
respond to situations where a query processor is under hegdyThe Distribution Manager can be thought of as the frai
of query execution. The Distribution Manager knows abolugagries in the system and all available query processbis. |
then responsible fadistributingthese operators among the available query processors atalliftg each query processor
how to work together to process each query plan. It is algporesible for receiving statistical data from each processo

17

determine thevorkload(how “full” the processor is), and determiniifgoperator reallocation is necessary, and then deciding
onhowto reallocate the query operators to improve overall perforce.

Figure 14 illustrates the architecture of the Distributidanager. It is made up of four primary components and three
repositories. The four main components are Fhentime Monitor Connection ManagerQuery Plan Managerand the
Distribution Decision MakerEach of these components interact in the following way:

Runtime Monitor . This is the monitor that listens for statistical updatesrfreach query processor. These updates are
statistics that are already collected in the query progessoh as the number of tuples in memory or the average orafmuit
It receives this information, places it intdatistics Tabl@nd then gives it to the Distribution Decision Maker.

Connection Manager. The connection manager is responsible for taking the ddaidstribution, and physically sending
a sequence of appropriate connection messages using astribedion algorithm to establish the distributed planits
respective query processor. Each of these connection gessskerives from a Connection class, guaranteeing a certain
packet size and a consistent interface for the query proceasd distribution manager to follow. The connection ngana
typically only sends messages to a query processor, buhials® communicate with the end-user application or the data
stream source as well.

Query Plan Manager. The query plan manager is responsible for managing theyquans in the system, and also
determining if the query plan distribution is valid. Valgimeans that all query nodes are represented exactly ontteeon
cluster of query processors, and all of the query processergp and running.

Distribution Decision Maker. The decision maker is responsible for decidiragyvto distribute the query plans. There
are two phases to this decision. First, an initial distiits created at startup (section 5). Second, it reallscgteery
operators to other query processors depending on how veetjubry processors are perceived to be performing (section 6

W CAPE Engine (Query Processor)

AW,

User Queries

k Distribution Manager)
Connection [/ \| Query Plan Runtime
Manager Manager Monitor
Query Plan - <>
Generator Dlstrlpgtlon
Decision
& Maker
lnltlal Configuration istri Cost Model
Confi gu ration Rep%sitory Dmrg;:;zihsgrr;tegy Roeiosi?o;
Settings

Figure 14. Distribution Manager Architecture

Algorithm 1 describes how the Distribution Manager opesafgon initialization. In the following sections we will disss
this algorithm in more depth, including how we distributeloulate cost and redistribute query processors.

Before processing any data, the Distribution Manager igaesible for configuring each one of the query processors by
giving it all query plans that it could potentially proceasd other data, such as where streams are located, anticstdliat
need to be collected. This is done upon initialization toimine communication cost and only incremental communicati
messages are sent at run-time such as new query processpsrgmlans. By doing this before execution, we limit the
amount of communications that will need to occur during exien. TheDistribution Decision Makethen creates an initial
distribution of the query operators and then usestbenection Manageo take care of physicallgctivatingthe distribution

18

Algorithm 1 Distribution Algorithm at a glance.

1: Retrieve configuration information from user.
: Retrieve query plans from the query plan generator.
: while are more query processats
Send all configuration information to query processor
if Query Processor does not respadinen

Remove query processor from list of active machines.

end if
: end while
. if No query processors availakiteen
EXIT
: end if
: Load the distribution pattern from Strategy Repository.
. Distribute the queries using the pattern.
: Load the cost model.
: Load the redistribution policy.
: Send the statistics to monitor to each query processor.
: while still processinglo
Retrieve statistical updates from query processors
Calculate the workload on each machine
Redistribute the operators using Algorithm 5.
: end while

NN B RE R R R R R R R
P O ©O®Om~NOUM®WNIERO

on the remote query processors. A distribution is activatken the query processor that is to run the operator is coedec
to all data streams and is prepared to process the data.sIdiscussed in detail in Section 5.1.

During execution, each query processor reports tdRitietime Monitotthe current statistics of the machine’s local state.
The Runtime Monitor can use this information, along withatsilable cost model, to determine the load on each machine.
Note that the system can use any one of its available costisadgetermine the workload. The specific model is deterthine
by an administrator during the startup of the distributiceiager. Th®istribution Decision Makethen gets the associated
costs for each processor from the Runtime Monitor in the fofna cost tableand uses the table to redistribute query
operators. The type of redistribution policy can be anygyolound in the Distributed Strategy Repository. After dieg
what operators are to be reallocated, the Distribution §deciMaker can then pass this new distribution plan toQoery
Plan Manager It is the Query Plan Manager's job to ensure the validityhig hew distribution plan. If it is not valid, the
Query Plan Manager informs the Distribution Decision Matkecreate a new distribution until it is valid. The Query Plan
Manager can then tell théonnection Manageto make the proper connections between the streams, maahnadesnd user
applications. It is the Connection Manager’s job to enshiat mo data is lost or corrupted.

4.6 Calibrating Distribution Manager Performance

A challenge in implementing the Distribution Manager wasweing that it was sufficiently lightweight to not render
ineffective when redistributing a query plan. Our goal wagiake it lightweight enough to process in real time, but &iso
have the ability to process complex cost models if necess§arly incremental changes of the set of query plans are sent t
the query processors to reduce the amount of time the Disivitb Manager spends communicating with each processor at
run-time.

Figures 15 to 17 show the Distribution Manager’s resourdeitewunning a query plan distributed over five query pro-
cessors. We can see in Figure 15 that the CPU is rarely ussgritmarily used only when calculating new distributiofrs.
Figure 16 we determine that the network traffic the DM cre&tesinimal. The DM received only an average of 400 bytes
per second, and never sends out more than 1kb in a second.stasa memory very sparingly, using less than 20mb of
main memory, as shown in Figure 17. In fact, the main costwhaincur is in the very beginning of execution, where the
query plans and configuration are sent to all of the querygesars. The DM is able to reduce the amount of resources it
needs by only providing incremental changes to each quegegsor, when necessary.

19

Initial Configuration Sent Creating a new distributio

compyte-0-2.local Load Tast hour

2.0 o \ -
bl \ / \ =
£ \ ¢ v g
& 1.0 \ : 5
p=] \ =
g \ N
a \\

0.0 t=

17120 17140 18100
OO 4-min Load W CPUS B Running Processes
\ Cpu_user =
= z.0 E
0, = T — —i
1720 17140 1800

W compute-0-2, Tacal last hour Chow 0,10)

Figure 15. CPU Usage of Distribution Manager

These experimental results indeed now confirm that the eaetbf using a single Distribution Manager is minimal. By
designing the Distribution Manager carefully, we were gableninimize the system resources used by the DM by limiting
the number of communications with the query processors.

5 Query Operator Distribution: Methods, Algorithms and Evaluation

5.1 Initial Distribution

We have found that the initial distribution of a query plaredily influences its performance. Distribution is definedee
physical layout of query operators across a set of querygssmrs. We will later show that we can have performance gains
of 100% over a naive distribution algorithm by distributiogr query operators using a “connection-aware” approach. W
will also show that algorithms that are not carefully designvill not always increase performance beyond that of aeing
guery processor.

The initial distribution depends on the knowledge of twocgie of information: The queries to be processed and the
machines that have the potential to do the work. First we gdglinto detail about query plans and query processors, and
how they are composed in our D-CAPE System. We will then dis¢iow we can take this information to create an initial
distribution to begin execution.

