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Abstract

Multi-join queries are the core of any integra-
tion service that integrates data from mul-
tiple distributed data sources. Due to the
large number of data sources and possibly high
volumes of data, the evaluation of multi-join
queries faces increasing scalability concerns.
State-of-the-art parallel multi-join query pro-
cessing commonly assume that the application
of maximal pipelined parallelism leads to su-
perior performance. In this paper, we instead
illustrate that this assumption does not gener-
ally hold. We investigate how best to combine
pipelined parallelism with alternate forms of
parallelism to achieve an overall effective pro-
cessing strategy. A segmented bushy process-
ing strategy is proposed. Experimental stud-
ies are conducted on an actual software sys-
tem over a cluster of high-performance PCs.
The experimental results confirm that the pro-
posed solution leads to about 50% improve-
ment in terms of total processing time in com-
parison to existing state-of-the-art solutions.

1 Introduction

Motivation. Many applications such as data integra-
tion services, decision support systems, and ETL mid-
dleware have their results specified in terms of com-
plex multi-join queries across distributed data sources.
Efficient processing of such multi-join queries is thus
critical to the success of these applications. The evalu-
ation of multi-join queries can take a prohibitively long
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time due to the following reasons: (1) the distributed
nature of data sources, (2) the possibly large number
of data sources, and (3) the large volume of data in
each data source. Thus, there is an increasing demand
for scalable multi-join query processing solutions.

Parallelizing query processing over a shared-nothing
architecture, i.e., a computer cluster, has been shown
to have a high degree of scale up and speed up [6].
For simplicity, we use the term machine to refer to
each computation device in a shared-nothing architec-
ture. Three types of parallelism have been identified
in the parallel query processing [12]. First, query op-
erators none of which use data produced by the others
may run simultaneously on distinct machines. This is
termed independent parallelism. Second, query oper-
ators may be composed by a producer and consumer
relationship such that tuples output by a producer can
be fed to a consumer as they get produced. This is
termed pipelined parallelism. The third, termed parti-
tioned parallelism, refers to running several instances
of one single operator on different machines concur-
rently, with each instance only processing a partitioned
portion of the complete data.

Two processing strategies at opposite ends of the
spectrum, namely, sequential processing and pipelined
processing, have been proposed in the literature [24].
Figure 1 illustrates these two strategies using a four-
way join query R1 ⊲⊳ R2 ⊲⊳ R3 ⊲⊳ R4 on 2 machines.
Here, we assume R1 ∼ R4 are not in these 2 machines
originally. Figure 1(a) illustrates an example of se-
quential processing. That is, we first evaluate R1 ⊲⊳ R2

over 2 machines and get the intermediate result I1. We
then process I1 ⊲⊳ R3 on the same 2 machines (indi-
cated by the dashed rectangle) and get the interme-
diate result I2. This process repeats until we get the
final query results. Figure 1(b) shows an example of
pipelined processing of this four-way join query. For
example, we first distribute R2, R3, and R4 over the
2 machines. Then, tuples read from R1 probe these
relations in a pipelined fashion and generate query re-
sults. This pipelined processing of multi-join queries
has been shown to be superior to the sequential pro-



cessing [24]. As we will discuss shortly, state-of-the-art
parallel multi-join query processing solutions tend to
maximally apply this pipelined processing as its core
execution strategy [3, 24, 31].
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Figure 1: A Motivating Example

However, does this commonly accepted solution of
maximally applying pipelined parallelism always per-
form effectively when evaluating multi-join queries?
Or put differently, are there methods that enable us to
generate even more efficient parallel execution strate-
gies than this fully pipelined processing?

In this work, we show via a cost analysis as well
as real system performance studies (not simulation)
that such maximally pipelined processing is not al-
ways effective. We propose a segmented bushy parallel
processing strategy for multi-join queries that outper-
forms state-of-the-art solutions.

Focus of the Work. We focus on complex multi-join
queries, i.e., with 10 or more source relations. We tar-
get application scenarios in which all data will be first
taken to and then processed in the cluster. This re-
quirement of processing joins outside the data sources
is rather common in many applications. For exam-
ple, in a data warehouse environment (e.g., ETL [22]),
operating data sources may be too busy to process
such complex join queries or simply may not be will-
ing to give control to outsiders. Data sources may also
not have the advanced query processing capabilities to
evaluate complex join queries, i.e., web servers.

The key research question that we propose to ad-
dress is whether maximally pipelined multi-join query
processing is indeed a superior solution as commonly
assumed in the literature. This pipelined process im-
plies main memory based processing. Hence, we as-
sume that the aggregated memory of all available ma-
chines is sufficient to hold the intermediate results of
the join relations. In situations when main memory
is not enough to hold all join states at the same time,
we follow the typical approach to divide the query into
several pieces with each piece being processed sequen-
tially. We defer this discussion to Section 5.4. The
rationale behind this is that both the main memory of
each machine and the number of machines in the clus-
ter are getting increasingly large at affordable cost.

Due to possibly large volumes of data in each source
relation, the main memory of one machine may not be
enough to hold the full join states of one source rela-
tion. Thus, partitioned parallelism is applied to each

join operation whenever it is necessary. That is, a par-
tition (exchange) operator [11] will be inserted into the
query plan to partition the input data tuples to mul-
tiple machines to conduct partitioned join processing.

We focus on hashing join algorithms [19] since they
are among the most popular ones in the literature due
to their proven superior performance [19, 23]. Hash-
ing joins provide the possibility of a high degree of
pipelined parallelism. Other join algorithms such as
sort-merge join do not have this natural property of
pipelined parallelism [23]. Furthermore, hashing joins
also naturally fit partitioned parallelism.

