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Abstract
Linear models are commonly used to identify trends in data. While it is an easy task to build linear models
using pre-selected variables, it is challenging to select the best variables from a large number of alternatives.
Most metrics for selecting variables are global in nature, and thus not useful for identifying local patterns. In
this work, we present an integrated framework with visual representations that allows the user to incrementally
build and verify models in three model spaces that support local pattern discovery and summarization: model
complementarity, model diversity, and model representivity. Visual representations are designed and implemented
for each of the model spaces. Our visualizations enable the discovery of complementary variables, i.e., those that
perform well in modeling different subsets of data points. They also support the isolation of local models based on
a diversity measure. Furthermore, the system integrates a hierarchical representation to identify the outlier local
trends and the local trends that share similar directions in the model space. A case study on financial risk analysis
is discussed, followed by a user study.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [Information Interfaces and Presentation]: User
Interfaces—Graphical user interfaces (GUI)

1. Introduction

It is never a trivial task to select an appropriate subset of
data variables for data analytical processes, such as data
mining (classification, regression, and clustering [GE03]),
and visual exploration [YPH∗04, JJ09]. Various pipelines
and metrics have been implemented for the different mod-
eling processes in mining packages such as Weka [HFH∗09]
and R [R C12] for selecting variables of interest. How-
ever, the algorithm-centric packages usually lack the abil-
ity to incorporate domain knowledge [MP13]; furthermore,
these methods lack of the flexibility to reveal local patterns
[MP13, GWRR11]. In some cases, the local patterns might
comply with the global pattern of the data which indicates
the global pattern explains the data well; however, in other
cases, the local patterns may behave rather differently from
the global pattern and may even be opposite of the global
pattern [BHO∗75], which is known as Simpson’s Paradox.

The task of selecting data variables of interest may be-
come more challenging when considering the local subtleties
in the data. Example 1 (Figure 1) shows two global mod-
els with bias towards opposite directions for part of the data
space; Example 2 (Figure 2) shows different ways of defin-
ing multiple local models for the same data. Regarding the
first example, we want to learn how the models complement

each other locally, namely, (a) on which parts of the data
does one model have smaller errors than the other? and (b)
on which parts of the data does one model overestimate the
dependent variable while the other underestimates it? Re-
garding the second example, we want to understand (a) are
there any local models that significantly overperforms the
global model in terms of model fitness? (b) how many distin-
guishable local models are appropriate to describe the mul-
tiple trends in the data? (c) what are the best cutting values
for isolating the local models? Two example solutions are:
1) to build local models on every single data point; 2) to build
one model for all the data points. However, the first case is
overly complicated while the second case is not capable of
capturing local patterns. In our approach, we are more inter-
ested in finding solutions inbetween the two examples. Re-
garding the isolated local patterns in example 2, a user may
further ask, (a) how different are these local models w.r.t.
their direction (e.g., slope and intercept)? (b) do these local
models comply with the direction of a representative trend?
(c) are there any outlier trends to oppose the majority? In
this paper, we seek to answer the 3 sets of questions above
by investigating three model spaces: model complementar-
ity (Section 3.1), model diversity (Section 3.2), and model
representivity (Section 3.3).
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Figure 1: The two plots show that the two models oppose
each other in terms of bias. Model1 has the tendency to un-
derestimate and Model2 tends to overestimate when the total
asset grows. The y-axis shows the goodness of fit (residuals).
The x-axis is the value of total assets (one of the indepen-
dent variables). DLTT: Total long-term debt; LEV: Lever-
age; MKVALT: Market value

Our contributions are summarized as:

• A novel model selection environment: LoVis allows the
user to interactively build and evaluate models at both
global and local scales. The interactive exploration is
guided by the visual designs in three model spaces.
• A novel approach for identifying complementary mod-

els: LoVis utilizes a pairwise comparison strategy for the
model refining. Models that complement the TBR (to-be-
refined) model are identified and combined (union of vari-
ables) to the TBR model.
• A novel way to examine goodness-of-fit: LoVis integrates

a novel partitioning strategy for isolating local linear pat-
terns. Strong and weak trends (in terms of goodness of fit)
are visualized distinctly in a pattern space. The trend of
interest is marked by a data partition (range query).
• A hierarchical representation for model summarization:

We present a hierarchical view for presenting groups of
local models, where each group can be interactively di-
vided into smaller ones based on a similarity measure.
During the dividing and merging process, the user may
investigate the relationship between the size of a group
and the divergence within it.