5.1.1 Query Processor Description

A query processor is the fundamental component of the DSi$rforms the actual query processing. The query processo
can have many properties, and further, each query processy be heterogeneous. Because of this, we maintain dktaile
knowledge as shown by Table 5.1.1.

Notice that the processor’s description is simply definea Broperty/Value pair. This way, as new properties of a query
processor may arise, we can easily add them to the descriptibout changing our implementation. We can also maintain
other properties that change over time, as we will see ini@eét.3. This description is maintained by the Distribution
Manager.

20

Initial Configuration

Sent
cumpute—ﬂ—z.lnm[/rk Tast hour

1
.

=
o
-
43HILIN I90L & T00Ldyy

Bytes/sec

2.0k f
|
0. o lEE— £ ——
1720 A7 40 12,00
O In M out

=talu}

400

bytesssec

300 fr

W compute-0-2,Tocal Tast hour [now 296, 27)

hytn%s_uut

A3HILI0 I40l & T00Ld4Y

bytes sec

1720 17: 40 18: 00
W compute-0-2,Tocal Tast hour Chow 149,99)

Figure 16. Network Usage of Distribution Manager

5.1.2 Query Plan Description

As discussed in section 3, a query plan is a directed acyddiplgwith the query operators as the nodes and the queues of

data as the edges. The query plan description holds boihl ipibperties of the query plan and also properties thahgba

during execution. D-CAPE represents this query plan as afsgpiery operators, each containing many properties. These

guery operators are then connected together using a parikshtelationship, which in turn represents the query plan
Because of our internal query plan structure, it is easy pbura any property about a query operator or query plan. This

is an integral feature of the D-CAPE system; the ability td pdoperties for future research without modifying the 8ris

data structure. Here are some examples of properties thatayevant to capture about a query object.

e Query Plan: Overall priority relative to other operatoramber of operators, depth, number of inputs, number of
outputs, etc.

e Query Operator: Operator type (Join, Select, etc), numbehitdren, number of parents, etc.

We can also store other properties of the query plans and querators, just like we could with the query processors.
These properties can be dynamic, capturing properties asi€utput Rate, Selectivity, Processing Time, and othélyeas
added properties. By combining the properties of each qopeyator along with its location in the query plan, given the
parent/child relationships, we are able to view the quean ph its entirety. We now show how we may use the knowledge
about query plans and query processors to come up with @l ihistribution of the query plans.

5.1.3 Calculation of Initial Distribution

With knowledge of the processors, plans, and their metarinétion, we can create an initial distribution across thster
of query processors based on the configuration of the quegepsors and query plans. We create our distribution using a

21

compute-0-2.local Memory last hour

o
= 1,04
e
[==]
i, [~ —
17 20 1740 1800
B Hemory Used W Menory Shared O Memory Cached

O Memory Buffered B Memory Swapped B Total In—Core Memory

Figure 17. Memory Usage of Distribution Manager

| Query Processor Object |

Property Value
IP Address davis.wpi.edu
CPU Speed 3.0
Memory 1024MB
(O] Linux
Network Speed | 1.5MB/Sec
Location Worcester, MA
Number of processes 11
Any Property Any Value

Table 4. Query Processor Object

Distribution Pattern which is a specific pattern that an algorithm follows to dednow to distribute the query plans. The
distribution pattern accepts both the descriptions of thergprocessors and query plans as inputs and returns &kteiman

as aDistribution Tablethat captures the location of each query plan operator wipect to the query processor that it will
be executing on.

The methodology behind how the table is created dependsedbigitribution Pattern. This is important because it allows
us the flexibility to implement any Distribution Patterngdgmiug it into the system if needed.

Algorithm 2 Round Robin Distribution Pattern.

1: for gp in queryPlans do

2: for Operatomw in ¢p do
3 Machinem «— get MachineWithMinW orkload))
4: ASSIGN otom
5
6:

end for
end for

In our implementation we introduce two distribution pattgrcommonly used in distributed systems in other disagglin
[27][32][36]. These algorithms were chosen because of gféectiveness in other disciplines. Round Robin (Algamit2)
is a common algorithm used in distributed systems such gsaf&BGrouping Distribution (Algorithm 3) and various other
algorithms are common in distributed database systemsamif29]. Grouping distribution was selected to help redbee t
associated network costs [29] of the distribution. We withndefine these two algorithms:

e Round Robin Distribution. Iteratively take each query operator and place it on theygpeycessor with the fewest
number of operators. This will ensure each processor hagumadent number of operators (i.e, an equal workload).
In Algorithm 2 we define workload as the number of operatorth@uery processor.

22

Query Plans: Distribution Table

Q-@-0-®@ Operator | QP

Operator 1 QP1
9®\ Operator2 |QP 1

@/ Operator 3 QP 2

Operator 4 QP 3

Query Processors: Operator5 |QP4
Operator 6 QP 4
‘QP]" ‘QPZ‘ ‘QP3‘ Operator 7 | QP 4

Operator8 |QP5

Figure 18. Distribution Table

e Grouping Distribution. Take each query plan and create sub-plans for each queryewlegghbor operators are
grouped together. Then divide these groups among the bladaery processors. This distribution ensures that few
network connections are made, since adjacent operatofsrat®e most part kept on the same processor.

Figure 19 shows how a query plan, in this case Query Plan 2,beaistributed with the Round Robin Pattern. Figure
20 shows how the same plan will be distributed using the GrauPistribution algorithm. We can see that with this query
plan, Grouping Distribution minimizes the number of netlwoonnections.

The Round Robin Distribution in contrast distributes in enpbetely different manner, fragmenting the query plan t2o
pieces, and causing a total of seventeen network connsctiore more connections than the grouping distribution!alge
observe that data that flows through a query processor &skignthe Round Robin algorithm may flow back through it for
a second (or even third) time for processing. Finally, RoRidin put 3 of the join operators onto one machine! This will
create a bottleneck for this query processor due to the siyeejoin cost.

Our first goal is to create a general framework for managireyaipr allocation. Second our goal is to then implement a
few distribution patterns to compare the trade-off betwaiierent properties of distribution. Future work for thpsoject
will be in designing novel distribution patterns to maxitgddoost query performance.

After the distribution table is created, it is then validhtyy our Query Plan manager for two conditions:

e Every query operator is represented in the table.

e Every machine that is represented responds when asked ifstill alive”. A processor that is alive is one who has
active threads, and is ready to process data.

When a distribution table passes validation, the Connedt#lanager distributes the query plan among the query proces-
sors. The Connection Manager is capable to take any Disitsib@able, analyze it and connect the machines accordingly
The Connection Algorithm (Algorithm 4) steps through thegess of distributing the query plans according to theidistr
tion table. This algorithmis linear in the number of operata the table. Once the Connection Algorithm 4 has comg|ete
guery execution can begin on the query processors.

5.2 Base Distribution Experiments

Given the different distributions generated by the disitiitn algorithms, there were four questions that neededeto b
answered:

23

Algorithm 3 Grouping Distribution Pattern.

