nextupprevious
Next:About this document ...Up:Hierarchical Parallel CoordinatesPrevious:Conclusion and Future Work

Bibliography

1
A.Mead.

Review of the development of multidimensional scaling methods.
The Statistician, Vol. 33, p. 27-35, 1992.
2
P. Andreae, B. Dawkins, and P. O'Connor.

Dysect: An incremental clustering algorithm.
Document included with public-domain version of the software, retrieved from Statlib at CMU, 1990.
3
D.F. Andrews.

Plots of high dimensional data.
Biometrics, Vol. 28, p. 125-36, 1972.
4
D.F. Andrews.

Exploratory data analysis.
International Encyclopedia of Statistics, p. 97-107, 1978.
5
A. Becker, S. Cleveland, and R. Martin.

Trellis graphics displays: A multidimensional data visualization tool for data mining.
KDD '97, 1997.
6
H. Chernoff.

The use of faces to represent points in k-dimensional space graphically.
Journal of the American Statistical Association, Vol. 68, p. 361-68, 1973.
7
W.S. Cleveland and M.E. McGill.

Dynamic Graphics for Statistics.
Wadsworth, Inc., 1988.
8
S. Feiner and C. Beshers.

Worlds within worlds: Metaphors for exploring n-dimensional virtual worlds.
Proc. UIST'90, p. 76-83, 1990.
9
R.A. Fisher.

The use of multiple measures in taxonomic problems.
Annals of Eugenics 7, p. 179-88, 1936.
10
S. Guha, R. Rastogi, and K. Shim.

Cure: an efficient clustering algorithm for large databases.
SIGMOD Record, vol.27(2), p. 73-84, June 1998.
11
A. Inselberg and B. Dimsdale.

Parallel coordinates: A tool for visualizing multidimensional geometry.
Proc. of Visualization '90, p. 361-78, 1990.
12
K. Jain and C. Dubes.

Algorithms for Clustering Data.
Prentice Hall, 1988.
13
J. Jolliffe.

Principal of Component Analysis.
Springer Verlag, 1986.
14
D.A. Keim, H.P. Kriegel, and M. Ankerst.

Recursive pattern: a technique for visualizing very large amounts of data.
Proc. of Visualization '95, p. 279-86, 1995.
15
T. Kohonen.

The self-organizing map.
Proc. of IEEE, p. 1464-80, 1978.
16
J.B. Kruskal and M. Wish.

Multidimensional Scaling.
Sage Publications, 1978.
17
J. LeBlanc, M.O. Ward, and N. Wittels.

Exploring n-dimensional databases.
Proc. of Visualization '90, p. 230-7, 1990.
18
A.R. Martin and M.O. Ward.

High dimensional brushing for interactive exploration of multivariate data.
Proc. of Visualization '95, p. 271-8, 1995.
19
W. Ribarsky, E. Ayers, J. Eble, and S. Mukherjea.

Glyphmaker: Creating customized visualization of complex data.
IEEE Computer, Vol. 27(7), p. 57-64, 1994.
20
Schniederman.

Tree visualization with tree-maps: A 2d space-filling approach.
ACM Transactions on Graphics, Jan. 1992, 1992.
21
M.O. Ward.

Xmdvtool: Integrating multiple methods for visualizing multivariate data.
Proc. of Visualization '94, p. 326-33, 1994.
22
E.J. Wegman.

Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, Vol. 411(85), p. 664, 1990.
23
E.J. Wegman and Q. Luo.

High dimensional clustering using parallel coordinates and the grand tour.
Computing Science and Statistics, Vol.28, p. 361-8., 1997.
24
S.L. Weinberg.

An introduction to multidimensional scaling.
Measurement and evaluation in counseling and development, Vol. 24, p. 12-36, 1991.
25
J. Wills.

An interactive view for hierarchical clustering.
Proc. of Information Visualization '98, p. 26-31, 1998.
26
P.C. Wong and R.D. Bergeron.

Multiresolution multidimensional wavelet brushing.
Proc. of Visualization '96, p. 141-8, 1996.
27
T. Zhang, R. Ramakrishnan, and M. Livny.

Birch: an efficient data clustering method for very large databases.
SIGMOD Record, vol.25(2), p. 103-14, June 1996.