Contributions. To highlight, the main contributions
of this work include:

• We question the commonly accepted model of
maximally pipelined parallelism in parallel multi-
join query processing and support the claim by
both an analytical argument as well as experimen-
tal observations.

• We propose a segmented bushy parallel process-
ing strategy that aims to balance all three forms
of parallelism for complex multi-join queries. This
integration has not been fully explored in the lit-
erature. Optimization algorithms are provided to
generate the above segmented bushy strategies.

• We build a distributed query engine to back up
our claims. We incorporate our proposed strate-
gies and algorithms into the system. Extensive ex-
perimental studies show that the segmented bushy
parallel processing has on average a 50% improve-
ment in terms of total processing time in compar-
ison to state-of-the-art solutions.

The remainder of the paper is organized as follows.
Section 2 describes the state-of-the-art. Section 3 dis-
cusses a multi-phase parallel optimization approach.
Section 4 analyzes the cost factors and tradeoffs that
affect the parallel processing performance. Section
5 presents the proposed segmented bushy processing
and optimization algorithms. Experimental results are
provided in Section 6. While Sections 7 and 8 discuss
related work and conclusions respectively.

2 State-of-the-Art

Various solutions have been investigated for parallel
multi-join query processing in the literature [3, 24, 31].
Here, we use the 10-join query depicted in Figure 2 to
explain the core ideas. The query is depicted by its join
graph. Each node in the graph (R0 ∼ R9) represents
one join relation (data source), while an edge denotes
a join between two respective data sources.

2.1 Sequential vs. Pipelined Processing

Two strategies at opposite ends of the spectrum,
namely, sequential processing and pipelined process-
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Figure 2: Example Query over 10 Relations

ing, have been proposed [24]. Note that partitioned
parallelism is applied by default for each join opera-
tor. Sequential processing is based on a left-deep query
tree. Figure 3(a) illustrates one example of sequential
processing for the query defined in Figure 2. Here
Bi represents the building phase of the i-th join op-
eration, while Pi denotes the corresponding probing
phase. This processing can be described by the fol-
lowing steps: (1) scan R0 and build B1, (2) scan R1,
probe P1, and build B2, (3) scan R2, probe P2, and
build B3, and so on. This is repeated until all the
join operations have been evaluated. As can be seen,
it processes joins sequentially and only partial opera-
tions, namely, the probing and the successive building
operations, are pipelined.
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Figure 3: Sequential vs. Pipelined

Pipelined processing is based on a right-deep query
tree [24]. Figure 3(b) illustrates an example of
pipelined processing for the same query in Figure 2.
In this case, all the building operations such as scan
R1 and build B1, scan R2 and build B2, . . ., scan R9

and build B9 can be run concurrently. After that, the
operation of scan R0 and all the probing operations,
probe P1, probe P2, . . ., probe P9 can be done in a
pipelined fashion. As demonstrated above, it achieves
fully pipelined parallelism.

A pipeline process implies main memory based pro-
cessing 1. That is, it requires there to be enough main
memory to hold all the hash tables of the building re-
lations (R1 ∼ R9 in this case) throughout the duration
of processing the query.

As identified in [24], pipelined processing is pre-
ferred whenever main memory is adequate. This is
because (1) intermediate results in pipelined process-
ing exist only as a stream of tuples flowing through
the query tree, and (2) even though sequential pro-

1The term main memory henceforth denotes the sum of mem-
ory of all machines in the cluster unless otherwise specified.

cessing in general may require less memory, this is
not always true due to intermediate results have to be
stored. A large intermediate result may consume even
larger memory than the sum of all building relations.

The simulation results in [24] confirm that pipelined
processing (right-deep) is more efficient than sequen-
tial one (left-deep) in most of the cases they consid-
ered. Without loss of generality, we thus associate
pipelined processing with a right-deep query tree, and
sequential processing with a left-deep query tree in the
following discussions.

2.2 Maximally Pipelined Processing

State-of-the-art parallel multi-join query processing
solutions maximally pursue the above pipelined par-
allelism to improve the overall performance [3, 24, 31].
If the main memory is not enough to hold all the hash
tables of the building relations, they commonly take
the approach of dividing the whole query into “pieces”,
with the expectation that the building relations of each
piece fit into the main memory. That is, pieces are pro-
cessed one by one with each piece utilizing the entire
memory applying fully pipelined parallelism.

For example, zigzag processing [31] takes a right-
deep query tree and slices it into pieces based on the
memory availability. Figure 4(a) illustrates an ex-
ample that the right-deep tree (Figure 3(b)) is cut
into two pieces, one is R0 ∼ R3, and the other is
I1, R4 ∼ R9 (Figure ). I1 denotes the result of the
piece R0 ∼ R3. These two pieces are processed sequen-
tially with fully pipelined parallelism in each piece.
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Figure 4: ZigZag and Right-Deep Segment

Segmented right-deep processing [3] uses heuristics,
namely, balanced-consideration and minimized-work,
to generate pieces directly from the query graph based
on the memory constraint. The query tree is similar to
the zigzag tree. However, each piece can be attached
not only at the first join operation of the next piece,
but instead also in the middle of it. For example, Fig-
ure 4(b) illustrates one example of segmented right-
deep processing. As can be seen, the output (from P3)
is attached as the building relation of B8.

