
State-Slice: New Paradigm of Multi-query Optimization of
Window-based Stream Queries∗

Song Wang, Elke Rundensteiner
Worcester Polytechnic Institute

Worcester, MA, USA.
{songwang|rundenst}@cs.wpi.edu

Samrat Ganguly, Sudeept Bhatnagar
NEC Laboratories America Inc.

Princeton, NJ, USA.
{samrat|sudeept}@nec-labs.com

ABSTRACT
Modern stream applications such as sensor monitoring sys-
tems and publish/subscription services necessitate the han-
dling of large numbers of continuous queries specified over
high volume data streams. Efficient sharing of computa-
tions among multiple continuous queries, especially for the
memory- and CPU-intensive window-based operations, is
critical. A novel challenge in this scenario is to allow re-
source sharing among similar queries, even if they employ
windows of different lengths. This paper first reviews the ex-
isting sharing methods in the literature, and then illustrates
the significant performance shortcomings of these methods.

This paper then presents a novel paradigm for the sharing
of window join queries. Namely we slice window states of
a join operator into fine-grained window slices and form a
chain of sliced window joins. By using an elaborate pipelin-
ing methodology, the number of joins after state slicing is re-
duced from quadratic to linear. This novel sharing paradigm
enables us to push selections down into the chain and flexibly
select subsequences of such sliced window joins for compu-
tation sharing among queries with different window sizes.
Based on the state-slice sharing paradigm, two algorithms
are proposed for the chain buildup. One minimizes the mem-
ory consumption while the other minimizes the CPU usage.
The algorithms are proven to find the optimal chain with re-
spect to memory or CPU usage for a given query workload.
We have implemented the slice-share paradigm within the
data stream management system CAPE. The experimental
results show that our strategy provides the best performance
over a diverse range of workload settings among all alternate
solutions in the literature.

1. INTRODUCTION
Recent years have witnessed a rapid increase of attention

in data stream management systems (DSMS). Continuous

∗This work is funded in part by the NSF Computing Re-
search Infrastructure grant CNS 05-51584 and NEC Labo-
ratories America Inc.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06, September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

query based applications involving a large number of con-
current queries over high volume data streams are emerg-
ing in a large variety of scientific and engineering domains.
Examples of such applications include environmental mon-
itoring systems [2] that allow multiple continuous queries
over sensor data streams, with each query issued for in-
dependent monitoring purposes. Another example is the
publish-subscribe services [7, 20] that host a large number
of subscriptions monitoring published information from data
sources. Such systems often process a variety of continuous
queries that are similar in flavor on the same input streams.

Processing each such compute-intensive query separately
is inefficient and certainly not scalable to the huge number
of queries encountered in these applications. One promising
approach in the database literature to support large num-
bers of queries is computation sharing. Many papers [8,
18, 10, 13] have highlighted the importance of computation
sharing in continuous queries. The previous work, e.g. [8],
has focused primarily on sharing of filters with overlapping
predicates, which are stateless and have simple semantics.
However in practice, stateful operators such as joins and ag-
gregations tend to dominate the usage of critical resources
such as memory and CPU in a DSMS. These stateful oper-
ators tend to be bounded using window constraints on the
otherwise infinite input streams. Efficient sharing of these
stateful operators with possibly different window constraints
thus becomes paramount, offering the promise of major re-
ductions in resource consumption.

Compared to traditional multi-query optimization, one
new challenge in the sharing of stateful operators comes from
the preference of in-memory processing of stream queries.
Frequent access to hard disk will be too slow when arrival
rates are high. Any sharing blind to the window constraints
might keep tuples unnecessarily long in the system. A care-
fully designed sharing paradigm beyond traditional sharing
of common sub-expressions is thus needed.

In this paper, we focus on the problem of sharing of win-
dow join operators across multiple continuous queries. The
window constraints may vary according to the semantics
of each query. The sharing solutions employed in existing
streaming systems, such as NiagaraCQ [10], CACQ [18] and
PSoup [9], focus on exploiting common sub-expressions in
queries, that is, they closely follow the traditional multi-
query optimization strategies from relational technology [23,
21]. Their shared processing of joins ignores window con-
straints, even though windows clearly are critical for query
semantics.

The intuitive sharing method for joins [13] with different

window sizes employs the join having the largest window
among all given joins, and a routing operator which dis-
patches the joined result to each output. Such method suf-
fers from significant shortcomings as shown using the mo-
tivation example below. The reason is two folds, (1) the
per-tuple cost of routing results among multiple queries can
be significant; and (2) the selection pull-up (see [10] for de-
tailed discussions of selection pull-up and push-down) for
matching query plans may waste large amounts of memory
and CPU resources.
Motivation Example: Consider the following two contin-
uous queries in a sensor network expressed using an SQL-like
language with window extension [2].

Q1: SELECT A.* FROM Temperature A, Humidity B

WHERE A.LocationId=B.LocationId

WINDOW 1 min

Q2: SELECT A.* FROM Temperature A, Humidity B

WHERE A.LocationId=B.LocationId AND

A.Value>Threshold

WINDOW 60 min

Q1 and Q2 join the data streams coming from tempera-
ture and humidity sensors by their respective locations. The
WINDOW clause indicates the size of the sliding windows
of each query. The join operators in Q1 and Q2 are identical
except for the filter condition and window constraints. The
naive shared query plan will join the two streams first with
the larger window constraint (60 min). The routing opera-
tor then splits the joined results and dispatches them to Q1

and Q2 respectively according to the tuples’ timestamps and
the filter. The routing step of the joined tuples may take a
significant chunk of CPU time if the fanout of the routing
operator is much greater than one. If the join selectivity is
high, the situation may further escalate since such cost is
a per-tuple cost on every joined result tuple. Further, the
state of the shared join operator requires a huge amount of
memory to hold the tuples in the larger window without any
early filtering of the input tuples. Suppose the selectivity of
the filter in Q2 is 1%, a simple calculation reveals that the
naive shared plan requires a state size that is 60 times larger
than the state used by Q1, or 100 times larger than the state
used by Q2 each by themselves. In the case of high volume
data stream inputs, such wasteful memory consumption is
unaffordable and renders inefficient computation sharing.
Our Approach: To efficiently share computations of window-
based join operators, we propose a new paradigm for sharing
join queries with different window constraints and filters.
The two key ideas of our approach are: state-slicing and
pipelining.

We slice the window states of the shared join operator
into fine-grained pieces based on the window constraints of
individual queries. Multiple sliced window join operators,
with each joining a distinct pair of sliced window states, can
be formed. Selections now can be pushed down below any
of the sliced window joins to avoid unnecessary computation
and memory usage shown above.

However, N2 joins appear to be needed to provide a com-
plete answer if each of the window states were to be sliced
into N pieces. The number of distinct join operators needed
would then be too large for a DSMS to hold for a large N .
We overcome this hurdle by elegantly pipelining the slices.
This enables us to build a chain of only N sliced window
joins to compute the complete join result. This also enables
us to selectively share a subsequence of such a chain of sliced

window join operators among queries with different window
constraints.

Based on the state-slice sharing paradigm, two algorithms
are proposed for the chain buildup, one that minimizes the
memory consumption and the other that minimizes the CPU
usage. The algorithms are guaranteed to always find the op-
timal chain with respect to either memory or CPU cost, for a
given query workload. The experimental results show that
our strategy provides the best performance over a diverse
range of workload settings among alternate solutions in the
literature.
Our Contributions:

• We review the existing sharing strategies in the liter-
ature, highlighting their memory and CPU consump-
tions.

• We introduce the concept of a chain of pipelining sliced
window join operators, and prove its equivalence to the
regular window-based join.

• The memory and CPU costs of the chain of sliced win-
dow join operators are evaluated and analytically com-
pared with the existing solutions.

• Based on the insights gained from this analysis, we
propose two algorithms to build the chain that mini-
mizes the CPU or the memory cost of the shared query
plan, respectively. We prove the optimality of both al-
gorithms.

• The proposed techniques are implemented in an actual
DSMS (CAPE). Results of performance comparison of
our proposed techniques with state-of-the-art sharing
strategies are reported.