1: numM achines < machines.getCount()

2: totalOperators «— queryplans.getAll().getSize()

3: avgNumOpsPerMachine «— totalOperators/numMachines
4: count «— 0

5. UsedOperatorsTable «— null

6: Operatofo < null

7: Machinem « get NextQueryProcessor()

8: for gp in queryPlans do

9: if count < avgNumOpsPerMachine then

10: if o = null then

11 0 — gp.getNextLeaf()

12: else

13: o «— o.getNextOperatorInTree()

14: end if

15: UsedOperatorTable.add(o)

16: ASSIGN otom

17: count «— count + 1

18: while o.hasMoreParents() do

19: if count < avgNumOpsPerMachine then
20: Operatop « o.nextParent()

21: U sedOperatorTable.add(p)

22: ASSIGN ptom

23 count «— count + 1

24: end if

25: if p.get DescendantCount() + count < avgNumOpsPer M achine then
26: while p.hasMoreDescendants() do
27 Operatorc < o.nextDescendant()
28: UsedOperatorTable.add(c)

29: ASSIGN ctom

30: count < count + 1

31 end while

32 end if

33: end while

34: else

35: count < 0

36: Machinem « getNextQueryProcessor()
372 endif

38 o<« null

39: end for

24

£ CAPE: Machine 1 . =] x|
File View Tools Help

| h-Plot == Tree Statistics System Statistics

=L

H
Stream: Nike ¢ 15 E o= =
.

Strean: Nile

Slrcm.ﬁ?ba}

Stream: Nile
Stream; Nike .—Cu—ll—b

Legend: —_— Ml M2 —_— - = M3

Figure 19. Example of the Round Robin Distribution Pattern u sing Query Plan 2.

1. What happens when we try to distribute a plan that is smalligh to perform well on a single query processor?

2. How much of an improvement can we see over the “traditicsiagle query processor solution (i.e, a centralized query
engine)?

3. Does the type of distribution pattern play a significamnt pathe performance of the query plan?

4. Based on these experiments, what observable systenrecesaue affected by distributing query plans?

To perform these experiments, we used the same testbed astior84.4 with a variety of query plans, with varying
window sizes for 10 seconds to 60 seconds:

e Query Plan 1: 5 operators with a depth of 5 and a breadth of 1.

e Query Plan 2: 20 operators with a depth of 9 and a breadth of 6.

e Query Plan 3: 40 operators with a depth of 14 and a breadth of 8.
e Query Plan 4: 80 operators with a depth of 14 and a breadth of 16.

5.2.1 Centralized Processing Versus Distributed Processj

First we want to observe what happens if we distribute a qpty among a cluster of machines, even if the processing
could easily be performed on a single machine. Figure 21 shiethroughput of a very small query plan (5 single stream
operators) with one single input stream and one outputrstifea different query distributions from 1 to 5 machines. We
can see that even when the query plan is distributed over fachmes it still has the same throughput as a centralized (1
machine) processor. At first this may seem surprising b&cans would assume that the added network cost would slow
down the overall query processing and thus throughputcéslheas the number of query processors grows larger. We not

25

£ _CAPE: Machine 1 3 =181x]

File View Tools Help

‘_n.-plm == Tree Statistics System Statistics

=R

Figure 20. Example of the Grouping Distribution Pattern usi ng Query Plan 2.

that each operator runs in parallel in the distributed pgsitgy environment, helping to compensate for the cost afiagn
tuples across the network.

We observe in Figures 22 and 23 that query plan distributgnst as effective in multi-stream query plans with small
windows. We can see that we get similar behavior, that is moegy processors will exhibitt leastthe same throughput as
a single query processor. This is an important point to mad&eause we can conclude that it is beneficial to distributdlsm
guery plans over the processing cluster. This illustratas éven the smallest plans can be distributed without dsirrg
performance.

5.2.2 Distribution of Query Plans

In this section we will show experimental studies perfornoadthe query plans described in Section 5.2 to show how a
distributed processing environment can improve the peréorce of the DSMS. We use as a performance measure as the
throughputof the query plan, or thiotal number of tuples outputted over a period of tifdée use this criteria as it indicates
how fast we can process the data coming into the system, anldiging the result to the user in a more efficient manner.
By distributing the query workload over a cluster of mackimee are able to improve query execution performance by
parallelizing query operators, also giving each operatorenime slices to be processing data.

In Figures 24 and 25 we use the Round Robin and Grouping Bigion Patterns, respectively. In both cases, we can
see that the total throughput is improved by using multiplerg processors. In both cases we can see a 25% performance
increase over that of a single query processor. We also wb#eat the performance increases as we increase the nufmber o
machines. This is a logical conclusion since each queryadpewill have a larger CPU timeslice to run if there are more
guery processors. This is especially true with operatatsténd to take longer amounts of time to process for eachmirgp
tuple. This is especially apparent in a window join operatdrere the larger the window and arrival rates of data stsdhm
more the processing time will increase (Equation 3). We fived &s more operators (especially join operators) are aded
a query plan, the usage of multiple query processors allowa finear throughput, as shown in Figures 26 and 27.

In Figure 26 we observe the throughput of Query Plan 3. Thdtseare similar to that of the Query Plan 1 (Figure 23),

26

Algorithm 4 Connection Algorithm.
1: while Operators left in Distribution Tabléo
2: Operaton «— DistributionT able.nextOperator()

3: Machinem «— DistributionT able.get M achine(o)

4: OperatorArrayparent < o.get Parents()

5. OperatorArraychildren < o.getChildren()

6: SendACTIV ATFE Connection tan for o

7. for pin parentArray do

8: Machinem; « Table.get M achine(p)

9: SendSENDDAT A Connection tan to send fronp to m,
10: SendRECEIV EDAT A connection ton; to receive fromo
11: end for
12: for cin childArray do
13: Machinems < Table.get M achine(c)

14: SendSENDDAT A Connection tan, to send frome: to m

15: SendRECEIV EDAT A connection tan to receive front

16: end for

17: if o connects to a streathen

18: SendRECEIV EDAT A connection ton to receive Stream

19: SendSTART ST REAM connection to th&Source(s) to start sending
20: endif

21: end while

except in this case, we can see the single query processeeiflg off in execution, while the multiple processors timume

to linearly process data. After 30 minutes we find a 33 pericenéase in performance by using five query processors. This
is the first example we see where a single processor canndiehthie load of the query plan. It will continue to get worse as
we continue to run the query plan over an even longer timeogeri

Next in Figure 27 we now observe the performance of a largeyqulan (Query Plan 4). Here we see that the single query
processor runs out of memory after executing for 20 minukls. large amounts of data flowing through the system and the
large states of the join operators are filling up memory tacldyin the single CPU system. Figure 28 shows how the single
processor memory usage jumps up considerably after appadedy 10 minutes of execution as the machine receivesrlarge
amounts of data from the children join operators. After aleytthe query processor cannot keep up with the large amounts
of data flowing into the query processor. Because of the langeber of operators per machine, the joins are not getting as
much CPU time as they would if there were more machines.

We also note that Query Plan 4 has 16 streams flowing into theepsor and 2 streams flowing out for 18 total network
connections. As shown in Section 4.4, our query processoreffectively handle 12 connections. The large number of
connections into this single query processor would be takiway from the CPU that the query processor can devote to
actually query processing tasks. By splitting these 18 eotions among more machines, we are able to keep the number of
connections per machine small.