To summarize, all the above approaches take the
common model of pursuing a maximally pipelined pro-



cessing of multi-joins via a right-deep query tree, with
the number of join relations in the right-deep tree pri-
marily being determined by the main memory avail-
able in the cluster.

In this work, we question the view of always se-
lecting such a maximally pipelined processing model.
This pipeline process implies a main memory based
processing. Clearly, more efficient main memory based
processing strategies would lead to an improved over-
all performance. Without loss of generality, we use the
term pipelined segment to refer a right-deep query
tree that can be fully processed in the main memory.

3 A Multi-Phase Optimization

Multi-join query optimization is a complex process
[28]. Parallel multi-join query optimization is even
harder [9, 14, 25]. We take a multi-phase optimization
approach to cope with the complexity of parallel multi-
join query optimization. That is, we break the opti-
mization task into several phases and then optimize
each phase individually. Such multi-phase approach
enables us to focus our attention on the research task
we are tackling.

Breaking the Optimization Task. We divide the
optimization task into the following three phases: (1)
generating an optimized query tree, (2) allocating
query operators in the query tree to machines, and (3)
choosing pipelined execution methods. The complex-
ity of each phase, i.e., phases (1) and (2), still remains
exponential in the number of join relations.

As can be seen, the main focus of this work relates
to query tree shapes (phase (1)) and different forms
of parallelism on the overall performance. To proceed,
we first describe the design choices we will assume in
the reminder of our work for phases (2) and (3) below.

Allocating Query Operators. Resource alloca-
tion itself is a research problem of high complexity
that has been extensively investigated in the litera-
ture [10, 15, 18]. Like most work in parallel multi-join
query processing [3, 24, 31], we focus on main memory
in the allocation phase. This is because main memory
is the key resource in the above join processing. Other
factors such as CPU capabilities of machines are as-
sumed to have less impact on the allocation, i.e., they
are often assumed to be sufficient.

The allocation is performed based on pipelined seg-
ments to promote the usage of pipelined parallelism
[18]. For example, if a right-deep tree is cut into pieces
with each piece being processed sequentially due to in-
sufficient memory, then all machines are allocated to
each piece. Thus, the whole allocation is performed in
a linear fashion. As it can be seen, all previous pro-
cessing strategies described in Section 2 fall into this
type of linear allocation.

Pipelined Execution Method. The building rela-
tions of each pipelined segment can entirely fit into the
memory of the machines that have been allocated to it.
We apply a concurrent execution approach [24] to pro-
cess a pipelined segment 2. In this execution method,
all scan operations are scheduled concurrently. For ex-
ample, in Figure 5, we process a 4 way pipelined seg-
ment on 3 machines. Each building relation (R2 ∼ R4)
is evenly partitioned across all 3 machines. Thus,
each machine houses the appropriate partitions from
all building relations, denoted as P j

i . Here, subscript
i (2 ≤ i ≤ 4) denotes join relations, while superscript
j (1 ≤ j ≤ 3) represents machine ID. The probing re-
lation (R1) is also partitioned into all 3 machines to
probe the appropriate hash tables to generate results.
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Figure 5: Fully Concurrent Execution

4 Cost Analysis of Pipelined Segment

4.1 Identifying Tradeoffs

The following two factors need to be considered when
analyzing the performance of parallel multi-join query
processing via a partitioned hashing: (1) redirection
costs between join operations, and (2) optimal degree
of parallelism.

Redirection Costs. The basic idea behind the par-
titioned hashing join is that the join operation can
be evaluated by a simple union of joins on individual
partitions. For example, an equi-join A ⊲⊳ B can be
computed via (A1 ⊲⊳ B1)∪ (A2 ⊲⊳ B2) . . .∪ (An ⊲⊳ Bn)
if A and B are divided into n partitions (A1 ∼ An,
B1 ∼ Bn) by the same hash function. Assume two par-
titions in a pair (Ai, Bi) are put in the same machine,
while different pairs are spread over distinct machines.
This way, all pairs can be evaluated in parallel.

However, for a right-deep segment, it is not possible
to always have all the matching partitions reside in the
same machine. For example, assume a query tree is de-
fined by “A.A1 = B.B1 and B.B2 = C.C1”. A and B
are partitioned based on their common attribute A.A1

(or B.B1), while C has to be partitioned based on the
common attribute between B and C, namely, B.B2 (or
C.C1). If we assume A is the probing relation, then the

2Other pipelined execution strategies such as staged parti-
tioning [3] have also been proposed. The detailed discussion of
these strategies and their impact on parallel processing strate-
gies are beyond the scope of this paper.



partition function of B.B2 has to be re-applied to the
intermediate result of Ai ⊲⊳ Bi to find the correspond-
ing partitions Ci. However, this corresponding parti-
tion Ci might exist in a machine different from where
the current Bi resides. Thus redirection of intermedi-
ate results is necessary in this situation. For the spe-
cial case of a right-deep tree when only one attribute
per source relation is involved in the join condition,
i.e., “A.A1 = B.B1 = C.C1”, the same partition func-
tion can be applied to all relations. In that case, all
the corresponding partitions can be put into the same
machine to avoid such redirections. Such redirection
affects the probing cost of the query processing.

Optimal Degree of Parallelism. Startup and coor-
dination overhead among machines will counteract the
benefits that could be gained from parallel processing.
[21, 29] discuss the basics on how to choose the optimal
degree of parallelism for a single partitioned operator,
meaning the ideal number of machines that need to be
assigned to one operator. As one example, if a rela-
tion only has 1,000 tuples, it may not be worthwhile
to have it evenly distributed across a large number of
machines (i.e., 100) since the startup and coordination
costs among these machines might be higher than the
actual processing cost. Given the processing of more
than one join operator (i.e., a pipelined segment), we
expect this factor has a major impact on the overall
performance. That is, it affects the building phase cost
of the query processing.