Organization of Paper: The rest of the paper is orga-
nized as follows. Section 2 presents the preliminaries used
in this paper. Section 3 shows the motivation example with
detailed analytical performance comparisons of alternative
sharing strategies of window-based joins. Section 4 describes
the proposed chain of sliced window join operators. Sec-
tions 5 and 6 present the algorithms to build the chain.
Section 7 presents the experimental results. Section 8 con-
tains related work while Section 9 concludes the paper.

2. PRELIMINARIES
A shared query plan capturing multi-queries is composed

of operators in a directed acyclic graph (DAG). The input
streams are unbounded sequences of tuples. Each tuple has
an associated timestamp identifying its arrival time at the
system. Similar to [6], we assume that the timestamps of the
tuples have a global ordering based on the system’s clock.

Sliding windows [5] are commonly used constraints to de-
fine the stateful operators. See [12] for a survey on window-
based join operations in the literature. The size of a window
constraint is specified using either a time interval (time-
based) or a count on the number of tuples (count-based).
In this paper, we present our sharing paradigm using time-
based windows. However, our proposed techniques can be
applied to count-based window constraints in the same way.
We also simplify the discussion of join conditions by using
equijoin in this paper, while the proposed solution is appli-
cable to any type of join condition.

The sliding window equijoin between streams A and B,
with window sizes W1 and W2 respectively over the common
attribute Ci can be denoted as A[W1] 1Ci B[W2]. The
semantics [24] for such sliding window joins are that the

output of the join consists of all pairs of tuples a ∈ A, b ∈ B,
such that a.Ci = b.Ci (we omit Ci in the future and instead
concentrate on the sliding window only) and at certain time
t, both a ∈ A[W1] and b ∈ B[W2]. That is, either Tb − Ta <
W1 or Ta − Tb < W2. Ta and Tb denote the timestamps
of tuple a and b respectively in this paper. The timestamp
assigned to the joined tuple is max(Ta, Tb). The execution
steps for a newly arriving tuple of A are shown in Fig. 1 1.
Symmetric steps are followed for a B tuple.

1.Cross-Purge: Discard expired tuples in window B[W2]
2.Probe: Emit a 1 B[W2]
3.Insert: Add a to window A[W1]

Figure 1: Execution of Sliding-window join.

For each join operator, the input stream tuples are pro-
cessed in the order of their timestamps. Main memory is
used for the states of the join operators (state memory) and
queues between operators (queue memory).

3. REVIEW OF STRATEGIES FOR SHAR-
ING CONTINUOUS QUERIES

Using the example queries Q1 and Q2 from Section 1
with generalized window constraints, we review the existing
strategies in the literature for sharing continuous queries.
Figure 2 shows the query plans for Q1 and Q2 without com-
putation sharing. The states in each join operator hold the
tuples in the window. We use σA to represent the selection
operator on stream A.

A[w1]

Q1

A

Q2

σA
B

A

B

B[w1]

A[w2] B[w2]

Figure 2: Query Plans for Q1 and Q2.

For the following cost analysis, we use the notations of
the system settings in Table 1. We define the selectivity of
σA as: number of outputs

number of inputs
. We define the join selectivity S1

as: number of outputs
number of outputs from Cartesian P roduct

. We focus on state
memory when calculating the memory usage. To estimate
the CPU cost, we consider the cost for value comparison of
two tuples and the timestamp comparison. We assume that
comparisons are equally expensive and dominate the CPU
cost. We thus use the count of comparisons per time unit
as the metric for estimated CPU costs. In this paper, we
calculate the CPU cost using the nested-loop join algorithm.
Calculation using the hash-based join algorithm can be done
similarly using an adjusted cost model [14].

Symbol Explanation
λA Arrival Rate of Stream A (Tuples/Sec.)
λB Arrival Rate of Stream B (Tuples/Sec.)
W1 Window Size for Q1 (Sec.)
W2 Window Size for Q2 (Sec.)
Mt Tuple Size (KB)
Sσ Selectivity of σA

S1 Join Selectivity

Table 1: System Settings Used in Section 3.

Without loss of generality, we let 0 < W1 < W2. For
simplicity, in the following computation, we set λA = λB ,
1In this paper we only consider cross-purge, while self-purge
is also applicable.

denoted as λ. The analysis can be extended similarly for
unbalanced input stream rates.

3.1 Naive Sharing with Selection Pull-up
The PullUp or Filtered PullUp approaches proposed in [10]

for sharing continuous query plans containing joins and se-
lections can be applied to the sharing of joins with different
window sizes. That is, we need to introduce a router oper-
ator to dispatch the joined results to the respective query
outputs. The intuition behind such sharing lies in that the
answer of the join for Q1 (with the smaller window) is con-
tained in the join for Q2 (with the larger window). The
shared query plan for Q1 and Q2 is shown in Fig. 3.

all

Q2 Q1

|Ta-Tb |
<W1

Router

B

σA

A

R

A[w2] B[w2]

Figure 3: Selection Pull-up.

By performing the sliding window join first with the larger
window size among the queries Q1 and Q2, computation
sharing is achieved. The router then checks the timestamps
of each joined tuple with the window constraints of regis-
tered CQs and dispatches them correspondingly. The com-
pare operation happens in the probing step of the join op-
erator, the checking step of the router and the filtering step
of the selection. We can calculate the state memory con-
sumption Cm (m stands for memory) and the CPU cost Cp

(p stands for processor) as:

n
Cm = 2λW2Mt

Cp = 2λ2W2 + 2λ + 2λ2W2S1 + 2λ2W2S1
(1)

The first item of Cp denotes the join probing costs; the sec-
ond the cross-purge cost; the third the routing cost; and the
fourth the selection cost. The routing cost is the same as
the selection cost since each of them perform one comparison
per result tuple.

As pointed out in [18], the selection pull-up approach suf-
fers from unnecessary join probing costs. With strong dif-
ferences of the windows the situation deteriorates, especially
when the selection is used in continuous queries with large
windows. In such cases, the states may hold tuples unnec-
essarily long and thus waste huge amounts of memory.

Another shortcoming for the selection pull-up sharing strat-
egy is the routing cost of each joined result. The routing cost
is proportional to the join selectivity S1. This cost is also
related to the fanout of the router operator, which corre-
sponds to the number of queries the router serves. Similar
to [10], a router having a large fanout could be implemented
as a range join between the joined tuple stream and a static
profile table, with each entry holding a window size. Then
the routing cost is proportional to the fanout of the router,
which may be much larger than one.

3.2 Stream Partition with Selection Push-down
To avoid unnecessary join computations in the shared

query plan using selection pull-up, we employ the selection
push-down approach proposed in [10]. Selection push-down
can be achieved using multiple join operators, each process-
ing part of the input data streams. We then need a split

operator to partition the input stream A by the condition
in the σA operator. Thus the stream A into different join
operators are disjoint. We also need an order-preserving (on
tuple timestamps) union operator [1] to merge the joined re-
sults coming from the multiple joins. Such sharing paradigm
applied to Q1 and Q2 will result in the shared query plan as
shown in Figure 4.

Router

>

all

BA

Threshold

<=

U

A1 B1

Split

1

A2 B2

2

Q2 Q1

|Ta-Tb |Union R

S

A[w1] B[w1] A[w2] B[w2]

<W1

Figure 4: Selection Push-down.

The compare operation happens during the splitting of the
streams, the merging of the tuples in the union operator, the
routing step of the router and the probing of the joins. We
can calculate the state memory consumption Cm and the
CPU cost Cp for the selection push-down paradigm as:

(
Cm = (2− Sσ)λW1Mt + (1 + Sσ)λW2Mt

Cp = λ + 2(1− Sσ)λ2W1 + 2Sσλ2W2+
3λ + 2Sσλ2W2S1 + 2λ2W1S1

(2)

The first item of Cm refers to the state memory in operator
11; the second the state memory in operator 12. The first
item of Cp corresponds to the splitting cost; the second to
the join probing cost of 11; the third to the join probing
cost of 12; the fourth to the cross-purge cost; the fifth to
the routing cost; the sixth to the union cost. Since the
outputs of 11 and 12 are sorted, the union cost corresponds
to a one-time merge sort on timestamps.