2. Related Work

Many methods for identifying local patterns exist. Guo et
al. [GWR09] proposed a system to isolate linear trends by
only including the data points within a user specified dis-
tance to a trend. Their idea of isolating multiple trends is
similar to ours, except that our methods use partition-driven
methods to describe the meaning of isolated linear trends.
The local patterns in paper [GWRR11] are defined around
a focal point; the relative positions of neighbouring points
of it are visualized. In LoVis, however, we are instead inter-
ested in the local pattern of a group of data points and the
comparisons between groups.

Figure 2: The plots represent the linear relationship be-
tween two variables can be different when considering dif-
ferent partitions of data points. From a domain expert point
of view, both high return and low return companies have rel-
atively high risk; intermediate return (fluctuate around 0)
companies tend to follow a trend that the risk is reversely
proportional to the return.

A partition based framework [MP13] compares the lin-
ear models in both 1-D and 2-D partitions of independent
variables to facilitate variable selection. In LoVis, we are
more interested in how the variables locally complement
each other, how the performance of local models vary in dif-
ferent data partitions, and how to identify representativeness
of local patterns. A maximal information coefficient (MIC)
metric [RRF∗11] was defined for identifying multiple types
of pair-wise relationships via local analysis. In LoVis, we fo-
cus on one type of local relationship and investigate the local
pattern of models formed by multiple variables.

Data partitioning is perhaps the most important step
for identifying local patterns; an interactive framework
[MBD∗11] was implemented to guide the user to identify
local relevance and aggregated global correlation. We do
not intend to solve the problem of searching locally cor-
related feature sets and the corresponding subset of data
points, which leads to an expensive optimization problem
[GFVS12]. In our work, we use an overlapped partitioning
strategy to capture the trends that otherwise might be lost
due to less optimally chosen partition boundary.

The Rank-by-Feature Framework [SS04] is similar to our
work; it provides quality metrics to measure the interesting-
ness of lower projections (1-D and 2D) to facilitate the vi-
sual exploration process in high dimensional data. It has in-
spired our work in the sense of ranking views by importance.
Models with diverse goodness of fit are believed to have
more prediction power [BWHY05] and they may indicate
the existence of a “lurking explanatory variable” [BHO∗75].
Other techniques that focus on the application of quality
measures are not specifically designed for local pattern dis-
covery, though they indeed inspired us from various aspects.
Scagnostics [WAG05] supplies metrics for identifying inter-
esting structures (e.g., clumpy and stringy). The user-centric
approach [JJ09] utilizes several quality metrics that could
be combined and adjusted by the user. Peng et al. [PWR04]
proposed a metric for reducing clutters in the visual rep-
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Figure 3: Integrated analysis framework with 3 stages. 1) Variables are ranked by the relevance to the dependent variable
and the scatterplot (a) shows the relationship between a selected independent variable and the dependent variable. The global
models built by the user are listed in (b). Model complementarity are presented in (c) for refining a user built model in (b). 2)
Local models can be derived from a selected global model and are presented in (d,e). 3) The local models are grouped and
summarized in a hierarchy (f).

resentations. Peringer et al. [PBH08] suggested a quality
measure integrated with data space brushing and linking.
Tatu et al. [TMF∗12] implemented a system that ranks data
variables based on subspace cluster structures. The Ensem-
bleMatrix [TLKT09] combines multiple model analysis with
visual representations. It allows the user to visually examine
the contrast of multiple classifiers and interactively combine
them. This strategy motivated us to build a framework to
investigate the relations between multiple models. Addition-
ally, we allow the user to incrementally examine the model
comparisons in terms of model complementarity and deter-
mine the best candidate models for combining.