4.2 Pipelined Processing Cost Model

We now further provide cost functions to analyze the
factors that affect the pipelined processing perfor-
mance. For pipelined processing of a right-deep seg-
ment, the cost in terms of total work versus the over-
all processing time may not be that closely correlated.
We thus derive two separate cost models. To facilitate
the description of cost models, we assume R0 is the
probing relation, while R1, . . ., Rn are the building
relations of the pipelined segment. We also assume
k machines are available to process the pipelined seg-
ment. These machines are denoted by M1, M2, . . .,
Mk. Without loss of generality, we use Ii to repre-
sent the intermediate result after joining with Ri. For
example, I1 denotes the result of R0 ⊲⊳ R1, while I2

represents I1 ⊲⊳ R2. Thus In represents the final out-
put of these joins.

Estimating Total Work. The total work of
pipelined processing can be described as the sum of
the work in the building phase (Wb) and the work in
the probing phase (Wp), as listed below.

Wb = (tread + tpartition + tnetwork + tbuild) ∗

n∑

i=1

|Ri|

Wp = (tread + tpartition + tnetwork + tprobe) ∗ |R0|

+
k − 1

k
∗

n−1∑

i=1

|Ii| ∗ tnetwork + (

n−1∑

i=1

|Ii|) ∗ tprobe

tread, tpartition, tnetwork, tbuild, and tprobe in the
above formulae represent the unit cost of reading a
tuple from a source relation, partitioning, transferring
the tuple across the network, inserting the tuple into
the hash table, and probing the hash tables respec-
tively. They represent the main steps involved in a
partitioned hash join processing. In the probing phase
work, k−1

k
∗

∑n−1
i=1 |Ii| ∗ tnetwork denotes the redirec-

tion cost assuming the redirection occurs after each
join operation and the output of each join operation
is uniformly distributed across all the machines. The
cost of outputting the final results is omitted since it
is the same for all processing strategies.

Estimating Processing Time. Similarly, estima-
tion of the processing time can be divided into two
parts: one, the hash table building time (Tb) and
two, the probing time (Tp). The building time of the
pipelined processing Tb can be estimated as follows:

Tb = max
1≤i≤n

(tread+tpartition+tnetwork+tbuild)∗
f(k)

k
∗|Ri|

The processing time of the building phase can be
estimated as the maximal building time of each in-
dividual relation over k machines. Here, f(k) repre-
sents the contention factor of the network since the
more machines are involved, the more contention of
the network caused by transferring tuples of join rela-
tions arises. This is used to reflect the optimal degree
of parallelism as discussed in Section 4.1.

The processing time of the probing phase is more
difficult to analyze because of the pipelined processing.
We use the following formula to estimate the pipeline
processing time.

Tp = Isetup +
Wp

k
+ Idelete

Here Isetup represents the pipeline setup time, while
Idelete denotes the pipeline depletion time. The steady
processing time of the pipeline can be estimated by the

average processing time of one tuple (
Wp

|R0|
) multiplied

by the number of tuples (|R0|) that need to be pro-
cessed over the total of k machines. Clearly, this is
a simplified model representing the ideal steady pro-
cessing time without including for example variations
in the network costs.

From above analysis, we can see that both the num-
ber of building relations (n) and the number of ma-
chines (k) assigned to the pipeline play an important
role in the overall processing time. As we will discuss
in Section 5, we investigate to break both n and k , and
compose smaller pipelined segments to query trees to



improve the query processing performance. Note that
above cost model is also applied to find the most effi-
cient pipelined processing strategies for each subgraph
(Section 5.3).

5 Breaking Pipelined Parallelism

5.1 Bushy Trees and Independent Parallelism

Query trees of a multi-join query can be classified into
two types: sequential trees (i.e., a right-deep tree or
a left-deep tree as discussed above), and bushy trees.
A right-deep tree has a better performance over a left-
deep tree since it has a high potential of pipelined par-
allelism for a hash-based join algorithm. Thus we now
use a right-deep tree as the representative of sequential
trees (e.g., Figure 6(a)).

A bushy tree has a height of at least log2n (given
a binary bushy tree that is balanced) with n being
the number of join relations involved in the multi-
join query. A bushy tree brings new flexibility to the
style of processing, such as having multiple probing
relations and composing different pipelined segments.
Moreover, a bushy tree has the potential of processing
independent subtrees (segments) concurrently. How-
ever, such flexibility may also bring dependencies to
the execution. This dependency may both affect the
allocation of query operators and the corresponding
parallel processing performance.

For example, Figure 6(b) illustrates one bushy tree
and its possible pipeline segments (each pipeline seg-
ment is denoted by one dashed oval). Four segments
(P1∼P4) can be identified. As can been seen, P1 and
P3 can be processed in parallel by processing them on
different machines. While the execution of P2 depends
on P1, the execution of P4 depends both on P2 and P3.