5.2.3 Comparison of Distribution Patterns

We observe in this section that different distribution eatt allocate space very differently, sometimes causingynmeore
network connections than others. In this section we comgradlecontrast the two distribution algorithms in particuRound
Robin (Algorithm 2) and Grouping Distribution (Algorithm).3We will show in our experimentation that the distribution
algorithm that we choose can have a drastic effect on oulyquercessor performance. First, recall that the Round Robin
distribution algorithm will distribute query operatorsarcyclic fashion, always allocating the next operator to is&iduted

to the machine with the fewest operators. This balancesaotia number of operators assigned to each query processor.
The Grouping distribution attempts to make large chunkspafrators that are adjacent to each other in terms of data flow
connections. Then we split those up among the query proceas@venly as possible, such that each processor has arsimil
number of query operators.

27

70000

—e— 1 machine

60000 +— _@ 2 machines
—a— 3 machines
50000 +—f —%— 4 machines
—¥— 5 machines

40000

30000

20000

10000

Total Tuples Outputted

S R R IR I SRR

Time (m)

Figure 21. Throughput of Query Plan 1 with a Window of 0 second s. Round-Robin Distribution.

We will now compare the two algorithms to assess their dffeness. Our first experiment distributes a query plan of 5
expensive Join Operators (Query Plan 1). The window sizedch operator is 60 seconds, and each operator will output
twice the data that came in. In Figure 29 we observe that them&®&obin algorithm has a better throughput at first as the
query plan begins, but slows down considerably as the quarygxecutes for longer periods of time. In contrast, we see
that the Grouping Distribution algorithm achieves lindaoughput, and over time has a better throughput.

Looking at the algorithms and the query plan, this outconrelma explained as follows. The Round Robin algorithm
may often allocate two operators onto one machine that aradjacent. Normally this is not a problem. However in this
particular case, the data flows first into the query procefsear the stream source and then is output to another machine.
That very same data that left the machine is then sent badkaimlawn stream location of this query plan to operate on the
top (root) join operator. This is bad for two reasons: Fiits¢, most expensive join operator is the one at the top of teeyqu
plan, as it has to process the largest volume of data. Segavelhre spending time sending data out of the first machate th
will later be processed by that same machine again! Thisldigion exhibits a slower behavior after some time of exiecu
as more and more data is created by the operators over time.robh operator slows down, thus reducing the speed of
throughput over time. The Grouping Distribution alleviathis problem by grouping the children joins onto one maehin
and thus minimizing the total amount of data sent acrosseh&ark (and number of connections).

We now examine Query Plan 2 in Figure 31 which has a total off@rators, 5 of which are joins. Similar to the last
experiment, each join is configured to output twice the dahis input, and all of the single stream operators are cordi
to output 100% of its input, to maximize the cost of the oparat/e now analyze different distributions among 1 to 5 query
processors (Figure 31)

The first (and most obvious) observation is that the Grouplggrithm always wins. There are two problems that Round
Robin introduces that contribute to this outcome. Firstalin3 cases, 3 of the 5 joins were put on one query processor
using the Round Robin Strategy. We observe that the joinrisnfare expensive than the single stream operator (Section
3.2), and ideally should be evenly distributed across argprocessors. Our Grouping Distribution helped in thigagion,
partitioning the join operators to all machines. The sequmudblem that we see is that the Round Robin Distributionteea
many more network connections than the Grouping DistrilbutiAs discussed in Section 4.4 a single query processor has
a limitation in terms of the number of network connectionsah handle simultaneously. Grouping distribution neventwe
above 5 connections per query processor in our examplesev®waind Robin went as high as 15 connections per machine!

To further illustrate the limitations of the Distributiom®erns we observed execution with even larger query pl@osry
Plans 3 and 4. Figure 32 shows the throughput of each algofith Query Plan 3, and Figure 33 shows the throughput of
Query Plan 4.

Here we observe that as the number of query operators irgeBsund Robin and Grouping Distribution tend to drift
apart even further in performance. This is for the same reastated for the previous experiments. Round Robin makes no
guarantee of what operator appears on a query processaa|smtbnds to create many network connections because of its

28

50000
45000 4 —&— 1 machine

—&— 2 machines
—a— 3 machines
—>— 4 machines
—%— 5 machines

40000 |+
35000 -+
30000 -
25000
20000 -
15000
10000

5000

Total Tuples Outputted

SSRGS VS B
ime (m)

=<

Figure 22. Throughput of Query Plan 1 with a Window of 2 second s. Round-Robin Distribution.

even-handed nature. We also see a “step” like shape in tpé épaRound Robin. Upon looking on the execution, the query
processor that outputs the query result to the end user speuch of its CPU time receiving the large amounts of data from
the many connections that Round Robin introduces, and thnschedules the root operator periodically, because®f th
large number of operators on the query processor. In theafdsSigure 32 there are 10 operators per machine, 3 of which
are a join, leaving little time for the root operator to beexdhled to output result tuples. We thus see a "step” in thnpug
corresponding to each time the root join operator is execute

We conclude that Grouping Distribution tends to do bettanth simple Round Robin algorithm. When we first distribute
a query plan, we only know static query plan information: e of operators, number of machines, number of query
plans, window size, etc. We know nothing about the data saflectivity of each operator or many other factors thataoul
prove important to execution. Because of this we have terifbr statistical feedback from each query processor toong
upon our initial distribution if need be.

29

500000

450000 -
400000 1+
350000
300000

—— 1 machine

—a— 2 machines
—a— 3 machines
—— 4 machines
—¥— 5 machines

250000

200000

150000

Total Tuples Outputted

Figure 23. Throughput of Query Plan 1 with a Window of 10 secon

450000

ds. Round-Robin Distribution.

400000 4+
350000
300000

—&— 1 machine

—&— 2 machines

—a— 3 machines
—¢— 4 machines

—X%— 5 machines

250000

200000 -
150000

100000

Total Tuples Outputted

Figure 24. Throughput of Query Plan 2 with a Window of 10 secon

NN N
Time (m)

30

ds. Round-Robin Distribution.

500000

450000 1| —*—1 machine

—=8— 2 machines

400000 19 _ 4 3 machines

350000 | —¢— 4 machines
—X¥— 5 machines

150000 -

Total Tuples Outputted

Figure 25. Throughput of Query Plan 2 with a Window of 10 secon

ds. Grouping Distribution.

1000000
900000 || —&— 1 machine
—8&— 2 machines
S 800000 1+ _4 3 machines
£ 700000 {{ —»— 4 machines
é_ 600000 —¥— 5 machines
O 500000
0
2 400000
=3
2 300000
T 200000 |
I9 100000 4
O |
Q 4 ™ © 9 ,\9 ,\’), ,»b‘ @

Figure 26. Throughput of Query Plan 3 with a Window of 10 secon

31

ds. Grouping Distribution.

1400000 - —e— 1 machine

—a— 2 machines
1200000 1+ —4— 3 machines
—>— 4 machines
1000000 {- —x— 5 machines

800000

600000
400000

200000

Total Tuples Outputted

0

Figure 27. Throughput of Query Plan 4 with a Window of 10 secon ds. Grouping Distribution.