3. Model Spaces for Visualization

We first categorize the model spaces according to the mea-
surement (local measure or global measure) of models and
amount of data the models describe (local model or global
model). In the first space, for example, linear models are
built on all data points and the performance (goodness of fit)
of the models are measured on all data points using Coeffi-
cient of Determination (R2) and Root Mean Squared Error
(RMSE). This space together with 3 other spaces are shown
in Table 1, where the local measure means the models are
evaluated in a local data space that only involves a subset

Global
Measure

Local
Measure

Global
Model

R2,
RMSE

Model
Complementarity

Local
Model

Model
Representivity

Model
Diversity

Table 1: Model spaces for visualization

of data points. For example, companies with asset value be-
low 1 million (small companies) and companies with asset
value over 10 billions (large companies) can be two local
data spaces in a financial dataset. The local models are the
models specifically built in a local data space, such as a risk
prediction model for small companies and another for large
companies. Since the first space has already been commonly
used by many other tools, the model spaces we primarily
focused on in this paper are the other three:

• Model Complementarity: In this space (Section 3.1), we
discuss how the model comparisons (Figure 3c) are per-
formed to identify complement models. We also discuss
how to characterize the degree of complementarity.

• Model Diversity: In this space (Section 3.2), we discuss
how the local data spaces are generated via a partitioning
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method. We also discuss how reference variables (vari-
ables used for cutting the data space into partitions) are
ranked. We lastly discuss how the diversity is measured,
ranked and visualized (Figure 3d,e).
• Model Representivity: In this space (Section 3.3), we dis-

cuss how the representivity of a group of local models is
measured, which helps to determine how well a group of
local models is represented by a single trend. We also dis-
cuss how the view (Figure 3f) is designed to seek balance
between coverage of a group of local models and the di-
vergence within the group.

3.1. Model Complementarity Visualization

This section introduces: 1) how we measure goodness of fit
of a model locally; 2) how we compare models based on
their local measures; and 3) how we visualize the model
complementarity based on the model comparison.

Consider the following scenario: A financial analyst
found that a risk model she built is dominated by large
companies. This means that the fitness (measured by resid-
uals) are smaller for large companies. She wants to find out
what additional variables can help the model to perform
better on smaller companies.

To make the scenario more specific, the dependent vari-
able she uses is the bankruptcy risk of companies labeled by
financial analysts [WGG10]; the independent variables are
financial attributes, such as working capital (WCAPTA), li-
ability (DEBTTA and DEBTEQ), and total assets (AT); the
residual is defined as Y − Ŷ , where Y is the dependent vari-
able and Ŷ is the predicted value. The analyst wants to learn
on which portions of the data the model performs poorly, and
on which portions of the data the model overestimates or un-
derestimates. Hence, we need to investigate the model local
performance in local data spaces using additional indepen-
dent variables such as total assets. The relationship between
residuals of a linear model and the additional independent
variable can illustrate where the model performs poorly (the
small companies in this scenario).

Now, we do a point-wise model comparison. In Fig-
ure 1, the residuals of two linear models are plotted against
an additional independent variable, total assets. Both mod-
els predict rather poorly (large absolute values of residu-
als) for the smaller companies; and model1 tends to under-
estimate (positive residuals) the risk of larger companies
while model2 tends to over-estimate (negative residuals). In
practice, the two conditions for complementarity are: 1) er-
ror complement; 2) bias complement. For a list of local par-
titions p1, p2, . . . , pn, let the local errors of a model A be
ea

1,e
a
2, . . . ,e

a
n. The above two conditions for complementar-

ity between model A and model B are defined as:

∃i :(|ea
i |>> 0 ⇒ |eb

i | → 0)

∨ (|eb
i |>> 0 ⇒ |ea

i | → 0) (i ∈ N, i≤ n)
(1)

∃i : (ea
i ≈ ε ⇒ eb

i ≈−ε) (ε ∈ R) (2)

In plain language, the two equations can be interpreted as: 1)
the large errors of one model align with the small errors of
another; 2) the over-estimation portion of one model aligns
with the under-estimation portion of another.