As can be seen, a right-deep tree has the highest de-
gree of pipelined parallelism without any dependencies
because each subtree is a join relation. However, there
is no opportunity for independent parallelism except
during the initial building phase of the join relations.
While a wide bushy tree has many subtrees, it also
has up to log2n layers of dependencies with n being
the number of source relations. These dependencies
are likely to impact the overall performance.
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upto log2
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P1
P2 P3

P4

R3 R4R1 R2 R5 R6
R7 R8

(a) Right-Deep with 
no dependency

Figure 6: Right-Deep vs. Wide Bushy Tree

5.2 Segmented Bushy Tree

Seen from the cost model, if the results of pipelined
segments in a bushy tree are smaller than those of the
original join relations, then the bushy tree processing
may have less total work (Wb + Wp) when compared
with the fully right-deep processing. Here we assume
all the intermediate results are kept in main memory.

Comparing the overall processing time of fully right-
deep and bushy trees is more complicated. As we can
see, each pipelined segment in a bushy tree only gets
one portion of the total available machines. Thus the
network contention (f(k)) in the building phase may
be less severe than that of the full right-deep case.
Moreover, less building relations in the pipeline re-
duces the variations in the building phase. As a con-
sequence, given the independent processing of these
smaller pipelined segments, the processing time of a
bushy tree may be better than that of fully pipelined
processing. However, as we identified earlier, a bushy
tree style processing may be affected by the dependen-
cies among subtrees. Moreover, there may be subtrees
(up to ⌈n/4⌉) that have short pipelined processing. For
example, P1 and P3 only have a pipeline of one probing
followed by the building for the next join. These two
factors may eventually counteract the benefits gained
by introducing the independent parallelism.

Thus, the key question now is how to balance inde-
pendent parallelism and pipelined parallelism in par-
allel multi-join query processing. By reducing each
pipelined segment (i.e., identified by dashed oval in
Figure 6(b)) into one ‘mega-node’, we can build a de-
pendency tree out of the original query tree. We note
that the dependencies are associated with the height of
this dependency tree. Thus reducing the height of the
dependency tree should effectively reduce the depen-
dencies. We thus propose to utilize a segmented bushy
query tree. A segmented bushy tree can be controlled
to have a dependency tree with height of 2 as long as
we increase the number of subtrees of the root node.

Figure 7 illustrates the example of a segmented
bushy tree of the join query in Figure 6. In this exam-
ple, the whole query is cut into three groups, R1 ∼ R3,
R4 ∼ R7, and R8. Three pipelined segments P1, P2,
and P3 can be identified correspondingly. P1 and P2

can be processed independently, each with pipelined
parallelism. The output from these two segments can
be directly fed into P3. Without loss of generality, the
pipelined segment that contains outputs of all other
segments is referred to as the final pipelined segment.
In this case, P3 is the final pipelined segment. Thus,
all pipelined segments except the final one can be ex-
ecuted concurrently without any dependencies. We
can see that a segmented bushy tree processing ap-
plies independent parallelism with minimal dependen-
cies among subtrees (groups) since it only has one layer
of dependencies among pipelines.

Without loss of generality, we always assume the



right-most pipeline of a segmented bushy tree to serve
as the probing relation of the final pipelined segment.
For example, P1 is the probing relation of the final
segment P3 in Figure 7.

R3R1 R2R4 R5 R6
R7

R8
P2

P3

P1

Figure 7: A Segmented Bushy Tree

The cost of above segmented bushy tree processing
can be modeled based on the pipeline cost functions
discussed in Section 4.2. We omit it here due to the
space limitation. Readers can refer to [16] for details.

5.3 Composing Segmented Bushy Trees

Now, we address the question how to generate the
segmented bushy tree for a multi-join query. Algo-
rithm 1 sketches our proposed algorithm. It consumes
a connected join graph G and the maximal number
of nodes m per group (we will discuss how to get this
m shortly). We would choose the largest join rela-
tion as the probing relation of each group since this
reduces the time and the memory consumption of the
building phase. Once we select the probing relation,
we then begin to enumerate all possible groups hav-
ing a maximum of m join nodes starting from this
probing relation. Enumeration is possible since m is
usually much smaller than the number of nodes in the
join graph. Some of the groups may not contain ex-
actly m nodes due to the nodes in the group being no
longer connected by a join edge. Our goal is to avoid
Cartesian products given that each data source may
be large, thus resulting in huge intermediate results.
After that, we choose the best graph, a partition of
the original join graph, from these candidates gener-
ated from the enumeration based on the cost model
we developed in Section 4.2. The selection can also be
based on heuristics, i.e., choosing the group in which
the join attributes are the same to reduce the possible
redirection costs, or selecting the one with the smallest
output results.

Figure 8 illustrates how the example join graph de-
picted in Figure 2 is divided by applying Algorithm 1
when m = 4. For example, we start from the relation
with largest cardinality, say relation R7. The enumer-
ation in Step 4 generates all the possible connected
groups with 4 nodes starting from R7, as illustrated in
Figure 8(a). In this case, we choose R7, R9, R6, and
R8 as the nodes in the first group (pipelined segment).
For simplicity, we call this group G1. After this, if
R1 is the one with the largest cardinality among the
nodes that have not yet been grouped, we then choose

Algorithm 1 ComposeBushyTree(G,m)

Input: A connected join graph G with n nodes. Num-
ber m specifies maximum number of nodes in each
graph. Output: Segmented bushy tree with at least
⌈n/m⌉ subtrees.

1: completed = false

2: while (!completed) do

3: Choose a node V with largest cardinality that
has not yet been grouped as probing relation

4: Enumerate all subgraphs starting from V with
at most m nodes

5: Choose best subgraph, mark the nodes in this
group have been selected in original join graph

6: if !(∃K, K is a connected subgraph of G with
unselected nodes) && (K.size() ≥ 2) then

7: completed = true

8: end if

9: end while

10: Compose a segmented bushy tree from all groups
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Figure 8: Example of Algorithm 1

R1 as the probing relation for the second group G2.
We repeat the process as illustrated by Figures 8(b)-
(c). After these steps, only R0 and R5 are left. They
are not connected. We thus end up with 4 groups. An
example segmented bushy tree with these 4 groups can
be built as shown in Figure 9(a).