100000
90000 P —&— 1 machine RR ||
r’/v —&— 2 machines RR
80000 / —a— 3 machines RRI]
70000 z 8 —>¢— 4 machines RR|{
n)
—¥— 5 machines RR
2 60000 N N ¥ i
=]
|= 50000
< 40000
°
i 30000
20000
10000 -

0

Figure 28. Tuples in memory during execution of Figure 27

32

800000

700000 - —e— Round Robin Distribution

—&— Grouping Distribution

600000 -~

500000

400000

300000

200000

100000

Total Tuples Outputted

0 4

S v % o 2 O

Figure 29. Round Robin vs. Grouping Distribution across 4 qu

YN
Time (m)

9
p _/:L' Q'J\
-~ AN
A

Round Robin Distribution

ery processors.

e Cf%_L
o

.0
S

Grouping Distribution

Figure 30. Distributions for Figure 29

33

Total Tuples Outputted Total Tuples Outputted

Total Tuples Outputted

450000

400000 1
350000 1+

—&— Round Robin Distribution

—a— Grouping Distribution

300000

250000

200000

150000
100000

500000

L B RN SN SR S L S S
Time (m)
(a) 2 Query Processors

450000 -
400000 -+

—&— Round Robin Distribution

—&— Grouping Distribution

350000

300000

250000
200000

150000

100000

500000

NEENEEN A RS A I
Time (M)

(b) 4 Query Processors

450000 4—
400000 4—

—&— Round Robin Distribution

—&— Grouping Distribution

350000

300000

250000 -
200000

150000 -
100000

50000 -
0
Q

L N I R SR AR L

Time (m)
(c) 5 Query Processors

Figure 31. Round Robin vs. Grouping Distribution

34

700000

600000 | | —e— Round Robin Distribution
500000 | ™ — Grouping Distribution
400000

300000

200000

100000

Total Tuples Outputted

0 -

Time (M)

Figure 32. Round Robin vs. Grouping Distribution. Query Pla n 3 over 4 Machines.

900000

800000 - —e— Round Robin Distribution
700000 1 —%— Grouping Distribution

600000

500000

400000

300000

200000

100000

0

Figure 33. Round Robin vs. Grouping Distribution. Query Pla n 4 over 5 Machines.

35

6 Self-Adaptive Redistribution Strategies: Algorithms & Evaluation

This section discusses and outlines the steps necessanpitove performance by redistributing query operators ajabn
the cluster of nodes. Static distribution plans can onlg talto account query and system properties such as shapé&and s
of tree, number of processing nodes, number of input streanasother data that can be obtained by looking at the layfout o
the processing cluster and structure of query plan(s). Weatshowever count on properties such as state size, sétigcti
input data rate, or the expected output rate of the query, plane this not known until execution. Worse yet is the fhet t
these runtime properties can change over time dependingaog external factors. Even with fluctuating conditions, \aa ¢
monitor these conditions in D-CAPE to redistribute quergmors during runtime. Unlike Aurora* [20], we will allovof
redistribution among any of the query processors in our ading cluster. We will also show that the cost of redistribnat
using our redistribution algorithm is not very costly, efenstateful operators. We will illustrate through expegintation
that we are able to monitor the query processing nodes arptieelg redistribute to improve the performance of the quer
processors over time.

6.1 Cost Measurements

Before deciding how to redistribute operators to improvdqrenance, we first have to defimgiery processor workload
That is, we have to define a cost associated with each quecggsor that tells us how “full” the processor is. There are
many potential ways to model cost. Hence, we have built arirro@st model calculator in D-CAPE that allows us to plug in
any cost model calculation that we wish. In this section | firit discuss the generic framework for defining a cost moldel
will then discuss a specific algorithm that was used for e@rpemtation in this paper.

Statistics Table

Machine 1 (cap:4500)| 4100 tuples
Machine 2 (cap:4500)| 2500 tuples
Machine 3 (cap:3500)| O tuples COSt Table
Machine 4 (cap:5000)| 5000 tuples Machine Cost Op Cost
Machine 5 (cap:4500)| 3000 tuples Machine 1 o1 opl: 5
. . . Op2:.5
Distribution Table — 531
Operator Machine
Operator 1 | Machine 1 Machine 3 0 Op4:0
Operator 2 | Machine 1
Operator 3 | Machine 2 Machine 4 1.00 Op 5: 33
Op 6: 33
Operator 4 | Machine 3 Op 7: 34
Operator 5 | Machine 4 Machine 5 .66 Op8:1
Operator 6 | Machine 4
Operator 7 | Machine 4
Operator 8 | Machine 5

Figure 34. Cost Model Creation

In order to determine the cost of each query processor, wet tedenow three pieces of information. First we must know
the current distribution of query operators. The DistiibutTable provides this information. We also must know therent
statistics on each machine. In D-CAPE, each cost model isthais a set of statistics that each query processor must send
back periodically so cost can be calculated. Finally, wetrknsw about every query processor in the cluster so we can
retrieve any static properties about the processor thatesded.

Figure 34 illustrates one example of a cost table using amoskl. In this example, we are considering the workload of
a query processor to be the percentage of memory filled bgsujh our implementation, we can ey cost model based
on statistics collected in the system. This example has bleesen because of its simplicity. In this scenario, we xectie

36

number of tuples each query processor has in its memory atea ¢ime. We can get the capacity of the query processor
from its properties. We then createast tableas illustrated on the right side of the arrow that shows eaemgprocessor,
its related cost, and the cost for every operator runnindgherptocessor.

This type of abstraction was chosen for several reasorst.ifis easy to break down the workload by operator if neagssa
That is, we can determine a fixed cost for every operator onchime, with respect to how much it is “filling up” a query
processor. We also calculate the cost of a machine as a ripeshaumber, typically between zero and one. This is done for
generality. In this manner, we are able to give our redistidim policy a table showing costs, but the policy need naivkn
what these costs are. This way we can use any combinatiorsbfimalels and redistribution policies, as they are orthagon

6.2 Experimental Cost Model

In this experimental work, we will measure the cost (workdpaf a query processor as the rate at which it is sendingsuple
across the network. This model was chosen because of theraagberiments discussed in this paper. By having a large
number of input/output connections, performance can diegsagnificantly. By monitoring how fast a query processar ca
send tuples across the network, and reallocating operatenmay be able to improve overall performance. By obserthing
output rate of each query processor, we can move query apgrdf of the machine so the output rate of the query processo
can improve (it will spend more time processing fewer opersabn that processor). The algorithm for determining thet co
is shown in Equation 4.

0]
NetworkOQutput Rate; = Z OutputRate; 4)
j=1
For each processor, we determine its total output rate byréogiup the output rates of each of the query operators on
the processor that produce data to be sent across the ndfeprétion 4). The output rate for a Query Procegssthesum
of the output rate of each Operatpon Query Processar The relative cost (in terms of output rate) of each operatisr
relative its share of network traffic that it creates ver$iad of the query processoit is on (Equation 5). Cost is then input
into our redistribution policy to determine how we can reaage the query operators to try to increase the output rate.

OperatorCosty, = Output Ratey /N etworkOutput Rate; (5)

Based on our empirical evidence in sections 4 and 5 we intedltwo examples of cost models based on the number of
tuples in memory and the network output rate. Each can be tosgetermine the workload of a query processor. We will
use the network output rate cost model in our RedistribuBiolicies to observe how query operator reallocation imgsov
performance. There are many alternate cost models thad beutreated and compared to see which factors most directly
influence query processor performance.

6.3 Redistribution Policies

The redistribution policy in D-CAPE is responsible for leahting query operators across the cluster of query psocss
based on statistical feedback from each query processadisgassed in the previous section, this feedback is captaye
our Cost Model. Our redistribution policy uses this to detigie the re-allocation of operators. In fact, the redisttiin is
more powerful than the initial distribution by allowing & parameters to be taken into consideration when degiolirth
whenandhowto redistribute. Table 6.3 shows the parameters that oistréxition policies support.

| Parameter | Description |
Cost Table A table representing the costs of each query processor
Percent Difference| Redistribute if the cost difference exceeds a particulacgreage
Eligible Operators | A list of operators that we are allowed to move

Eligible Processors A list of processors that can get operators to work on

State Size Operators under a certain size may be moved.