Different from the sharing of identical file scans for mul-
tiple join operators in [10], the state memory B1 cannot
be saved since B2 may not contain B1 at all times. The
reason is that the sliding windows of B1 and B2 may not
move forward simultaneously, unless the DSMS employs a
synchronized operator scheduling strategy.

Stream sharing with selection push-down tends to require
much more joins (mn, m and n are the number of partitions
of stream A and B respectively) than the naive sharing.
With the asynchronous nature of these joins as discussed
above, extra memory is consumed for the state memory.
Such memory waste might be significant.

Obviously, the CPU cost Cp of a shared query plan gen-
erated by the selection push-down sharing is much smaller
than the CPU cost of using the naive sharing with selec-
tion pull-up. However this sharing strategy still suffers from
similar routing costs as the selection pull-up approach. Such
cost can be significant, as already discussed for the selection
pull-up case.

4. STATE-SLICE SHARING PARADIGM
As discussed in Section 3, existing sharing paradigms suf-

fer from one or more of the following cost factors: (1) ex-
pensive routing step; (2) state memory waste among asyn-
chronous parallel joins; and (3) unnecessary join probings
without selection push-down. Our proposed state-slice shar-
ing successfully avoids all three types of costs.

4.1 State-Sliced One-Way Window Join
A one-way sliding window join [14] of streams A and B is

denoted as A[W] n B (or B o A[W]), where stream A has
a sliding window of size W . The output of the join consists
of all pairs of tuples a ∈ A, b ∈ B, such that Tb − Ta < W ,
and tuple pair (a, b) satisfies the join condition.

Definition 1. A sliced one-way window join on streams

A and B is denoted as A[W start, W end]
s
n B (or B

s
o

A[W start, W end]), where stream A has a sliding window of
range: W end−W start. The start and end window are W start

and W end respectively. The output of the join consists of all
pairs of tuples a ∈ A, b ∈ B, such that W start ≤ Tb − Ta <
W end, and (a, b) satisfies the join condition.

We can consider the sliced one-way sliding window join as
a generalized form of the regular one-way window join. That

is A[W] n B = A[0, W]
s
n B. Figure 5 shows an example

of a sliced one-way window join. This join has one output
queue for the joined results, two output queues (optional)
for purged A tuples and propagated B tuples. These purged
tuples will be used by another sliced window join as input
streams, which will be explained later in this section.

State of Stream A: [w1, w2]

Probe

A Tuple

B Tuple

A[w1,w2] B
s Joined-Result

Purged-A-Tuple

Propagated-B-Tuple

Figure 5: Sliced One-Way Window Join.

The execution steps to be followed for the sliced window

join A[W start, W end]
s
n B are shown in Fig. 6.

When a new tuple a arrives on A

1. Insert: Add a into sliding window A[W start, W end]

When a new tuple b arrives on B

1. Cross-Purge: Update A[W start, W end] to purge expired A

tuples, i.e. if a′ ∈ A[W start, W end] and (Tb − Ta′) > W end,
move a′ into Purged-A-Tuple queue (if exists) or discard (if not
exists)
2. Probe: Emit result pairs (a, b) according to Def. 1 for b and

a ∈ A[W start, W end] to Joined-Result queue
3. Propagate: Add b into Propagated-B-Tuple queue (if exists)
or discard (if not exists)

Figure 6: Execution of A[W start, W end]
s
n B.

The semantics of the state-sliced window join require the
checking of both the upper and lower bounds of the time-
stamps in every tuple probing step. In Fig. 6, the newly
arriving tuple b will first purge the state of stream A with
W end, before probing is attempted. Then the probing can
be conducted without checking of the upper bound of the
window constraint W end. The checking of the lower bound
of the window W end can also be omitted in the probing since
we use the sliced window join operators in a pipelining chain
manner, as discussed below.

Definition 2. A chain of sliced one-way window joins is
a sequence of pipelined N sliced one-way window joins, de-

noted as A[0, W1]
s
n B, A[W1, W2]

s
n B, ..., A[WN−1, WN]

s
n

B. The start window of the first join in a chain is 0. For
any adjacent two joins, Ji and Ji+1, the start window of
Ji+1 equals the end window of prior Ji (0 ≤ i < N) in
the chain. Ji and Ji+1 are connected by both the Purged-A-
Tuple output queue of Ji as the input A stream of Ji+1, and
the Propagated-B-Tuple output queue of Ji as the input B
stream of Ji+1.

Fig. 7 shows a chain of state-sliced window joins having
two one-way joins J1 and J2. We assume the input stream
tuples to J2, no matter from stream A or from stream B, are
processed strictly in the order of their global time-stamps.
Thus we use one logical queue between J1 and J2. This
does not prevent us from using physical queues for individual
input streams.

Queue(s)
State of Stream A: [0, w1]

Probe

A Tuple

B Tuple
J1 J2

State of Stream A: [w1, w2]

Probe

U
Union

Joined-Result

Figure 7: Chain of 1-way Sliced Window Joins.

Table 2 depicts an example execution of this chain. We
assume that one single tuple (an a or a b) will only arrive
at the start of each second, w1 = 2sec, w2 = 4sec and every
a tuple will match every b tuple (Cartesian Product seman-
tics). During every second, an operator will be selected to
run. Each running of the operator will process one input tu-
ple. The content of the states in J1 and J2, and the content
in the queue between J1 and J2 after each running of the
operator are shown in Table 2.

T Arr. OP A :: [0, 2] Queue A :: [2, 4] Output
1 a1 J1 [a1] [] []
2 a2 J1 [a2,a1] [] []
3 a3 J1 [a3,a2,a1] [] []
4 b1 J1 [a3,a2] [b1,a1] [] (a2,b1),

(a3,b1)
5 b2 J1 [a3] [b2,a2,b1,a1] [] (a3,b2)
6 J2 [a3] [b2,a2,b1] [a1]
7 J2 [a3] [b2,a2] [a1] (a1,b1)
8 a4 J1 [a4,a3] [b2,a2] [a1]
9 J2 [a4] [a3,b2] [a2,a1]
10 J2 [a4] [a3] [a2,a1] (a1,b2),

(a2,b2)

Table 2: Execution of the Chain: J1, J2.

Execution in Table 2 follows the steps in Fig. 6. For
example at the 4th second, first a1 will be purged out of
J1 and inserted into the queue by the arriving b1, since
Tb1−Ta1 ≥ 2sec. Then b1 will purge the state of J1 and out-
put the joined result. Lastly, b1 is inserted into the queue.

We observe that the union of the join results of J1: A[0, w1]
s
n

B and J2: A[w1, w2]
s
n B is equivalent to the results of a

regular sliding window join: A[w2] n B. The order among
the joined results is restored by the merge union operator.

To prove that the chain of sliced joins provides the com-
plete join answer, we first introduce the following lemma.

Lemma 1. For any sliced one-way sliding window join

A[Wi−1, Wi]
s
n B in a chain, at the time that one b tuple fin-

ishes the cross-purge step, but not yet begins the probe step,
we have: (1) ∀a ∈ A :: [Wi−1, Wi] ⇒ Wi−1 ≤ Tb−Ta < Wi;
and (2) ∀a tuple in the input steam A, Wi−1 ≤ Tb − Ta <
Wi ⇒ a ∈ A :: [Wi−1, Wi]. Here A :: [Wi−1, Wi] denotes the
state of stream A.