Allocating machines to a segmented bushy is based
on the number of building relations in each pipelined
segment. For example, for the segmented bushy tree
shown in Figure 9(a), three pipelined segments can be
identified (dashed cycles in Figure 9(b)). The number
of machines assigned to each pipelined segment, de-
noted by k1, k2, and k3, can be computed as follows.

Nb =
∑

0≤i≤9,i6=1,7

|Ri|+ |I1|

k1 = ⌊
(|R6|+ |R8|+ |R9|)

Nb

⌋

k2 = ⌊
(|R2|+ |R3|+ |R4|)

Nb

⌋

k3 = k − k1 − k2



Here, I1 and I2 denote the outputs of groups G1

and G2 respectively. Nb represents the total number
of tuples that need to be built assuming R7, R1, and
I2 are the probing relations of G1, G2, and the final
pipelined segment respectively. Note that the selection
of the probing relation for the final pipeline segment
is not straightforward. We will discuss this in more
detail in Section 6.4.
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Figure 9: Segmented Bushy and Node Allocation

However, the question remains how to decide the
right number of groups given a join graph. Let us now
use g to represent this number. Note that the input of
Algorithm 1, the maximum number of nodes in each
group m can be estimated by m = ⌈n/g⌉ with n being
the number of join relations in the query. There are
two ways to address this issue. The first is a heuristics-
based selection approach. For example, we can choose
g as the number of nodes that have cardinality larger
than 3/2 of the average cardinality. Here, we assume
that g has to be bound within 2 ∼ n/2. The ratio-
nale behind this selection criterion is that in the best
case, we can choose all these large join relations as the
probing relations for the generated groups. The sec-
ond is a cost-based selection approach. Again we note
that the range of the number of groups g is between
2 to n/2 3. We thus can repeatedly call the function
ComposeBushyTree (Algorithm 1) with the number m
ranging from n/2 to 2 (g changes from 2 to n/2 corre-
spondingly). We then estimate the cost of processing
strategy from ComposeBushyTree. The final output
will be the one with the best estimated cost. While
this may increase the optimization cost, it has the po-
tential to result in a better processing strategy.

5.4 Handling Insufficient Memory

The problem of handling insufficient memory can be
addressed using the “cutting” principle as in [3, 24].
That is, we divide the whole query (joins) into pieces
such that each piece can be run in the main memory.
Note that in the extreme case, the multi-join query
processing would have to be sequentialized due to not
enough memory being available to hold more than one
join. As we mentioned in Section 1, we assume that

3In extreme cases, the actual number of groups may be larger
than n/2. However, we assume that we have less interests in
these cases when a large number of groups with only one join
relation in it.

the aggregated memory can hold at least 2 or more
building relations.

Algorithm 2 sketches an incremental approach to
address this problem. This incremental approach is
based on the static right deep tree [24] or segmented
right-deep tree [3] which divides the join query into
right-deep segments based on the main memory of the
cluster. After that, we further compose each right-
deep segment into a segmented bushy tree if it is neces-
sary, i.e., the number of building relations in each piece
is larger than a certain threshold. Since each right-
deep segment is likely to be more efficiently processed,
the performance of the whole query is also expected
to be better than the static right-deep or segmented
right-deep tree processing.

Algorithm 2 SimpleIncSegTree(G,M)

Input: A connected join graph G with n nodes, total
main memory of cluster M. Output: A sequence of
segmented bushy trees, each processable in main mem-
ory of cluster.

1: Compose Static or Segmented Right-Deep Tree
2: for each right-deep segment r do

3: m← Maximal number of relations per group
4: t← ComposeBushyTree(r,m)
5: Put t into result sequence
6: end for

7: Return result sequence

A “top-down cut” approach, dividing the join graph
directly such that each group can be processed in the
main memory, can also be devised. We then select
the groups and process them iteratively. However, as
mentioned earlier, the essence of our work is to re-
examine the performance of a main memory based
maximal pipelined processing. We argue that having
a more efficient main memory based processing strate-
gies will also lead to improved overall performance
even if we apply a simple incremental optimization al-
gorithm such as Algorithm 2. This claim is confirmed
by our experimental studies discussed below.

6 Experiments

6.1 Experimental Setup

We have implemented a distributed query engine to
test out our hypothesis. The system is implemented
using Java. It is capable of optimizing and executing
multi-join queries across a set of shared nothing ma-
chines connected by network. Due to space limits, we
ask readers to refer our technical report [16] for details
about the system. Multi-join queries are processed on
a cluster composed of 10 machines. Each machine in
the cluster has dual 2.4GHz Xeon CPUs with 2GB
RAM. They are connected by a private gigabit eth-
ernet switch. In our experimental setting, all source
(join) relations are stored in an Oracle database that



resides in a different machine outside the cluster hav-
ing 2 PIII 1G Hz CPUs and 1G main memory. The
query results are sent to an application server with one
PIII 800M Hz CPU and 256M Memory. This setup fol-
lows a typical data warehouse environment where the
process has to be performed outside the data sources
[5]. This is because the operating data sources may be
too busy to process complex join queries or even sim-
ply may not be willing to give control to the outsiders.