Table 5. Redistribution Parameters.

37

Besides the absolute cost, we can also specialize redittribby providing aPercent Differenc@arameter that tells us
how far apart the best and worst costs should be before weaaresider redistributing. 0% means distribute if there ig an
cost difference at all and 100% means never distribute. e @dss in a list oEligible Operatorgthat are only considered
for reallocation. Along the same lines we can pass in a liglfible Processorghat are available to do work. Finally,
we can tell the redistribution policy to only consider ogera with a particular state size range, aimed at reduciegithe
it takes to move an operator. For any particular RedistidouPolicy, it may use one or all of these parameters in making
its decision. In D-CAPE, we determine these parametersy dltan the cost table, by an initial configuration. Usingsthe
parameters we are able to use Algorithm 5 to determine hoestitocate the operators (if at all).

Algorithm 5 Redistribution Algorithm

. costTable «— costModel.getTable()
: maxCost «— costTable.get MaxCost()
: minCost « costTable.get MinCost()
: if max — min > redistributionPercent then
while lvalid(newDistribution) do
newDistribution < RedistributionPolicy.redistribute()
end while
dif ferenceT able «— newDistribution — currentT able
connectNewDistribution(di f ferenceT able) (Algorithm 4)
10: currentTable < newDistribution
11: end if

=

©oN R DD

Here, we use the Redistribution Policy to decide on a newcatlon of operators. We then have to reconnect the query
processors based on this new distribution. This step isakits it has to be fast enough so as not to interrupt quegusion,
and also correct, in that the data order does not change addtads lost during the reallocation process. In Figure 36 an
Algorithm 6 show how we move a query operator from one queog@ssor to another on the cluster. This is similar to the
work in [32], however we have other requirements such as ngavie state of the operator and ensuring that the datalarriva
order is unchanged.

We first find out the new query processor that will be procegtile operator, and notify it that it will be doing work on
this operator (Step 1). We then create a data flow connectidhenew query processor to the query processors that the
operator will send its data to (Step 2). We make this conapndiist so when the operator is activated on the new machine,
the data will be able to seamlessly flow from the new machiaasing little to no disruption in data flow. We then create a
data flow connection to the output of the children operamthé¢ new machine, so the data will properly flow to the operato
on the new processor (Step 3). This also effectively endglate going into the operator on the old processor, allowsg u
to terminate its execution (Step 4) after its input queue® Hdried up”. Since the operator on the old processor mag hav
state information that will be needed, we then send the Btatethe old processor to the new processor. Execution giht
continue as it would if it had never moved (Step 5).

Finally (Step 6), we need to ensure that the data order hashaotged. Before allowing the operator to run on the new
machine, we will ensure that the data from the old machinernst® the parent operator and then the connection is tetetina
[41]. Once all parent connections are terminated on the alchime, we are able to activate the operator on the new machin
As you can see, there is quite a bit of communication involmechoving an operator to ensure correctness. We package
this handshake into 6 distinct steps to only communicateden the Distribution Manager and the Query Processors when
absolutely needed. This will minimize the cost of moving tiperator to the new machine. Our experimental study confirms
our hypothesis that the cost of moving a query operator uiisgalgorithm is negligible.

6.3.1 Cost of Redistribution

In our experimental evaluation, we found the cost of movingperator to be negligible. We ran an experiment using Query
Plan 2 with a 20 second window. We moved a stateful window ggarator between two machines back and forth, every
minute, to see how it would degrade performance (if at alg. Weére careful to not create more connections when necessary
when moving the operator, because this would introduc@exark for the query operators. It was important to isolate th
movement so we could measure the cost of moving the datarstteanections and sending the state across the network.
Figure 36 shows the performance of the query plan when we tiedstribute versus when we move one operator back and

38

Algorithm 6 Operator Reallocation.

1: for operator in dif ferenceT able do
2: oldProcessor «— currentTable.get Processor(operator)

3. newProcessor «— newDistribution.get Processor(operator)
4. tell newProcessor thatoperator will be activated
5. for all parents of operator do
6: if newProcessor! = newDistribution.get Processor(parent) then
7 CON N ECT operator to parent onnew Distribution.get Processor(parent)
8: end if
9: end for
10: for all children of operator do
11 if newProcessor! = newDistribution.get Processor(children) then
12: CONN ECT child onnewDistribution.get Processor(children) to operator
13 end if
14: end for

15: for all children of operator do

16: DISCONNECT child onoldDistribution.get Processor(children)

17 end for

18: DEACTIV AT EoperatoronoldProcessor

19: SENDSTATE fromoperatoronoldProcessortooperatoronnew Processor
20: for all parents of operator do

21 DISCONN ECT operator onoldProcessor 10 parent

22 end for
23: ACTIV ATE operator onnewProcessor for processing
24: end for

forth, across machines, every minute.

We see that the cost of moving the operator is negligibleabse the throughput of the query plan does not change over
the 30 minute runtime. This result was expected becauseafdly that the operator is moved across machines. Because we
create the connections for the data to flogforewe start sending the data, we are able to “flip a switch” anthénetyes of
the query processor, turn off one operator and turn it onterahachine. This is especially true for larger query plarchs
as our 20 operator plan because the probability of the apeaing scheduled for execution on its old processor is 5%y
(1 in 20). Thus, it is highly unlikely that the query schedul®uld even notice that the operator was moved. Instead the
scheduler would simply schedule other operators to run.

6.3.2 Redistribution Policies

Now that we have discussed our redistribution algorithmlama we can obtain the information necessary to determine the
cost for a query processor, we have to determine how we wétjmet these costs to reallocate the query operatorseTher
are many possible ways to decide how to perform reallocatioaur current system, we focus on two of these methods.

Balance The balance redistribution policy tries to evenly balatite query load across all machines. This strategy is
effective when system resources such as memory or CPU usage @premium. The policy looks at all query processors
in the cost table and aims to balance the table by moving tpsritom the heaviest loaded processor to the lighteseldad
processor. It then continues this process until all machime as evenly balanced as possible. This policy howevenail
take operators away from machines that are only moderaiatjeld, as it may disrupt a set of operators on the processors
that were performing well.

Degradation. The degradation redistribution policy does its best ¢fforalleviate load on machines that have shown a
degradation in cost since the last time operators wereatdcon the machine. If the cost has degraded beyond a certain
percentage we attempt to stop the degradation by moving tis¢ enstly operators to other query processors, givingdsgh
preference to those operators that will remove a networkeoction from the overall distribution of operators.

39

Step 1 Step 2

Step 3 Step 4

Step 5 Step 6

Figure 35. The Six Steps of Redistribution

6.4 Redistribution Experiments

Our goal in redistribution is timprovethe performance of execution during runtime. Hence, we neeadonitor each
guery processor, and notice when there is an overload atal ¢grrect it. As we saw in section 5, there is no substitution
a good original distribution pattern. However, we can tunegrocessing if our initial distribution is bad, or turnsllaver
time. In fact, we can find a speedup of two in some cases, axperimental studies illustrate.

In this set of experiments, we use the same cluster for ottbezbas in Section 4.4 using our Output Rate cost model
explained in Section 6.2 and our Degrading Performancestrifalition policy, explained in Section 6.3.2. We use Query
Plans 2 and 3 in this section.