Proof: (1). In the cross-purge step (Fig. 6), the arriving b
will purge any tuple a with Tb − Ta ≥ Wi. Thus ∀ai ∈ A ::
[Wi−1, Wi], Tb−Tai < Wi. For the first sliced window join in
the chain, Wi−1 = 0. We have 0 ≤ Tb − Ta. For other joins
in the chain, there must exist a tuple am ∈ A :: [Wi−1, Wi]
that has the maximum timestamp among all the a tuples
in A :: [Wi−1, Wi]. Tuple am must have been purged by

b′ of stream B from the state of the previous join operator
in the chain. If b′ = b, then we have Tb − Tam ≥ Wi−1,
since Wi−1 is the upper window bound of the previous join
operator. If b′ 6= b, then Tb′ − Tam > Wi−1, since Tb >
Tb′ . We still have Tb − Tam > Wi−1. Since Tam ≥ Tak ,
for ∀ak ∈ A :: [Wi−1, Wi], we have Wi−1 ≤ Tb − Tak, for
∀ak ∈ A :: [Wi−1, Wi]).

(2). We use a proof by contradiction. If a /∈ A :: [Wi−1, Wi],
then first we assume a ∈ A :: [Wj−1, Wj], j < i. Given
Wi−1 ≤ Tb − Ta, we know Wj ≤ Tb − Ta. Then a can-
not be inside the state A :: [Wj−1, Wj] since a would have
been purged by b when it is processed by the join opera-

tor A[Wj−1, Wj]
s
n B. We got a contradiction. Similarly a

cannot be inside any state A :: [Wk−1, Wk], k > i.

Theorem 1. The union of the join results of all the sliced

one-way window joins in a chain A[0, W1]
s
n B, ..., A[WN−1,

WN]
s
n B is equivalent to the results of a regular one-way

sliding window join A[WN]nB.

Proof: “⇐”. Lemma 1(1) shows that the sliced joins in a
chain will not generate a result tuple (a, b) with Ta − Tb >

W . That is, ∀(a, b) ∈ S1≤i≤N A[Wi−1, Wi]
s
n B ⇒ (a, b) ∈

A[W]nB.
“⇒”. We need to show: ∀(a, b) ∈ A[W]nB ⇒ ∃i, s.t.(a, b) ∈
A[Wi−1, Wi]

s
n B. Without loss of generality, ∀(a, b) ∈

A[W]nB, there exists unique i, such that Wi−1 ≤ Tb−Ta <
Wi, since W0 ≤ Tb − Ta < WN . We want to show that

(a, b) ∈ A[Wi−1, Wi]
s
n B. The execution steps in Fig. 6

guarantee that the tuple b will be processed by A[Wi−1, Wi]
s
n

B at a certain time. Lemma 1(2) shows that tuple a would
be inside the state of A[Wi−1, Wi] at that same time. Then

(a, b) ∈ A[Wi−1, Wi]
s
n B. Since i is unique, there is no

duplicated probing between tuples a and b.
From Lemma 1, we see that the state of the regular one-

way sliding window join A[W] n B is distributed among
different sliced one-way joins in a chain. These sliced states
are disjoint with each other in the chain, since the tuples
in the state are purged from the state of the previous join.
This property is independent from operator scheduling, be
it synchronous or even asynchronous.

4.2 State-Sliced Binary Window Join
Similar to Definition 1, we can define the binary sliding

window join. The definition of the chain of sliced binary
joins is similar to Definition 2 and is thus omitted for space
reasons. Fig. 8 shows an example of a chain of state-sliced
binary window joins.

Definition 3. A sliced binary window join of streams A

and B is denoted as A[W start
A , W end

A]
s
1 B[W start

B , W end
B],

where stream A has a sliding window of range: W end
A −

W start
A and stream B has a window of range W end

B −W start
B .

The join result consists of all pairs of tuples a ∈ A, b ∈ B,
such that either W start

A ≤ Tb − Ta < W end
A or W start

B ≤
Ta − Tb < W end

B , and (a, b) satisfies the join condition.

The execution steps for sliced binary window joins can be
viewed as a combination of two one-way sliced window joins.
Each input tuple from stream A or B will be captured as
two reference copies, before the tuple is processed by the first
binary sliced window join2. One reference is annotated as

2The copies can be made by the first binary sliced join.

State of Stream A: [0, w1]

State of Stream B: [0, w1]

Queue(s)

A Tuple

B Tuple

J1

J2

U
Union

Joined-Result

State of Stream B: [w1, w2]

State of Stream A: [w1, w2]
female

female

male

male

Figure 8: Chain of Binary Sliced Window Joins.

the male tuple (denoted as am) and the other as the female
tuple (denoted as af).

The execution steps to be followed for the processing of a

stream A tuple by A[W start, W end]
s
1 B[W start, W end] are

shown in Fig. 9. The execution procedure for the tuples
arriving from stream B can be similarly defined.

When a new tuple am arrives

1.Cross-Purge: Update B[W start, W end] to purge expired B tu-

ples, i.e. if bf ∈ B[W start, W end] and (Tam − T
bf) > W end,

move bf into the queue (if exists) towards next join operator or
discard (if not exists)

2.Probe: Emit am join with bf ∈ B[W start, W end] to Joined-
Result queue
3.Propagate: Add am into the queue (if exists) towards next join
operator or discard (if not exists)

When a new tuple af arrives

1.Insert: Add af into the sliding window A[W start, W end]

Figure 9: Execution of Binary Sliced Window Join.

Intuitively the male tuples of stream B and female tu-
ples of stream A are used to generate join tuples equivalent

to a one-way join: A[W start, W end]
s
n B. The male tu-

ples of stream A and female tuples of stream B are used
to generate join tuples equivalent to the other one-way join:

A
s
o B[W start, W end].
Note that using two copies of a tuple will not require dou-

bled system resources since: (1) the combined workload (in
Fig. 9) to process a pair of female and male tuples equals the
processing of one tuple in a regular join operator, since one
tuple takes care of purging/probing and the other filling up
the states; (2) the state of the binary sliced window join will
only hold the female tuple; and (3) assuming a simplified
queue (M/M/1), doubled arrival rate (from the two copies)
and doubled service rate (from above (1)) still would not
change the average queue size, if the system is stable. In
our implementation, we use a copy-of-reference instead of a
copy-of-object, aiming to reduce the potential extra queue
memory during bursts of arrivals. Discussion of scheduling
strategies and their effects on queues is beyond the scope of
this paper.

Theorem 2. The union of the join results of the sliced

binary window joins in a chain A[0, W1]
s
1 B[0, W1], ...,

A[WN−1, WN]
s
1 B[WN−1, WN] is equivalent to the results

of a regular sliding window join A[WN] 1 B[WN].

Using Theorem 1, we can prove Theorem 2. Since we can
treat a binary sliced window join as two parallel one-way
sliced window joins, the proof is fairly straightforward. It is
omitted here for space reasons.

We now show how the proposed state-slice sharing can be
applied to the running example in Section 3 to share the
computation between the two queries. The shared plan is
depicted in Figure 10. This shared query plan includes a

chain of two sliced sliding window join operators
s
11 and

s
12. The purged tuples from the states of

s
11 are sent to

s
12

as input tuples. The selection operator σA filters the input

stream A tuples for
s
12. The selection operator σ′A filters

the joined results of
s
11 for Q2. The predicates in σA and

σ′A are both A.value > Threshold.

B1

BA

A1

[0,W1] 1

A2 B2

2

Q2 Q1

U Unionσ’A

s

s

σA

[0,W1]

[W1,W2] [W1,W2]

Figure 10: State-Slice Sharing for Q1 and Q2.

4.3 Discussion and Analysis
Compared to alternative sharing approaches discussed in

Section 3, the state-slice sharing paradigm offers the follow-
ing benefits:

• Selection can be pushed down into the middle of the
join chain. Thus unnecessary probings in the join op-
erators are avoided.

• The routing cost is saved. Instead a pre-determined
route is embedded in the query plan.

• States of the sliced window joins in a chain are disjoint
with each other. Thus no state memory is wasted.