A point-wise comparison becomes impractical as the
number of data points gets larger. We were inspired by
the visualizations for model local performance in [MP13],
where the residuals of two models are compared in a 2-D
space-filling display using |Y − Ŷ1| − |Y − Ŷ2|. Rather than
showing the model differences we are instead interested
in determining whether the combination of the two mod-
els is cost-effective. Adding each variable to a TBR model
increases the model complexity. Hence we want to know
which variable adds more performance to the TBR model.
We believe the models that complement each other form
a better combined model (union of variables). The perfor-
mance of the combined models can be examined in the table
presented in Figure 3b. In order to compare the local per-
formance of two models, we use Tukey’s 5-number sum-
mary [Tuk77] to measure the distribution of residuals. Two
distinguishable forms of boxplot are used to differentiate the
local measures of two models (Figure 4). Figure 4 opposes
to Figure 3c, as the two models in Figure 3c share a com-
mon trend rather than complementarity. This particular de-
sign decision is made after experimenting with parallel bar
charts and parallel box plots. The parallel bar charts only
show the number of data points that fall into a particular
partition, which is quite limited in determining the comple-
mentarity relationship. The parallel box plots provide more
information but takes a lot of screen space. Finally, we chose
vertical lines as alternative representations of box plots and
added horizontal line connections and space filling to differ-
entiate the two models.

Now we discuss how to define the local measures. We
want to translate the local data spaces into a meaningful
form. In our case, a data partition (or range query). To de-
fine the data partitions, we use a reference variable driven
partitioning method [MBD∗11], where the authors describe
two decomposition strategies. We chose the decomposition
strategy that allows comparisons across other variables be-
cause we need to compare models that are formed by multi-
ple variables over the data partitions.

Next, we discuss variable rankings in our system. Variable
ranking is utilized to support model refinement (Figure 3a)
by showing the user the most promising variables first. The
ranking score between an independent variable and the de-
pendent variable are measured based on local partitions of
the independent variable. Specifically, R2 is computed over
each partition of the independent variable and the final score
is the maximum R2 over the partitions. With the views de-
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Figure 4: A candidate model LEV complement the TBR
model DEBTTA (in the yellow box). The y-axis represents the
error spread of two models. Positive (Negative) values sug-
gest bias towards underestimate (overestimate). The x-axis
represents local partitions where the errors are estimated.
The theme river design [HHN00] represents the residuals of
the TBR model; and the red vertical lines represent the resid-
uals of a candidate model (usually a uni-variate model).

signed in this space, the tasks a user can perform are listed
as follows:

• Identify relevant variables: The users may freely choose a
variable according to either its relevance to the dependent
variable, or their previous domain knowledge.
• Identify model weaknesses: The visualization of model lo-

cal measures reveals the distribution of residuals in local
data spaces. By examining the local measures, a user may
learn which parts of the data are not described effectively.
• Identify complementary variables: The visualization of

local measures and local comparisons helps the user to
identify whether adding variables to an existing model is
cost-effective. The effectiveness of this strategy is evalu-
ated in Section 4.2.

3.2. Model Diversity Visualization

This section discusses the problem when simply adding vari-
ables does not significantly improve the model fitness. Ac-
cording to previous work, the reasons may be: 1) the trend
is not linear, thus the refining process must consider the pos-
sible non-linear polynomials [MP13]; 2) there are multiple
linear trends [GWR09]. In this work, we mainly focus on a
domain-driven model coverage problem: seeking a way for
isolating the multiple models and label the trends with range
queries. A query for example can be “companies with in-
come above 1 million”.

After an interactive selection process, the financial ana-
lyst is not satisfied with the model. She suspects there are
multiple local trends in the dataset; therefore she wants to
break the dataset into a few partitions based on the size of

the companies (total assets). Then, she builds local models
in the partitions.

This task raises several interesting questions: 1) how do
we retain the domain meaning of each partition while we
search for the local trends, and why is it important? 2) how
do we define the partitions? 3) how do we illustrate the re-
lationship between the possible ways of partitioning and the
local trends each partition may have?

