/* ======================================================================
* catmullRom.c - Catmull-Rom interpolating spline function.
* Copyright (C) 1993 by George Wolberg
*
* Written by: George Wolberg, 1993
* ======================================================================
*/
#include "meshwarp.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* catmullRom:
*
* Compute a Catmull-Rom spline passing through the len1 points
in arrays
* x1, y1, where y1 = f(x1)
* len2 positions on the spline are to be computed. Their positions
are
* given in x2. The spline values are stored in y2.
*/
void
catmullRom(x1, y1, len1, x2, y2, len2)
float *x1, *y1, *x2, *y2;
int len1, len2;
{
int i, j, dir, j1, j2;
double x, dx1, dx2;
double dx, dy, yd1, yd2, p1, p2, p3;
double a0y, a1y, a2y, a3y;
/* find direction of monotonic x1; skip ends */
if(x1[0] < x1[1]) { /* increasing */
if(x2[0]<x1[0] || x2[len2-1]>x1[len1-1]) dir=0;
else dir = 1;
} else { /* decreasing */
if(x2[0]>x1[0] || x2[len2-1]<x1[len1-1]) dir=0;
else dir = -1;
}
if(dir == 0) { /* error */
printf("catmullRom: Output x-coord out of range of input\n");
return;
}
/* p1 is first endpoint of interval
* p2 is resampling position
* p3 is second endpoint of interval
* j is input index for current interval
*/
/* force coefficient initialization */
if(dir==1) p3 = x2[0] - 1;
else p3 = x2[0] + 1;
for(i=0; i<len2; i++) {
/* check if in new interval */
p2 = x2[i];
if((dir==1 && p2>p3) || (dir== -1 && p2<p3))
{
/* find the interval which contains p2 */
if(dir) {
for(j=0; j<len1 && p2>x1[j]; j++);
if(p2 < x1[j]) j--;
} else {
for(j=0; j<len1 && p2<x1[j]; j++);
if(p2 > x1[j]) j--;
}
p1 = x1[j]; /* update 1st endpt */
p3 = x1[j+1]; /* update 2nd endpt */
/* clamp indices for endpoint interpolation */
j1 = MAX(j-1, 0);
j2 = MIN(j+2, len1-1);
/* compute spline coefficients */
dx = 1.0 / (p3 - p1);
dx1 = 1.0 / (p3 - x1[j1]);
dx2 = 1.0 / (x1[j2] - p1);
dy = (y1[j+1] - y1[ j ]) * dx;
yd1 = (y1[j+1] - y1[ j1]) * dx1;
yd2 = (y1[j2 ] - y1[ j ]) * dx2;
a0y = y1[j];
a1y = yd1;
a2y = dx * ( 3*dy - 2*yd1 - yd2);
a3y = dx*dx*(-2*dy + yd1 + yd2);
}
/* use Horner's rule to calculate cubic polynomial */
x = p2 - p1;
y2[i] = ((a3y*x + a2y)*x + a1y)*x + a0y;
}
}