Using the same settings as in Section 3, we now calculate
the state memory consumption Cm and the CPU cost Cp

for the state-slice sharing paradigm as follows:
(

Cm = 2λW1Mt + (1 + Sσ)λ(W2 −W1)Mt

Cp = 2λ2W1 + λ + 2λ2Sσ(W2 −W1)+
4λ + 2λ + 2λ2S1W1

(3)

The first item of Cm corresponds to the state memory in
s
11; the second to the state memory in

s
12. The first item of

Cp is the join probing cost of
s
11; the second the filter cost

of σA; the third the join probing cost of
s
12; the fourth the

cross-purge cost; while the fifth the union cost; the sixth the
filter cost of σ′A. The union cost in Cp is proportional to the
input rates of streams A and B. The reason is that the male

tuple of the last sliced join
s
12 acts as punctuation [26] for

the union operator. For example, the male tuple af
1 is sent

to the union operator after it finishes probing the state of

stream B in
s
12, indicating that no more joined tuples with

timestamps smaller than af
1 will be generated in the future.

Such punctuations are used by the union operator for the
sorting of joined tuples from multiple join operators [26].

Comparing the memory and CPU costs for the differ-
ent sharing solutions, namely naive sharing with selection
pull-up (Eq. 1), stream partition with selection push-down
(Eq. 2) and state-slice chain (Eq. 3), the savings of using
the state slicing sharing are:

8
>>>>>>><
>>>>>>>:

C
(1)
m −C

(3)
m

C
(1)
m

=
(1−ρ)(1−Sσ)

2

C
(2)
m −C

(3)
m

C
(2)
m

= ρ
1+2ρ+(1−ρ)Sσ

C
(1)
p −C

(3)
p

C
(1)
p

=
(1−ρ)(1−Sσ)+(2−ρ)S1

1+2S1

C
(2)
p −C

(3)
p

C
(2)
p

= SσS1
ρ(1−Sσ)+Sσ+SσS1+ρS1

(4)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 10

 20

 30

 40

 50

Memory Saving(%)

State-Slice over Selection-PullUp
State-Slice over Selection-PushDown

ρ=w1/w2

Selectivity Sσ

Memory Saving(%)

(a)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0

 20

 40

 60

 80

 100

CPU Saving(%)

Join Selectivity=0.4
Join Selectivity=0.1

Join Selectivity=0.025

ρ=w1/w2

Selectivity Sσ

CPU Saving(%)

(b)

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2
 0.4

 0.6
 0.8

 1

 0
 5

 10
 15
 20
 25
 30

CPU Saving(%)

Join Selectivity=0.4
Join Selectivity=0.1

Join Selectivity=0.025

ρ=w1/w2

Selectivity Sσ

CPU Saving(%)

(c)

Figure 11: (a) Memory Comparison; (b) CPU Comparison: State-Slice vs. Selection PullUp; (c) CPU
Comparison: State-Slice vs. Selection PushDown.

with C
(i)
m denoting Cm, C

(i)
p denoting Cp in Equation i (i =

1, 2, 3); and window ratio ρ = W1
W2

, 0 < ρ < 1.
The memory and CPU savings under various settings cal-

culated from Equation 4 are depicted in Fig. 11. Com-
pared to sharing alternatives in Section 3, state-slice sharing
achieves significant savings. As a base case, when there is
no selection in the query plans (i.e., Sσ = 1), state-slice
sharing will consume the same amount of memory as the
selection pullup while the CPU saving is proportional to the
join selectivity S1. When selection exists, state-slice shar-
ing can save about 20%-30% memory, 10%-40% CPU over
the alternatives on average. For the extreme settings, the
memory savings can reach about 50% and the CPU savings
about 100% (Fig. 11(a), 11(b)). The actual savings are sen-
sitive to these parameters. Moreover, from Eq. 4 we can
see that all the savings are positive. This means that the
state-sliced sharing paradigm achieves the lowest memory
and CPU costs under all these settings. Note that we omit
λ in Eq. 4 for CPU cost comparison, since its effect is small
when the number of queries is only 2. The CPU savings will
increase with increasing λ, especially when the number of
queries is large.

5. STATE-SLICE: BUILD THE CHAIN
In this section, we discuss how to build an optimal shared

query plan with a chain of sliced window joins. Consider
a DSMS with N registered continuous queries, where each
query performs a sliding window join A[wi] 1 B[wi] (1 ≤
i ≤ N) over data streams A and B. The shared query plan
is a DAG with multiple roots, one for each of the queries.

Given a set of continuous queries, the queries are first
sorted by their window lengths in ascending order. We pro-
pose two algorithms for building the state-slicing chain in
that order (Section 5.1 and 5.2). The choice between them
depends on the availability of the CPU and memory in the
system. The chain can also first be built using one of the
algorithms and migrated towards the other by merging or
splitting the slices at runtime (Section 5.3).

5.1 Memory-Optimal State-Slicing
Without loss of generality, we assume that wi < wi+1

(1 ≤ i < N). Let’s consider a chain of the N sliced joins:

J1, J2, ..., JN , with Ji as A[wi−1, wi]
s
1 B[wi−1, wi] (1 ≤ i ≤

N, w0 = 0). A union operator Ui is added to collect joined
results from J1, ..., Ji for query Qi (1 < i ≤ N), as shown in
Fig. 12. We call this chain the memory-optimal state-slice
sharing (Mem-Opt).

s s

[w1,w2]
B
A

1

Q1

[0,w1]
2

Q2

s

[wN-1,wN]
N

…

U Union

… QN

U Union

s

[w2,w3]
3

Q3

U Union …

Figure 12: Mem-Opt State-Slice Sharing.

The correctness of Mem-Opt state-slice sharing is proven
in Theorem 3 by using Theorem 2. We have the following
equivalence for i (1 ≤ i ≤ N):

Qi : A[wi] 1 B[wi] =
[

1≤j≤i

A[Wj−1, Wj]
s
1 B[Wj−1, Wj]

Theorem 3. The total state memory used by a Mem-Opt

chain of sliced joins J1, J2, ..., JN , with Ji as A[wi−1, wi]
s
1

B[wi−1, wi] (1 ≤ i ≤ N, w0 = 0) is equal to the state memory
used by the regular sliding window join: A[wN] 1 B[wN].

Proof: From Lemma 1, the maximum timestamp difference
of tuples (e.g., A tuples) in the state of Ji is (wi − wi−1),
when continuous tuples from the other stream (e.g., B tu-
ples) are processed. Assume the arrival rate of streams A
and B is denoted by λA and λB respectively. Then we have:

P
1≤i≤N

MemJi

= (λA + λB)[(w1 − w0) + (w2 − w1) + ... + (wN − wN−1)]
= (λA + λB)wN

(λA+λB)wN is the minimal amount of state memory that
is required to generate the full joined result for QN . Thus
the Mem-Opt chain consumes the minimal state memory.

Let’s again use the count of comparisons per time unit as
the metric for estimated CPU costs. Comparing the ex-
ecution (Fig. 9) of a sliced window join with the execu-
tion (Fig. 1) of a regular window join, we notice that the
probing cost of the chain of sliced joins: J1, J2, ..., JN is
equivalent to the probing cost of the regular window join:
A[wN] 1 B[wN].

Comparing to the alternative sharing paradigms in Sec-
tion 3, we notice that the Mem-Opt chain may not always

win since it requires CPU cost for: (1) (N − 1) more times
of purging for each tuple in the streams A and B; (2) extra
system overhead for running more operators; and (3) CPU
cost for (N − 1) union operators. In the case that the selec-
tivity of the join S1 is rather small, the routing cost in the
selection pull-up sharing may be less than the extra cost of
the Mem-Opt chain. In short, the Mem-Opt chain may not
be the CPU-optimal solution for all settings.

5.2 CPU-Optimal State-Slicing
We hence now discuss how to find the CPU-Optimal state-

slice sharing (CPU-Opt) which will yield minimal CPU costs.
We notice that the Mem-Opt state-slice sharing may result
in a large number of sliced joins with very small window
ranges each. In such cases, the extra per tuple purge cost
and the system overhead for holding more operators may
not be neglectable.