In Figure 37 we observe that our redistribution policy iseatdl improve the performance of the initial Round Robin
Distribution by 100%. The redistribution is able to detdwt tleclining output rate for each query processor, andocsk
the operators such that there are fewer network connegtiemmachine. Thus more time to process each operator would be
available on the prior overloaded machines rather thandipgitime sending the data across the network. By obsertiag t
output rate, we were able to easily identify bottlenecksuiarg plan and adjust the output rate before it had degradef@dito

In Figures 38 and 39 we record how redistribution affects @otlj initial distribution pattern such as our Grouping
distribution explained in Section 5.1.3. Even though theuping Distribution does a great job at grouping operatochs
that network connections are minimized, we can still seerfopaance boost of 5 to 10% when moving operators to other
query operators by our redistribution policy. In fact dgriexecution with the Grouping Distribution, operators ongéeded
to be moved 4 times in the 30 minute span using our policy, agaped to 17 reallocations for the Round Robin distribution
Regardless, we are able to improve performance by mongtdni@ performance of each query processor, and then reacting
to the costs associate with each processor using our iibdin policy.

Figures 38 and 39 also show us that there is no substitutioa §mod initial distribution. In both of these experiments
we see that the Grouping distribution gives us a big advantdth regard to the throughput regardless of the redigdiohu
policy. However, initial distributions still lack the kndedge of runtime information such as data rates, which caagtithe
performance as well. Here, a 10% speedup will increase toeigihput by almost 800,000 tuples over a 30 minute span, or
almost 30,000 tuples per minute.

In this section | have described a framework for reallogatjnery operators among a cluster of query processors, with
the flexibility of adding new reallocation schemes to theeyswithout knowledge of the entire distribution framewotk

40

450000
400000 H —*— No Redistribution

350000 1 —&— Redistribution Every Minute A}ll"
300000 - /.Mf

250000

200000 f

150000 /

100000
soooo.‘/
oler

Q‘Lb‘fo%Q\‘),Nb‘\/fo

Time (m)

Total Tuples Outputted

N L

Figure 36. Throughput of Query Plan with Redistribution Eve ry 60 seconds

800000

—&— Round Robin Distribution
700000 H

—a— Round Robin with /_‘
600000 Redistribution y
500000 ’/ﬂ
400000
300000 / M
200000 / AM

100000 /TM
0 ;W —

Time (m)

Total Tuples Outputted

Figure 37. Redistribution of Query Plan 2, with a 10 Second Wi ndow over 3 Query Processors.

also show experimentally that reallocation of query opmsabver a cluster of machines not only increases the pedocm
of the query processors but is also done with little to no bead, assuming we intelligently move the query operatangus
our knowledge from section 5, and learned characterigtice fi cost model.

7 Conclusions and Future Work
7.1 Conclusions

This paper was able to uncover many of the issues in desigridgmplementing a D-DSMS. Because of the nature
of streaming data and the uniqueness of streaming datatoperaew algorithms had to be developed to distribute and
reallocate query operators. In addition, we were able t@lasthe costs associated with query plan distribution ariig w
cost models and redistribution policies that were able forove query plan performance based on statistical feediback
the cluster of query processors.

This work is a starting point in the area of Distributed Daie&mn Management Systems. Because this field is very new,
it was firstessentiato come up with an architecture that is bfihxibleandscalable D-CAPE achieves this goal by allowing
for individual cost models and distribution algorithms ® ‘iplugged in” to the system, without any special knowledfie o
the inner workings of the system. By creating a Distributidanager that was tiered in nature, it allows in the future for
clusters of machines to have their own Distribution Managleich is controlled by a higher level manager, thus allowing
for a greater number of query plans and the ability to eféetyidistribute these plans to a cluster of machines thadtheil

41

800000

700000 || —#— Round Robin Distribution M
—&— Grouping Distribution W

600000 - —a— RR + Redist)/:.@f‘/{

500000 {| —¢— Grouping + Redist

400000

300000

200000

Total Tuples Outputted

100000

NI T T IR R AR

Time (m)

Figure 38. Redistribution with 2 Machines and a 40 Operator Q uery Plan

700000

—&— Round Robin Distribution
600000

—a— Grouping Distribution
500000 {1 __4— RR + Redist

400000 | —>— Grouping + Redist

300000 - f //‘“““
200000
0 muKatssge e v ooy 000000

Total Tuples Outputted

Figure 39. Redistribution with 3 Machines and a 40 Operator Q uery Plan

effective in processing the query.

Our experimental evidence shows that Query Plan distohus effective even for small query plans, and becomes very
effective as query plans become large. In many cases, weakézdo achieve a 100% performance increase over a single
guery processor, by using a distributed environment. Wefalsl that that the main costs in query plan performance delu
the number of connections per machine, and the total mensag by the machine. Query processors have better perfor-
mance when it has to manage fewer connections. We were déstoathow that the type of initial distribution algorithmass
is essential in how well the query processors will perforrarall. Algorithms that tend to create extra network conioes,
such as Round Robin do not perform as well as algorithmséakatrietwork connections into account (Grouping Algorithm)

Redistribution experiments show that we are able to effelgtireallocate query operators over time if we observe a
degradation in performance at runtime. Reallocating aygqaperator requires virtually zero overhead as we are able to
maintain the flow of data through the cluster using our spieeid redistribution protocol.

7.2 Future Work

This paper has opened the door for many potential areasw&futork in Distributed Data Stream Management Systems.
The flexible architecture of the new D-CAPE system allowsierstudy of stream processing in many areas.

First this work can be expanded by experimenting with otligridution algorithms and query plans, and studying how
they affect overall query plan performance, and what othetofs influence performance. Using this knowledge new cost
models can be created that can determine the workload ofrg gtecessor in different ways using these observed factors

Redistribution is another key area of future research. ez potentially many other costs associated with querggsro

42

sor performance. Future work can include determining métlase costs and writing redistribution policies that tiiese
costs, or any combination of costs in consideration whemddeghow to redistribute a set of query plans.

Research can also be done in using different schedulingitiigts such as Chain [7] or Train [13] scheduling to observe

to what degree scheduling algorithms on a single query geménfluence performance, and also if particular scheguli
algorithms work well with specific query operator distriiouts.

Finally, work can be done with other data sets of varying r@usuch as motion data, traffic data [30] or other forms of

streaming data that will be used in future Data Stream Mamagé Systems.

References

[1] D.J. Abadi, D. Carney, U. Cetintemel, M. Cherniack, @r@ey, S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aarra new model and architecture for data stream
management/LDB Journal: Very Large Data Basg$2(2):120-139, Aug. 2003.

[2] W. Alexander and G. Copeland. Process and dataflow dointidistributed data-intensive systemSIGMOD Record (ACM Special Interest Group on Management of
Data), 17(3):90-98, Sept. 1988.

[3] A. Arasu, S. Babu, and J. Widom. The cgl continuous quanglage: Semantic foundations and query execution. TeaHReport 2003-67, Department of Computer
Science, Stanford University, Oct. 2003.

[4] I. T. Archive. http://www.acm.org/sigcomml/ita/, 2003

[5] R.Avnurand J. M. Hellerstein. Eddies: Continuously jiilze query processingsIGMOD Record (ACM Special Interest Group on Managemenetd)p29(2):261-273,
2000.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. ddls and issues in data stream systems. In ACM, ed#oceedings of the Twenty-First ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Sys®Di3S 2002: Madison, Wisconsin, June 3-5, 2(q@2yes 1-16, New York, NY 10036, USA, 2002. ACM
Press.