For the first question, the analyst wants to isolate lo-
cal trends into different data partitions, and she wants
to know which companies (e.g., large companies or
small companies) are associated with a local trend (Fig-
ure 2). To accomplish this task, we define a space P =
{p1

1, p1
2, . . . ; p2

1, p2
2, . . . ; . . . ; pv

1, pv
2, . . .} that contains parti-

tions for v variables. Once we have the partitions ready the
next steps are to identify a linear trend in each partition using
Robust Regression (as implemented in R [Hub11]), and vi-
sualize the model goodness (Figure 5a). The variables used
in the local models are selected using the process discussed
in Section 3.1. In order to investigate the reasons why the
trends are isolated into several data partitions, the very first
step is to annotate the partitions with domain range queries.
By linking a local trend to a domain related query, the ana-
lysts are able to target the subset of data and further investi-
gate the local properties of the subset.

The discussions above lead to the second question. Specif-
ically, How do we assign the partition boundaries so that
a trend is not divided into different partitions and irrele-
vant data points are minimized in a partition? The ques-
tion is also motivated by the representation of the piece-
wise linear ranking model [MP13]: 1) when using very
coarse piece-sizes, partitions are large and may contain ir-
relevant data points; 2) when using very fine segments, a
trend may be assigned into several partitions. To address
that, we use a enumerated partitioning strategy consider-
ing all interesting reference variables for partitioning and
all interesting sub-intervals of partitions. For example, total
assets : [0/100,30/100] represents a 0th and 30th percentile
interval on reference variable total assets. Each partition in
space P thus can be defined as pR

k = R : [l,h] where R de-
notes the chosen reference variable; k represents the index
of the partition; and l and h (0 ≤ l,h ≤ 1) represent lower
and upper boundaries on the reference variable. The space
P is populated by partitions of varying boundaries, which is
discussed next together with the layout strategy.

We answer the third question by introducing the layout
strategy of the diversity view (Figure 5a). In an n by n grid
view (Figure 5a), the position (i, j) of a cell (Figure 5b) rep-
resents the boundaries [i/n, j/n] of a data partition. The fac-
tor 1/n is a minimum step size threshold to avoid infinite
number of partitions. Due to the symmetricity of the n by n
grid and the trivial information on the diagonal we first re-
move the diagonal and the entries below the diagonal; and
then fill the lower half of the grid according to the sym-
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Figure 5: The x-y position of any cell in the grid view (a) is determined by the lower (x) and upper (y) percentile threshold of
a data partition. The relationship between x-y position and the partition boundary is shown in (b) and is indexed as in (c,d).
Each cell is colored by the fitness of a local model in it. The diagonal and the orthogonal direction in (c) indicates two ways a
data partition may change to another: expanding (add more data points) and shifting (add data points at one end and remove
at the other). An alternative display of (a) (Figure 6) is transformed from (a) by the sequence in (d) where the main diagonal is
walked from top left first followed by the second diagonal above it. The walk continues till the right top corner.

metricity. We fill the grid because several test subjects felt
the symmetric view is more pleasing to read while others
have no preferences. In some cases a partition R : [i/n, j/n]
may not well cover a linear trend due to missing relevant
data points or containing irrelevant data points. An alterna-
tive partition R : [(i+ ε)/n,( j+ω)/n] (ε,ω ∈ Z) need to be
compared to R : [i/n, j/n] for getting better boundary posi-
tions. A vicinity relationship between the compared parti-
tions are demonstrated in Figure 5c in two directions to help
the comparisons. The diagonal direction corresponds to par-
tition shifting (ε and ω change towards the same direction).
The orthogonal direction represents the expanding or shrink-
ing of a partition. The color of each cell in Figure 5a repre-
sents the goodness of fit of the trend in that partition. We use
relative measure R2 to measure the goodness of fit because
the absolute fitness measure, such as RMSE, is often driven
by the value of the independent variables which will cause
unfair comparisons between data partitions. The absolute er-
rors can be studentized [CW82] before the comparisons but
it is beyond the scope of this paper.