In Fig 13(b), the state-sliced joins from Ji to Jj are merged
into a larger sliced join with the window range being the
summation of the window ranges of Ji and Jj . A routing
operator then is added to split the joined results to the as-
sociated queries. Such merging of concatenated sliced joins
can be done iteratively until all the sliced joins are merged
together. In the extreme case, the totally merged join results
in a shared query plan, which is equal to that formed by us-
ing the selection pull-up sharing method shown in Section 3.
The CPU cost may decrease after the merging.

s
i

Qi

U Union

… s

[wj-1,wj]

Qj

U Union

……

…

…

[wi-1,wi]

j

(a)

Qi

U Union

… s

[wi-1,wj]

Qj

U Union

…

<wi

|Ta-Tb |
R Router

≥wj-1

i

…

…

…

(b)

Figure 13: Merging Two Sliced Joins.

Both the shared query plans in Fig. 13 have the same join
probing costs and union costs. Using the symbols defined
in Section 3 and Csys denoting the system overhead factor,

we can calculate the difference of partial CPU cost C
(a)
p in

Fig 13(a) and C
(b)
p in Fig 13(b) as:

C(a)
p − C(b)

p = (λA + λB)(j − i)− 2λAλB(wj − wi−1)σ1(j − i)+
Csys(j − i + 1)(λA + λB)

The difference of CPU costs in these scenarios comes from
the purge cost (the first item), the routing cost (the sec-
ond item) and the system overhead (the third item). The
system overhead mainly includes the cost for moving tuples
in/out of the queues and the context change cost of operator
scheduling. The system overhead is proportional to the data
input rates and number of operators.

Considering a chain of N sliced joins, all possible merging
of sliced joins can be represented by edges in a directed graph
G = {V, E}, where V is a set of N + 1 nodes and E is a set

of N(N+1)
2

edges. Let ∀vi ∈ V (0 ≤ i ≤ N) represent the
window wi of Qi (w0 = 0). Let the edge ei,j from node vi to
node vj (i < j) represent a sliced join with start-window as
wi and end-window as wj . Then each path from the node v0

to node vN represents a variation of the merged state-slice
sharing, as shown in Fig. 14.

v0 v1 v2 vN…v3

Figure 14: Directed Graph of State-Slice Sharing.

Similar to the above calculation of C
(a)
p and C

(b)
p , we can

calculate the CPU cost of the merged sliced window joins
represented by every edge. We denote the CPU cost ei,j of
the sliced join as the length of the edge li,j . We have the
following lemma.

Lemma 2. The calculations of CPU costs li,j and lm,n

are independent if 0 ≤ i < j ≤ m < n ≤ N .

Based on Lemma 2, we can apply the principle of optimal-
ity [4] here and transform the optimal state-slice problem to
the problem of finding the shortest path from v0 to vN in an
acyclic directed graph. Using the well-known Dijkstra’s al-
gorithm [11], we can find the CPU-Opt query plan in O(N2),
with N being the number of the distinct window constraints
in the system. Even when we incorporate the calculation of

the CPU cost of the N(N+1)
2

edges, the total time for getting

the CPU optimal state-sliced sharing is still O(N2).
In case the queries do not have selections, the CPU-Opt

chain will consume the same amount of memory as the Mem-
Opt chain. With selections, the CPU-Opt chain may con-
sume more memory. See Section 6 for more discussion.

5.3 Online Migration of the State-Slicing Chain
Online migration of the shared query plan is important for

efficient processing of stream queries. The state-slicing chain
may need maintenance when: (1) queries enter or leave the
system, (2) queries update predicates or window constraints,
and (3) runtime statistic collection invokes plan adaptation.

The chain migration is achieved by two primitive opera-
tion: merging and splitting of the sliced join. For example
when query Qi (i < N) leaves the system, the corresponding

sliced join A[wi−1, wi]
s
1 B[wi−1, wi] could be merged with

the next sliced join in the chain. Or if the corresponding
sliced join had been merged with others in the CPU-Opt
chain, splitting of the merged join may be invoked first.

Online splitting of the sliced join Ji can be achieved by:
(1) stopping the system execution for Ji; (2) updating the
end window of Ji to w′i; (3) inserting a new sliced join J ′i with
window [w′i, wi] to the right of Ji and connecting the query
plan; and (4) resuming the system. The queue between Ji

and J ′i is empty right after the insertion. The execution of
Ji will purge tuples, due to its new smaller window, into the
queue between Ji and J ′i and eventually fill up the states of
J ′i correctly.

Online merging of two adjacent sliced joins Ji and Ji+1

requires the queues between these two joins empty. This
can be achieved by scheduling the execution of Ji+1 after
stopping the scheduling of Ji. Once the queue between Ji

and Ji+1 is empty, we can simply (1) concatenate the corre-
sponding states of Ji and Ji+1; (2) update the end window of
Ji to wi+1; (3) remove Ji+1 from the chain; and (4) resume
the system.

The overhead for chain migration corresponds to constant
system cost for operator insertion/deletion. The system sus-
pending time during join splitting is neglectable, while dur-
ing join merging it is bounded by the execution time needed
to empty the queue in-between. No extra processing costs
arise in either case.

6. PUSH SELECTIONS INTO CHAIN
When the N continuous queries each have selections on

the input streams, we aim to push the selections down into
the chain of sliced joins. For clarity of discussion, we fo-
cus on the selection push-down for predicates on one input
stream. Predicates on multiple streams can be pushed down
similarly. We denote the selection predicate on the input
stream A of query Qi as σi and the condition of σi as condi.

6.1 Mem-Opt Chain with Selection Push-down
The selections can be pushed down into the chain of sliced

joins as shown in Fig. 15. The predicate of the selection σ′i
corresponds to the disjunction of the selection predicates
from σi to σN . That is:

cond
′
i = condi ∨ condi+1 ∨ · · · ∨ condN

s s

[w1,w2]
B
A

1

Q1

[0,w1]
2

Q2

s

[wN-1,wN]
N

…

U Union

… QN

U Union

s

[w2,w3]
3

Q3

U Union …

σ’1

σ1

σ’2

σ’2

σ2 σ3

σ’3

σ’3

σN

σN

Figure 15: Selection Push-down for Mem-Opt State-
Slice Sharing.

Logically each tuple may be evaluated against the same
selection predicate for multiple times. In the actual execu-
tion, we can evaluate the predicates (condi, 1 ≤ i ≤ N) in
the decreasing order of i for each tuple. As soon as a pred-
icate (e.g. condk) is satisfied, stop further evaluating and
attach k to the tuple. Thus this tuple can survive until the
kth slice join and no further. Such idea is similar to the tu-
ple lineage proposed in [18]. We omit the detailed discussion
since it is orthogonal to our state-slice concept.

Similar to Theorem 3, we have the following theorem.

Theorem 4. The Mem-Opt state-slice sharing with se-
lection push-down consumes the minimal state memory for
a given workload.

Intuitively the total state memory consumption is minimal
since that: (1) each join probe performed by 1i in Fig. 15 is
required at least by one of the queries: Qi, Qi+1, ..., QN ; (2)
any input tuple that won’t contribute to the joined results
will be filtered out immediately; and (3) the contents in the
state memory of all sliced joins are pairwise disjoint with
each other.

6.2 CPU-Opt Chain with Selection Push-down
The merging of adjacent sliced joins with selection push-

down can be achieved following the scheme shown in Fig. 16.
Merging sliced joins having selection between them will cost
extra state memory usage due to selection pull-up. The tu-
ples, which would be filtered out by the selection before, will
now stay unnecessarily long in the state memory. Also, the
consequent join probing cost will increase accordingly. Con-
tinuous merging of the sliced joins will result in the selection
pull-up sharing approach discussed in Section 3.

Similarly to the CPU optimization in Section 5.2, the Di-
jkstra’s algorithm can be used to find the CPU-Opt sharing
plan with minimized CPU cost in O(N2). Such CPU-Opt
sharing plan may not be Mem-Opt.

s

[wi-2,wi-1]

i-1

Qi-1

U Union

… s

[wi-1,wi]
i

Qi

U Union

…σ’i

σ’i

σi-1 σi

(a)

… s

[wi-2,wi]
i

…

<wi-1

|Ta-Tb |
R Router

>=wi-1

Qi-1

U Union

Qi

U Union

σ’i

σ’i

σi-1 σi

(b)

Figure 16: Merging Sliced Joins with Selections.