As done in [3], we use generated data sets and
queries in our experiments. This is because bench-
mark queries such as TPC-H [27] only have a limited
number of queries (around 20), and most of them have
less than 5 joins. The multi-join queries used in the
experiments are randomly generated with the number
of join relations ranging from 8, 12, to 16. We actu-
ally generate random connect acyclic graphs given a
specified number of nodes. Each node represents join
relations, while each edge denotes the join condition.
The average join ratio of each join is set to 1, which
means each probe tuple is expected to produce on av-
erage one output tuple. The cardinality of each join
relation ranges from 1K ∼ 100K tuples, and the aver-
age size of each source tuple is about 40 bytes. Each
result tuple has about 320 ∼ 640 bytes on average,
by simply concatenating all tuples from join relations.
Thus, the whole data in one test query (including in-
termediate results) can go up to 600MB. Data size in
our experiment is chosen to make sure all the hash ta-
bles can fit in the main memory since our main focus of
this work is the main memory based processing. Here,
each building relation is evenly distributed to all ma-
chines that assigned to the segment that this relation
belongs to.

6.2 Impact of the Number of Data Servers

Initial experiments have been conducted to evaluate
the impact of the number of Oracle data servers in the
experimental setup on the overall performance. We
compare the performance of multi-join queries using a
pure right-deep tree (pipelined) processing given dif-
ferent numbers of data servers. The test queries are
generated randomly with 8 ∼ 16 join relations. For
each query, we vary the number of data servers from 1
to 4. Thus, if we have i data servers with 1 ≤ i ≤ 4 and
k (either 8, 12, or 16) join relations, then we have each
data server hold on average ⌈k/i⌉ join relations. These
data servers are deployed on different machines with
similar configurations having Oracle 8i installed. Each
data point in Figure 10 reflects an average of 50 ran-
domly generated queries for each query type (queries
have the same number of join relations). Here, x-axis
denotes the number of join relations in the query, while
y-axis represents the total processing time. From Fig-
ure 10, we see that the number of data servers in the
system only has a minor impact on the overall per-
formance. This is because the total time spend on

reading the tuples from data servers only represents
a small fraction of the total query processing time in
our current experimental settings. Thus, the improve-
ment due to shared read by multiple data servers does
not play a major role in the overall performance. This
indicates that the data server is not the bottleneck in
our experimental environment. Without loss of gener-
ality, we report our following experimental results with
a setup that stores all join relations in one data server.

0

100000

200000

300000

400000

500000

600000

700000

800000

8 12 16

Number of join relations in a Query

P
ro

ce
ss

in
g

 T
im

e 
(m

s)

1 Server
2 Servers
3 Servers
4 Servers

Figure 10: Vary the Number of Data Servers

6.3 Pipelined vs. Segmented Bushy

Experiments have been conducted to compare the to-
tal processing time of a right-deep tree having fully
pipelined processing to our proposed segmented bushy
tree processing that mixes both pipelined and inde-
pendent parallelism. Figure 11 shows the results of
20 randomly generated queries with 8 join relations.
Here, the segmented bushy tree has a maximum of 3
join relations per group. In Figure 11, we see that a
segmented bushy tree processing almost consistently
outperforms fully pipelined processing.
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Figure 12 shows the results of queries with an in-
creasing number of join relations in the query. The
number of relations in a query ranges from 8, 12 to 16.
The experimental results reflect an average process-
ing time over 50 different randomly generated queries
per query type. For example, for queries with 8 join
relations, we generate 50 queries randomly. We then
produce both the fully pipelined processing and the
segmented bushy processing strategies for each gener-



ated query. In this experimental setup, queries with 8
relations are divided into groups having a maximum of
3 relations, while queries with 12 and 16 relations are
divided into groups having a maximum of 4 relations.

In Figure 12, we can see that segmented bushy
tree processing is consistently better than maximal
pipelined parallelism. The performance improvement
is around 50% in terms of the total processing time.
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6.4 Probing Relation Selection for the Final

Pipelined Segment

Selection of the probing relation of a pipelined seg-
ment is usually based on the cardinality of the join
relations. This is because choosing a large relation as
probing relation can effectively reduce the work and
processing time of the building phase. However, for
a pipelined segment that involves outputs from other
segments (assuming main memory is enough to hold
these building relations), the cardinality of the rela-
tion alone may no longer be the best choice in general.
Changing the probing relation of a pipelined segment
that only involves source join relations does not change
the number of probes in the probing phase. It only
changes the number of probing and building tuples.
Here we define the number of probe steps as the maxi-
mum number of hash tables that a tuple from the prob-
ing relation needs to probe to produce the final output.
However, for a pipeline segment having outputs from
other segments, changing the probing relation will also
change the total number of probes.

For example, if we change the probing relation for
the pipeline segment P1 as shown in Figure 13(a) from
R7 to R6, no changes in the number of probe steps oc-
cur. Both of them are 3 (Figures 13(a)-(b)). However,
if we change the probing relation of pipeline P3 (ex-
changing P1 and P2), then the total number of probe
steps changes from 4 to 5 in this case. This is because
P1 itself has 3 probe steps while P2 only has 2.