To support the ranking and filtering of diversity views, we
design a linear layout of the partitions (Figure 3d) which
are ranked by the degree of fluctuations (Figure 6b,d). We
use standard deviation of the local goodness of fit to quan-
tify the fluctuations. The data partitions in a line chart (x-
axis) is ordered by the diagonal walking sequence illustrated
in Figure 5d. The more fluctuating line in Figure 6b indi-
cates higher diversity. It suggests that the reference variable
is effective in isolating multiple local trends. The smoother
line in Figure 6d suggests the performance of isolated local
models is similar to that of the global model. The diversity
view is ordered and filtered using the same standard devia-
tion measure. A user can perform the following tasks, using
the views designed in this space:

• Identify reference variables: With the local model diver-
sity measure, a reference variable is ranked based on the

fluctuation local model. With the ranking metric, the user
may identify variables that better isolate local models.

• Identify multiple trends: With the diversity representa-
tions, the user may identify multiple trends by reading the
color spread in the diversity view.

• Identify the size, location and strength of a local trend:
The user may identify the corresponding range query for
a trend in the diversity view by reading the x-y position
of the cells. The size and strength of the trend can also be
identified by the color spread the cells.

3.3. Model Representivity Visualization

Let us continue our case scenario from Section 3.2: The fi-
nancial analyst discovered that the local models perform
rather well in some partitions (pro f it : [0.3,0.5], assets :
[0.4,0.7], sales : [0,0.4]). She wonders if it suggests the ex-
istence of a single model that can cover these local models.
Furthermore, she also wants to know if that single model
is robust, namely, are the local models it covers signifi-
cantly diverging? Additionally, which data partitions con-
tain trends that disagree with the majority of trends?

To help her, we designed an interactive hierarchical visu-
alization that represents the similarities between the isolated
models. We measure the similarities using coefficient vec-
tors of the models (e.g., slope and intercept in a 2-D case).
We want to answer: 1) do the isolated local trends point to a
similar direction, and thus can be covered by a representa-
tive trend? 2) if yes, how much confidence can be assigned
to such local trends? 3) if not, how different are the trends in
terms of their directions in the hyperspace?

A representative model in S is expected to be central and
cover as many partitions in P as possible, while the diver-
gence in S below a certain threshold ξ. We define S as:

min
∀S⊂P

(|P|− |S|) subject to Div(S)< ξ

c© 2014 The Author(s)
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Figure 6: Plot represents degree of diversities. It shows that the local models isolated by partitioning on DLTT (a,b) have more
diversity over the local models isolated by partitioning on ARChange (c,d). ARChange: Account Receivable Change

where Div(S) denotes the model divergence in S where S is
a group of partitions. To measure the model divergence, we
use a normalized version of Euclidean distance:

di j =

√
1

wa
(ai−a j)2 +

1
wb

(bi−b j)2 + . . .

where di j is the distance between two models mi and m j
and a,b, . . . are the coefficients. The normalization factor we
use is the amplitude of each coefficient: wa = maxi(|ai|),
wb = maxi(|bi|), and so on. To visualize the divergence and
the coverage problem, we leverage the idea of below traver-
sal in the hierarchical aggregation [EF10]. We also employ
a divisive clustering algorithm [KR09] that divides a large
cluster of items into smaller clusters in a top-down process.
At each iteration it separates clusters of items at a computed
cutting location. Icicle plots [KL83] are used to represent
the hierarchical group structures. The icicle plots use rela-
tive positions of the node instead of edges to infer parents
and children thus it is believed to have higher information
density than classic tree node graph [MR10]. The model di-
vergence of each cluster is visualized at each node of the ici-
cle plot using a variation of box-plot (Figure 7 right) where
bars represent the coefficient statistics of the models. Us-
ing the techniques above, the representivity of a model MR
in the partition space S (a cluster of partitions) can be im-
plied from the divergence of the models in S, the centrality
of model MR in S and the coverage of S. The divergence of
models can be directly read from the box-plot in each node
of the icicle plot. We next discuss the interactions needed to
learn the centrality of MR and the coverage of S.

The user can double click on a node to break down a clus-
ter with high divergence or merge smaller clusters with low
divergence. The user may find the divergence of a cluster
reduces to small values while still covering a set of data par-
titions (Figure 7). The user can also mouse over the diversity
view (Figure 8 left) and examine the centrality of the high-
lighted partition in a group (Figure 8 right). In this example,
it is an outlier trend in the second node at level 3 of the ici-
cle plot (node with red bars in it) because all the three bars
are at the boundary of the box-plot (Figure 8 right). Addi-
tionally, the divergence of the group is higher than the other
three groups at the same level. Another example can be seen
in Figure 9l where the divergence of the grouped model is
lower than that in the previous example and the coefficients

Figure 7: Visualizing the coverage (cells with red outline on
the left) of a selected cluster of data partitions (selected node
marked with red rectangle on the right).