7. PERFORMANCE STUDY
We have implemented the proposed state-slice sharing

paradigm in a DSMS system (CAPE) [22]. Experiments
have been conducted to thoroughly test the ability of the
sharing paradigm under various system resource settings.
We compare the CPU and memory usages for the same set
of continuous queries using different sharing approaches.

7.1 Experimental System Overview
The CAPE is implemented in Java. All experiments are

conducted on a machine running windows XP with a 2.8GHz
processor and 1GB main memory. The DSMS includes a
synthetic data stream generator, a query processor and sev-
eral result receivers. The query processor employs round-
robin scheduling for executing the operators. The query pro-
cessor has a monitor thread that collects the runtime statis-
tics of each operator. In all the experiments, the stream
generator will run for 90 seconds. All the experiments start
with empty states for all operators.

We measure the runtime memory usage in terms of the
number of tuples staying in the states of the joins. We mea-
sure the CPU cost of the query plans in terms of the average
service rate (Total Throughput

Running Time
).

The tuples in the data streams are generated according
to the Poisson arrival pattern. The stream input rate is
changed by setting the mean inter-arrival time between two
tuples.

7.2 State-Slice vs. Other Sharing Strategies
Eq. 4 analytically compares the performance of state-slice

sharing with other sharing alternatives. The experiments in
this section aim to verify these benefits empirically.

We use three queries and the Mem-Opt chain buildup in
these experiments. The queries are: Q1 (A[W1] 1 B[W1]),
Q2 (σ(A[W2]) 1 B[W2]) and Q3 (σ(A[W3]) 1 B[W3]). Ap-
parently these three queries can share partial computations
among each other. Using the Mem-Opt state-slice sharing,
the shared query plan has a chain of three sliced joins with
window constraints as [0, W1], [W1, W2] and [W2, W3]. The
joined results are unioned and sent to each data receiver
respectively. We compare the state-slice sharing with the
naive sharing with selection pull-up and the stream partition
with selection push-down (see Section 3). Using the naive
sharing approach with selection pull-up, the shared plan
will have one regular sliding window join: A[W3] 1 B[W3].
Using the stream partition with selection push-down, the
shared plan will have two regular joins: A[W1] 1 B[W1] and
A[W3] 1 B[W3]. The input stream A is partitioned by σ
and sent to these two joins.

We vary the parameters as shown in Table 3. All the
settings are moderate instead of extreme. Experiments with

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(a) Mostly-Small, S1 = 0.1, Sσ = 0.5

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(b) Uniform, S1 = 0.1, Sσ = 0.5

 500

 1000

 1500

 2000

 2500

 3000

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(c) Mostly-Large, S1 = 0.1, Sσ = 0.5

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(d) Uniform, S1 = 0.025, Sσ = 0.2

 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000
 2200
 2400

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)
Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(e) Uniform, S1 = 0.025, Sσ = 0.5

 500

 1000

 1500

 2000

 2500

 3000

 20 40 60 80

S
ta

te
 M

em
or

y
U

sa
ge

 (
T

up
le

s)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(f) Uniform, S1 = 0.025, Sσ = 0.8

Figure 17: Memory Comparison with Various Parameters

all the combination of these settings are conducted. The
input rates of the streams vary from 20 tuples/sec. to 80
tuples/sec in all the experiments.

Window Mostly-Small: Uniform: Mostly-Large:
Distribution(Sec.) 5, 10, 30 10, 20, 30 20, 25, 30

Sσ Low(0.2) Middle(0.5) High(0.8)
S1 Low(0.025) Middle(0.1) High(0.4)

Table 3: System Settings Used in Section 7.2.

The results showing memory consumption comparisons
are depicted in Fig. 17. Fig. 17(a), 17(b) and 17(c) show that
the memory usage is sensitive to the window distributions.
Fig. 17(d), 17(e) and 17(f) illustrate the effect of Sσ on
the memory usage. Comparing Fig. 17(b) and 17(e), we
can see that S1 does not affect the memory usage since the
number of joined tuples is unrelated to the state memory
of the join. Overall, the state-slice sharing always achieves
the minimal memory consumption, with the memory savings
ranging from 20% to 30%.

Fig. 18 shows the comparison of the service rate under var-
ious settings. Fig. 18(a), 18(b) and 18(c) show the change of
service rate under different window distributions. Fig. 18(d),
18(e) and 18(f) illustrate the effect of S1 on the service rate.
Overall, the state-slice sharing always achieves the maxi-
mum service rate.

From Fig. 18 we can see that with increasing data in-
put rate, more performance improvements can be expected
from the state-slice sharing. One reason is that the num-
ber of joined tuples is proportional to λA ∗ λB . Thus the
routing cost increases quadratically. On the contrary, the
extra purging cost in the state-slice sharing is proportional
to λA + λB . Thus the purging cost only increases linearly.
Then the state-slice sharing is more scalable with the data
input rates. Under the scenario of large join selectivities and
high-volume input streams, the performance improvement of
using state-slice sharing can reach 40%.

7.3 State-slice: Mem-Opt vs. CPU-Opt
In this set of experiments, we focus on the performance

comparison between the Mem-Opt and the CPU-Opt chains
under different system settings. We use similar queries as
in Section 7.2 with the selections removed. We also use the
service rate to measure the CPU consumptions. The CPU-
Opt chain is built from the Mem-Opt chain by merging some

of the slice joins according to the algorithm discussed in
Section 5.2. The experiments are conducted using different
numbers of queries (12, 24, 36) and various window distri-
butions. The window distributions for the 12 queries are
shown in Table 4. The window distributions for other num-
ber of queries are set accordingly. We set the join selectivity
to be 0.025. The input rates of the streams vary from 20
tuples/sec to 80 tuples/sec in all experiments. The service
rate comparisons are shown in Fig. 19.

Uniform(Sec.) 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25, 27.5, 30
Mostly-Small(Sec.) 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30
Small-Large(Sec.) 1, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 30

Table 4: Window Distributions Used for 12 Queries.

In Fig. 19(a), the CPU-Opt chain is actually the same
as the Mem-Opt chain. However, for skewed windows dis-
tribution, the CPU-Opt chain has fewer operators than the
Mem-Opt chain. In Fig. 19(b), all the small windows are
merged together in the CPU-Opt chain. In Fig. 19(c), the
CPU-Opt chain will have only 2 sliced joins, after merging
all the small windows and all the large windows. The more
skewed the windows are, the more performance improvement
can be expected. The benefit of CPU-Opt over Mem-Opt
chain also increases along with the number of queries, as
shown in Fig. 19(d) and Fig. 19(e). The average service rate
improvement is 20%-30%.

8. RELATED WORK
The problem of sharing the work between multiple queries

is not new. For traditional relational databases, multiple-
query optimization [23] seeks to exhaustively find an optimal
shared query plan. Recent work, such as [21, 19], provides
heuristics for reducing the search space for the optimally
shared query plan for a set of SQL queries. These works dif-
fer from our work since we focus on the computation sharing
for window-based continuous queries. The traditional SQL
queries do not have window semantics.

Many papers [8, 18, 10, 13, 15] in the literature have high-
lighted the importance of computation sharing in continuous
queries. The sharing solutions employed in existing systems,
such as NiagaraCQ [10], CACQ [18] and PSoup [9], focus on
exploiting common subexpressions in queries. Their shared

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(a) Mostly-Small, S1 = 0.1, Sσ = 0.5

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(b) Uniform, S1 = 0.1, Sσ = 0.5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(c) Mostly-Large, S1 = 0.1, Sσ = 0.5

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(d) Uniform, S1 = 0.025, Sσ = 0.8

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)
Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(e) Uniform, S1 = 0.1, Sσ = 0.8

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Selection-PullUp
State-Slice-Chain

Selection-PushDown

(f) Uniform, S1 = 0.4, Sσ = 0.8

Figure 18: Service Rate Comparison with Various Parameters

 0

 5000

 10000

 15000

 20000

 25000

 30000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(a) Uniform, 12 Queries

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(b) Mostly-Small, 12 Queries

 0

 5000

 10000

 15000

 20000

 25000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(c) Small-Large, 12 Queries

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(d) Small-Large, 24 Queries

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 20 40 60 80

S
er

vi
ce

 R
at

e
(T

up
le

s/
se

c)

Stream Data Rate (Tuples/sec)

Mem-Opt.
CPU-Opt.