[7] B. Babcock, S. Babu, R. Motwani, and M. Datar. Chain: aper scheduling for memory minimization in data streamesyst In ACM, editorProceedings of the 2003
ACM SIGMOD International Conference on Management of D@32 San Diego, California, June 09-12, 20@pages 253—-264, New York, NY 10036, USA, 2003. ACM
Press.

[8] B. Babcock, M. Datar, and R. Motwani. Sampling from a nmviwindow over streaming data. Froceedings of the 13th Annual ACM-SIAM Symposium On D&scre
Mathematics (SODA-02jpages 633-634, New York, Jan. 6-8 2002. ACM Press.

[9] M. Balazinska, H. Balakrishnan, and M. Stonebraker. €art-based load management in federated distributedrsgstinlst Symposium on Networked Systems Design
and Implementation (NSDIMarch 2004.

[10] P. Bodorik, J. S. Riordon, and C. Jacob. Dynamic diateld query processing techniques Pimceedings of the seventeenth annual ACM conference op@enscience
: Computing trends in the 199Q'pages 348-357. ACM Press, 1989.

[11] L.Bouganim, D. Florescu, and P. Valduriez. Dynamicdderlancing in hierarchical parallel database system¥LIDB’96, Proceedings of 22th International Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bpmibdia, pages 436—447, 1996.

[12] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, Sel®. Seidman, M. Stonebraker, N. Tatbul, and S. Zdonik. koinig streams - A new class of data management
applications. Technical Report CS-02-04, Department ah@ater Science, Brown University, Feb. 2002. Fri, 1 Mar 1624:05 GMT.

[13] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik, M. @hiack, and M. Stonebraker. Operator scheduling in a da¢@ist manager. In J. C. Freytag, P. C. Lockemann,
S. Abiteboul, M. J. Carey, P. G. Selinger, and A. Heuer, eslitdLDB 2003: Proceedings of 29th International Conference/ery Large Data Bases, September 9-12,
2003, Berlin, Germanypages 838-849, Los Altos, CA 94022, USA, 2003. Morgan KaufmPublishers.

[14] S. Chandrasekaran. Telegraphcq: Continuous datafloeepsing for an uncertain world, 2003.

[15] S. Chandrasekaran and M. J. Franklin. Psoup: a systestriaming queries over streaming dataDB Journal: Very Large Data Basg$2(2):140-156, Aug. 2003.

[16] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ:cAlable continuous query system for Internet databaSESMOD Record (ACM Special Interest Group on
Management of Datap9(2):379-391, 2000.

[17] L. Cherkasova. Flex: load balancing and managemestiesfy for scalable web hosting service.Gomputers and Communications, 2000. Proceedings. ISCG. Zifth
IEEE Symposium on, Vol., Iss., 20@ages 8-13, 2000.

[18] L. Cherkasova and M. Karlsson. Scalable web serveteldesign with workload-aware request distribution sgggtward. InProceedings of the Third International
Workshop on Advanced Issues of E-Commerce and Web-Basedatibn Systems (WECWIS '0ppge 212. IEEE Computer Society, 2001.

[19] L. Cherkasova and S. Ponnekanti. Optimizing a contemére load balancing strategy for shared web hosting seriidMASCOT Spages 492-499, 2000.

[20] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Casnd. Cetintemel, Y. Xing, and S. Zdonik. Scalable distrémlistream processing. Proceedings of the First
Biennial Conference on Innovative Data Systems ResealEiR@®3), 2003.

[21] G. Ciardo, A. Riska, and E. Smirni. EQUILOAD: a load bading policy for clustered web servef@erformance Evaluatiqm6(2-3):101-124, 2001.

[22] D. DeWitt and J. Gray. Parallel database systems: thedwof high performance database systeBmsmmunications of the ACN85(6):85-98, June 1992.

[23] D.J. DeWitt, R. H. Gerber, G. Graefe, M. L. Heytens, K.K&imar, and M. Muralikrishna. GAMMA — A high performance dftev database machine. Froceedings

of the 12th International Conference on Very Large Data Bagages 228-237, 1986.

43

[24]
[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

L. Ding, N. Mehta, E. A. Rundensteiner, and G. T. Heinemaoining punctuated streams.BDBT Conferencgyages 587—604, March 2004.
L. Golab and M. T. Ozsu. Processing sliding window mjdths in continuous queries over data streamsV DB, pages 500-511, September 2003.

J. Hwang, M. Balazinska, A. Rasin, U. Centintemel, Mor&tbraker, and S. Zdonik. A comparison of stream-orientg availability algorithms. Technical Report
CS-03-17, Brown University, Sept. 2003.

D. Jantz, E. A. Unger, R. McBride, and J. Slonim. Querygassing in a distributed data base Pimceedings of the 1983 ACM SIGSMALL symposium on Persadal a
small computerspages 237—-244, 1983.

J. Kang, J. F. Naughton, and S. D. Viglas. Evaluatingdeim joins over unbounded streams.18th International Conference on Data Engineeripgges 341-353, 2003.

K. A. Lantz, W. I. Nowicki, and M. M. Theimer. Factors effting the performance of distributed applications.Phoceedings of the ACM SIGCOMM symposium on
Communications architectures and protocgiages 116-123. ACM Press, 1984.

S. Madden and M. J. Franklin. Fjording the stream: Arhdecture for queries over streaming sensor dataCDE, 2002.

C. Olston, J. Jiang, and J. Widom. Adaptive filters fontiouous queries over distributed data streams. In ACMoedRroceedings of the 2003 ACM SIGMOD International
Conference on Management of Data 2003, San Diego, Caldpduine 09-12, 200®ages 563-574, New York, NY 10036, USA, 2003. ACM Press.

E. Rahm. Dynamic load balancing in parallel databaseesys.Lecture Notes in Computer Sciendd23:37-49, 1996.

E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu, Bel€ch, and N. Mehta. Cape: Continuous query engine witbrbgeneous-grained adaptivity. demonstration paper.
2004.

M. Shah, J. Hellerstein, S. Chandrasekaran, and M KirarFlux: An adaptive partitioning operator for contiruquery systems, 2002.

M. A. Shah, J. M. Hellerstein, and E. A. Brewer. Highlyaglable, fault-tolerant, parallel dataflows. Rioceedings of the 2004 ACM SIGMOD international confeesort
Management of datgpages 827—-838, 2004.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operatyrgiesn concepts, sixth editiodohn Wiley and Sons, Inpage 803, 2002.
T. Sutherland, B. Pielech, and E. A. Rundensteiner.pAida scheduling framework for a continuous query systemRreparation for Submissior2003.

C. Tandem Performance Group. A benchmark of non-stbprsdhe debit credit transaction. Proceedings of the 1988 ACM SIGMOD international confeecon
Management of datgpages 337-341. ACM Press, 1988.

P. Tucker, D. Maier, T. Sheard, and L. Fegaras. Expigipunctuation semantics in continuous data stredBEE Transactions on Knowledge and Data Engineering
15(3):555-568, 2003.

T. Urhan and M. J. Franklin. Dynamic pipeline schedglfar improving interactive query performance. The VLDB Journalpages 501-510, 2001.

Y. Zhu, E. A. Rundensteiner, and G. T. Heineman. Dynapfan migration for continuous queries over data stream#dh SIGMOD June 2004.

44