Figure 8: Visualize the coefficient vector (red horizontal
bars in the icicle plot) of the linear trend in the highlighted
data partition (left). The red text shows the value of the co-
efficients and the name of variables.

of the highlighted model are close to the center of the box-
plot. Lastly, the user may want to click on the nodes in the
icicle plot (Figure 7) and examine the data coverage of each
node. This view space supports:

• Identify outlier trends: Coefficient values of a trend that
are boundary values comparing to other trends may indi-
cate that it is an outlier trend.

• Identify a representative trend: A representative trend can
be identified by checking the divergence of the group it
belongs to, centrality of the trends in the group and data
coverage of the group.

c© 2014 The Author(s)
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Figure 9: A case study for modeling risk. a) A ranking list of independent variables. b) Scatterplot of a selected independent
variable and the dependent variable. c) A list of built models. d,e) Complementarity analysis. f,g,h,i) Local model diversity
analysis. j,k,l,m) Model representivity analysis. Detailed analysis is in Section 4.1.

4. System Evaluation

In this section, we demonstrate a case study using a financial
database. We also report the result of a user study we con-
ducted involving professors and students from the depart-
ments of Math, Computer Sciences, and School of Business.

4.1. Case Study: Linear Models of Bankruptcy Risks

The data we use in this work are from Compustat [Poo11],
a database of financial, statistical and market information
of companies from around the world. Since the database is
huge, we focus on only on one sector of the US companies
that are active in the year 2010, namely the service sector
classified by the SIC standard [sic13]. After cleaning, we
acquired 45 variables for 9,483 observed companies.

To build linear models for risk prediction, the analyst first
examines the relevance ranking of the independent variables
in the relevance view (Figure 9a). The relationship between
the highlighted independent variable and the dependent vari-
able is plotted in a scatterplot (Figure 9b). From the rele-
vance ranking list, she identifies that the variables DEBTTA,
DEBTEQ, and LEV are most predictive to the dependent

variable. However, she would like to figure out which com-
bination is better. Choosing all 3 of them is an option, but it
may increase the model complexity unnecessarily. She next
examines the model complementarity view (Figures 9d and
9e) to determine which variable complements the variable
DEBTTA (the first candidate) better. The two models in Fig-
ure 9d share a common pattern (up/down and vertical spread,
and less complementary). The model represented as red lines
in Figure 9e performs better at the right half of the data par-
titions (smaller error spreading, and more complementary).
She confirms that the combination {DEBT TA,LEV} is bet-
ter (RMSE = 8.68,R2 = 0.359) than {DEBT TA,DEBT EQ}
(RMSE = 8.89,R2 = 0.330) in the model list (Figure 9c) af-
ter trying both combinations. Although both of them are bet-
ter than model with only one variable {DEBT TA} (RMSE =
8.89,R2 = 0.329), LEV is the variable that adds more fit. In
an automatic model building process, the user does not have
direct control over the variable selection, the user knowledge
thus cannot be directly applied to help the selection.

Next, the user may examine the local models that are de-
rived from the current best model. The derived local mod-
els are based on the same set of variables we identified via
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the complementarity analysis. Each local model is built on a
partition (R : [l,h]). By examining the model diversity views,
the analyst immediately notices two interesting patterns: 1)
Figure 9f shows that in some partitions (in Figure 9g cells
with darker blue), the local trends are very strong, as R2 is
over 0.9 in some of them. The strong linear trends can be ex-
panded along the orthogonal direction (Figure 9g) to a larger
range of partitions at a lower threshold (lighter colors). 2)
Another pattern that could be spotted is that the local mod-
els show 4 local maxima in Figure 9i, where 4 strong linear
trends are isolated in the partitions represented by the darker
blue cells. The pattern shows that the domain knowledge
of the analyst is partially correct in the sense that the local
trends are indeed stronger when isolating them by the vari-
able total assets. It suggests that constructing models with a
mixture of both small and large companies is less effective
because the model with only smaller companies (the dark
cell at R : [1/14,2/14] in Figure 9i) outperforms the model
built on all companies (top-right cell at R : [0/14,14/14] in
Figure 9i). The reason she is only partially correct is that the
4 local maxima in Figure 9i suggest modeling the companies
at 4 different scales instead of 2.