(e) Small-Large, 36 Queries

Figure 19: Service Rate Comparison of Mem-Opt. Chain vs. CPU-Opt. Chain

processing of joins simply ignores window constraints which
are critical for window-based continuous queries.

Some previously proposed techniques are complementary
to our state-slice concept, and thus can be applied to our
sharing paradigm as below. The lineage of the tuples pro-
posed in [18] can be used to avoid repeated evaluation of
the same selections on a tuple in a chain of sliced joins.
The precision sharing in the TULIP [15] can be used in
our paradigm for selections on multiple input streams. The
grouping of similar queries in [10] can be used for sharing
one sliced window join among multiple continuous queries.

Recent papers [3, 28, 16] have focused on sharing compu-
tation for stateful aggregations. The work in [3], addressing
operator-level sharing of multiple aggregations, has consid-
ered the effect of different windows constraints on a single
stream. The work in [28] discusses shared computations
among aggregations with fine-grained phantoms, which is
the smallest unit for sharing the aggregations. The work
in [16] discusses runtime aggregation sharing with different
periodic windows and arbitrary predicates. However, effi-

cient sharing of window-based join operators has thus far
been ignored in the literature.

In [13] the authors propose various strategies for intra-
operator scheduling for shared sliding window joins with
different window sizes. Using a cost analysis, the strategies
are compared in terms of average response time and query
throughput. Our focus instead is on how we can minimize
the memory and CPU cost for shared sliding window joins.
The intra-operator scheduling strategies proposed in [13]
can naturally be applied for inter-operator scheduling of our
sliced joins.

Load-shedding [25] and spilling data to disk [27, 17] are
alternate solutions for tackling continuous query processing
with insufficient memory resources. Approximated query
processing [24] is another general direction for handling mem-
ory overflow. Different from these, we minimize the actual
resources required by multiple queries for accurate process-
ing. These works are orthogonal to our work and can be
applied together with our state-slice sharing.

9. CONCLUSION AND FUTURE WORK
Window-based joins are stateful operators that dominate

the memory and CPU consumptions in a DSMS. Efficient
sharing of window-based joins is a key technique for achiev-
ing scalability of a DSMS with high query workloads. We
present a new paradigm for efficiently sharing of window-
based continuous queries in a DSMS. By slicing a sliding
window join into a chain of pipelining sliced joins, our paradigm
results in a shared query plan supporting the selection push-
down, without using an explosive number of operators. Based
on the state-slice sharing, two algorithms are proposed for
the chain buildup, which achieve either optimal memory
consumption or optimal CPU usage.

One interesting direction is to extend the state-slice con-
cept to distributed systems, because the properties of the
pipelining sliced joins fit nicely in the asynchronous dis-
tributed system. Also, when the queries are too many to fit
into memory, combining query indexing with state-slicing is
an interesting open challenge.

10. ACKNOWLEDGMENTS
We thank Songting Chen and the anonymous reviewers

for their insightful comments. We are grateful to Yali Zhu,
Luping Ding, Bin Liu, Rimma V. Nehme, Mariana Jban-
tova and other DSRG members for their efforts building the
CAPE system.

11. REFERENCES
[1] D. Abadi, D. Carney, U. Cetintemel, M. Cherniack,

C. Convey, S. Lee, M. Stonebraker, N. Tatbul, and
S. Zdonik. Aurora: A new model and architecture for
data stream management. VLDB Journal,
12(2):120–139, August 2003.

[2] M. H. Ali, W. G. Aref, R. Bose, A. K. Elmagarmid,
A. Helal, I. Kamel, and M. F. Mokbel. NILE-PDT: A
phenomenon detection and tracking framework for
data stream management systems. In VLDB, pages
1295–1298, 2005.

[3] A. Arasu and J. Widom. Resource sharing in
continuous sliding-window aggregates. In VLDB,
pages 336–347, Aug/Sep 2004.

[4] M. J. Atallah. Algorithms and theory of computation
handbook, 1999.

[5] B. Babcock, S. Babu, R. Motwani, and J. Widom.
Models and issues in data streams. In PODS, pages
1–16, June 2002.

[6] S. Babu, K. Munagala, J. Widom, and R. Motwani.
Adaptive caching for continuous queries. In ICDE,
pages 118–129, 2005.

[7] P. Bizarro, S. Babu, D. DeWitt, and J. Widom.
Content-based routing: Different plans for different
data. In VLDB, pages 757–768, 2005.

[8] D. Carney, U. Cetintemel, M. Cherniack, C. Convey,
S. Lee, G. Seidman, M. Stonebraker, N. Tatbul, and
S. Zdonik. Monitoring streams - a new class of data
management applications. In VLDB, pages 215–226,
August 2002.

[9] S. Chandrasekaran and M. Franklin. Streaming
queries over streaming data. In VLDB, pages 203–214,
August 2002.

[10] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In ICDE,
pages 345–356, 2002.

[11] E. W. Dijkstra. A note on two problems in connexion
with graphs. In Numerische Mathematik, volume 1,
pages 269–271. 1959.

[12] L. Golab and M. T. Özsu. Issues in data stream
management. SIGMOD Rec., 32(2):5–14, 2003.

[13] M. A. Hammad, M. J. Franklin, W. G. Aref, and
A. K. Elmagarmid. Scheduling for shared window joins
over data streams. In VLDB, pages 297–308, Sep 2003.

[14] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating
window joins over unbounded streams. In ICDE,
pages 341–352, March 2003.

[15] S. Krishnamurthy, M. J. Franklin, J. M. Hellerstein,
and G. Jacobson. The case for precision sharing. In
VLDB, pages 972–986, 2004.

[16] S. Krishnamurthy, C. Wu, and M. J. Franklin.
On-the-fly sharing for streamed aggregation. In
SIGMOD, 2006.

[17] B. Liu, Y. Zhu, and E. A. Rundensteiner. Run-time
operator state spilling for memory intensive
long-running queries. In SIGMOD, 2006.

[18] S. Madden, M. Shah, J. M. Hellerstein, and
V. Raman. Continuously adaptive continuous queries
over streams. In SIGMOD, pages 49–60, June 2002.

[19] H. Mistry, P. Roy, S. Sudarshan, and
K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In
SIGMOD, pages 307–318, 2001.

[20] O. Papaemmanouil and U. Çetintemel. Semcast:
Semantic multicast for content-based data
dissemination. In ICDE, pages 242–253, 2005.

[21] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. In SIGMOD, pages 249–260, 2000.

[22] E. A. Rundensteiner, L. Ding, T. Sutherland, Y. Zhu,
B. Pielech, and N. Mehta. Cape: Continuous query
engine with heterogeneous-grained adaptivity. In
VLDB Demo, pages 1353–1356, 2004.

[23] T. K. Sellis. Multiple-query optimization. ACM Trans.
Database Syst., 13(1):23–52, 1988.

[24] U. Srivastava and J. Widom. Memory-limited
execution of windowed stream joins. In VLDB, pages
324–335, 2004.

[25] N. Tatbul, U. etintemel, S. B. Zdonik, M. Cherniack,
and M. Stonebraker. Load shedding in a data stream
manager. In VLDB, pages 309–320, 2003.

[26] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras.
Exploiting punctuation semantics in continuous data
streams. TKDE, 15(3):555–568, May/June 2003.

[27] T. Urhan and M. Franklin. XJoin: A reactively
scheduled pipelined join operator. IEEE Data
Engineering Bulletin, 23(2):27–33, 2000.

[28] R. Zhang, N. Koudas, B. C. Ooi, and D. Srivastava.
Multiple aggregations over data streams. In SIGMOD,
pages 299–310, 2005.