Figure 14 shows the experimental results of the
impact of the probing relation selection for the final
pipelined segment. Here, the number on the x-axis de-
notes the number of relations in the probing relation
of the final pipelined segment. The generated queries
have 16 join relations. In Figure 14, we see that in
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Figure 13: Probing Relation Selection

our current environment, the larger the number of re-
lations in the probing relation of the final pipelined
segment, the worse the total processing performance
will be. This is because the longer probe steps in the
final pipelined segments impair the processing perfor-
mance. This again confirms our observation that a full
pipeline may not be the best performer. Note that the
performance degradation for a pipeline that is longer
than 8 can be explained by the experiments shown in
Figure 12. Hence, in Figure 14, we conveyed the scope
of smaller pipeline sizes.
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6.5 Number of Join Relations per Group

Figure 15 illustrates the impact of the maximal num-
ber of join relations per group in our environment.
Here, all the tested queries have 16 join relations. We
vary the number of join relations per group from 3 to 6.
As we can see, if the number of join relations per group
increases, the total processing time also increases.
This is mainly because given our ComposeBushyTree
algorithm, the final pipelined segment tends to choose
the largest subgraph (the one with the largest num-
ber of join relations) as the probing relation since it
usually has the largest intermediate results. As shown
in Section 6.4, a long pipeline of the final pipelined
segment degrades the overall performance. We thus
revise our algorithm to choose the subgraph with the
smallest number of probing steps as the probing rela-
tion of the final pipelined segment. As can be seen,
the revised algorithm is less sensitive to the number of



join relations in a group.
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6.6 Handling Insufficient Memory

Figure 16 shows the experimental results when the ag-
gregated main memory is not sufficient to hold all the
hash tables of the building relations. We deploy join
queries with 32 join relations. Assume the query will
be cut into three pieces with each piece being exe-
cuted sequentially. Here, the intermediate results of
each piece will be first written to the data server,
while the next piece will read the intermediate results
back into the main memory. We compare the per-
formance of the segmented right-deep tree with our
segmented bushy tree generated by Algorithm 2. Note
that the segmented right-deep tree has each piece fully
pipelined, while the segmented bushy will have the
same right-deep segment (piece) further composed into
a segmented bushy tree with a maximum of 3 join rela-
tions per group. Figure 16 reports the comparison be-
tween these two approaches for 10 randomly generated
queries. As can be seen, the segmented bushy tree pro-
cessing consistently outperforms the segmented right-
deep processing. This is expected because each piece is
processed more efficiently given our segmented bushy
tree approach. Thus, the overall performance of the
query is correspondingly improved.
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6.7 Concluding Remarks

As can be seen, these experimental results clearly high-
light the main message of our work, namely, the long

standing assumption that “maximal pipelining is pre-
ferred” is shown to be wrong. Our proposed seg-
mented bushy processing almost consistently beats full
pipelined processing. Given the massive application of
pipelined processing, especially in growing areas such
as continuous query processing, this observation can
also shed some new light on how best to optimize dis-
tributed pipelined query plans when the optimization
function is related to total processing time.

7 Related Work

Parallel query processing has been extensively stud-
ied in the literature [4, 6, 11, 13, 14, 20, 21, 24, 29].
Many different research efforts have been conducted
in this area. For example, GAMMA [7], Bubba [1],
PRISMA/DB [29] are examples of parallel database
systems. Many papers were written studying their
performance. [13] proposes solutions for scheduling
pipelined query operators to minimize the total work.
Task scheduling and allocation in general also have
been extensively studied [15]. Other focuses such as
load balancing [2, 8] and resource allocation [10, 18]
are also topics closely related to parallel query process-
ing. As can be seen, these works provide the necessary
background for the work presented in this paper. In
this work, we instead focus on a specific area of par-
allel query processing, namely, the parallel multi-join
query processing via hashing.

Evaluating a multi-join query via hashing in par-
allel (applying partitioned and pipelined parallelism)
over a shared-nothing environment also has been in-
vestigated in the literature before [20, 24, 26]. Differ-
ent parallel processing strategies such as left-deep and
right-deep [24], segmented right-deep [3], and zigzag
tree [31] have been proposed, as we have provided an
in-depth discussion in Section 2. However, these pro-
posed solutions all share the common approach which
is to maximally use pipelined parallelism (i.e., maxi-
mally divide a right-deep tree into segments) based on
certain objective functions (i.e., memory constraints),
and each segment is processed one by one. In this
work, we instead consider more tradeoffs in optimiz-
ing such parallel multi-join query processing, i.e., other
types of query tree shapes, independent parallelism
and its dependencies, properties of the join definitions
to reduce redirection costs, etc. Moreover, most of the
previous works report their results based on simula-
tions, while we report our results based on a working
distributed system.

[30] experimentally compares five types of query
shapes and various execution strategies based on the
PRISMA/DB system [29]. However, it does not ex-
plore how to generate optimized parallel processing
query plans. In this work, we propose algorithms to
generate efficient parallel processing solutions.



8 Conclusion

In this work, we have revisited the common assump-
tion that has been taken by practically all prior work
in the literature, namely, to pursue maximal pipelined
parallelism when processing multi-join query process-
ing in parallel. We have shown both experimen-
tally and via a cost analysis that the introduction of
independent parallelism at the cost of reducing the
pipeline can greatly impact the parallel performance.
A heuristic-driven optimization algorithm for gener-
ating a new class of processing strategies incorporat-
ing independent parallelism and yet controlling its de-
pendencies has been proposed in this paper. A work-
ing distributed query engine has been implemented.
Experimental studies confirm our claim that maximal
pipelined parallelism is not always the best choice.

The observation we made in this work also sheds
some new light on how best to optimize pipelined
query plans in general given the optimization function
is related to the total processing time. This optimiza-
tion is bound to get increasingly attention due to new
and growing research areas such as continuous query
processing [17].
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