The next step is to check the model representivity. The
analyst breaks the local models down hierarchically, and dis-
covers that at level 3 each of the 4 clusters contains one local
maximum (Figure 9j, 9k, 9l, 9m). It confirms that using the
group of 4 is the right choice, because the directions of the
trends in the 4 clusters are different. Specifically, DEBT TA
and MKVALT are more significant in the small company
group and the significance decreases with the scale of the
companies. WCAPTA and LEV are less significant in the
large medium and large groups, while WCAPTA is most sig-
nificant in the small medium group. Another notable pattern
is that the local trend in the small medium group can be rep-
resented by the global trend, because the two trends are clus-
tered in the same group that has rather small variances.

The three model spaces in LoVis are additional features
that complement the automatic model building process. We
compare LoVis to the LinearRegression algorithm in Weka
from the perspective of model complexity (number of vari-
ables) and model fit (R2). Using the same dataset as input,
Weka selects 27 out of the original 45 variables and forms a
linear model with R2 at 0.522. The overall fit is better than
the models we formed in LoVis which usually involve fewer
variables. However, LoVis has the advantage of modeling
the local properties of the dataset. 1) It discovers local data
spaces that can form linear models with R2 at above 0.8 (Fig-
ure 9f,g) which is higher than the fit of the automatically
formed global model; 2) It also characterizes multiple lo-
cal models with local maximal fit (Figure 9h,i). With only
4 variables, each model has R2 of about 0.6 which is higher
than the fit of the automatically formed model on 27 vari-
ables. (Note: Root Relative Squared Error in Weka is con-
verted to R2 using: R2 =

√
1−RRSE2)

4.2. Results from a User Study

To validate the usability of the model complementarity, we
performed a user study with 20 subjects. The participants
answered 3 questions after a short training. In each question,
they were asked to choose one option out of two. One option
(e.g. Figure 9e) is better than the other (e.g. Figure 9d) mea-
sured by Fit Difference (FD). We expected to see the user
selected option have have better fit when the variables in the
option are combined (set union).

FD = |Model Fitvariable set 1−Model Fitvariable set 2|

In the results, there is a relationship between the selection
accuracy and the FD between the two options, which is show
in the table below:

FD (R2) Accurary (%) Avg time(s)
0.12 90 13.4
0.08 80 24.6
0.03 60 25.3

From the result, more users (90%) made optimal selec-
tions when the FD between the two choices is more signif-
icant (0.12). When the FD goes down to 0.03 (R2), the user
selection tends to be less accurate (60%) and is more time
consuming (25.3s); however, at that point, the performance
gain of adding the wrong selection is only 0.03 (measured
by R2) less than the right selection.

5. Conclusion and Future Work

In this work, we presented a system LoVis that integrates
three visual spaces, focusing on local pattern discoveries
that facilitate the linear model refinement process. We mea-
sure the degree of complementarity between a to-be refined
model and the candidate variables so that a suitable variable
can be selected to compensate for the poor performance of
the to-be refined model locally. Local models are built to
model the diversity in the dataset in a novel partition space.
Divergence of the local models is measured and visualized
to investigate the representivity of a group of models.

There are several limitations in our system, and we are
planning to address these in the near future. For instance, al-
ternative model discovery is not supported and usually there
are some parts of the data that cannot be modeled by adding
more variables or using multiple local models. Alternative
models in a different subspace may exist and can benefit the
process of forming composite models. Another limitation is
that we do not support partitioning on multiple variables and
we plan to extend our work by utilizing techniques such as
Dimensional Stacking [LWW90] and Parallel Sets [KBH06]
to address this.
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