JMLR: Workshop and Conference Proceedings 36:149-165, 2014 BIGMINE 2014

iPARAS: Incremental Construction of Parameter Space for
Online Association Mining*

Xiao Qin XQINQCS.WPI.EDU
Ramoza Ahsan RAHSAN@QWPI.EDU
Xika Lin XIKA@QWPI.EDU
Elke A. Rundensteiner RUNDENST@QWPI.EDU
Matthew O. Ward MATT@WPI.EDU

Computer Science Department, Worcester Polytechnic Institute
100 Institute Road, Worcester MA, USA.

Editors: Wei Fan, Albert Bifet, Qiang Yang and Philip Yu

Abstract

Association rule mining is known to be computationally intensive, yet real-time decision-
making applications are increasingly intolerant to delays. The state-of-the-art PARAS!
solution, a parameter space framework for online association mining, enables efficient rule
mining by compactly indexing the final ruleset and providing efficient query-time redun-
dancy resolution. Unfortunately, as many association mining models, PARAS was designed
for static data. Modern transaction databases undergo regular data updates that quickly
invalidating existing rules or introducing new rules for the PARAS index. While reloading
the PARAS index from scratch is impractical, as even upon minor data changes, a complete
rule inference and redundancy resolution steps would have to be performed. We now pro-
pose to tackle this open problem by designing an incremental parameter space construction
approach, called iPARAS, that utilizes the previous mining result to minimally adjust the
ruleset and associated redundancy relationships. iPARAS features two innovative tech-
niques. First, iPARAS provides an end-to-end solution, composed of three algorithms, to
efficiently update the final ruleset in the parameter space. Second, iPARAS designs a com-
pact data structure to maintain the complex redundancy relationships. Overall, iPARAS
achieves several times speed-up on parameter space construction for transaction databases
comparing to the state-of-the-art online association rule mining system PARAS.
Keywords: Association Rule Mining, Parameter Space Model, Redundancy Resolution

1. Introduction

With the advent of computers and means for mass digital storage, companies increasingly
gather huge data from various sources. Mining useful information and helpful knowledge
from large databases has evolved into an important research area in recent years. Mining
of associations, correlations and other meaningful patterns within the dataset is critical for
applications ranging from market basket analysis and web usage mining to fraud detection
and catastrophic weather forecasting. However, association rule mining is known to be com-

* This work was partly supported by the National Science Foundation under grants NSF I1S-1117139, NSF
CRI-1305258, NSF I1S-0812027 and NSF CCF-0811510.
1. PARAS system can be accessed at http://paras.cs.wpi.edu.

© 2014 X. Qin, R. Ahsan, X. Lin, E.A. Rundensteiner & M.O. Ward.


http://paras.cs.wpi.edu

QIN AHSAN LIN RUNDENSTEINER WARD

putationally expensive. Mining systems with lagged responses risk losing a user’s attention,
more importantly, are often unacceptable in mission critical applications. Worse yet, asso-
ciation rule mining algorithms are parametrized, meaning that data analysts often need to
perform numerous successive trial and error iterations and compare the results produced
by varying parameter configurations until a satisfactory result is found. Poor selection of
parameter values may lead to failure in finding genuine association rules.

In an online mining system, an end user should be able to rapidly iterate over possibly
a variety of parameter settings and examine the corresponding association rules matching
these settings in an interactive session (Lin et al. (2013)). To provide fast response time
essentially for a truly interactive experience, the expensive computations must be performed
a priori as in a precomputation step. Furthermore, effective data structures and access
methods must be designed to support instant retrieval of the rules for any desired setting.
Put differently, not only computation overhead for rule computation but also excessive 1/O
costs for rule look-up must be avoided at run-time.

Frequent Itemsets Parameters Rule
Generator Configurator Generator

PoQm
ata ) A A
—]— X b- — Y —|=
— f o

Frequent Itemsets g Online 1!

Result

& Rules
PARAS Generator J’ T Result
m “ Parameter Space
— —>"“l.—+. —I|=
N— N
T suppor T o
Figure 1: 2-D Parameter Space Figure 2: State-of-the-art

In general, association rule mining is a two-step process: in the first step, the frequent
itemsets are found, from which association rules are induced in the second step. As shown
in Figure 2, POQM (Aggarwal and Yu (2001)) precomputes the primary itemsets with a
low minimum support and stores them in a lattice structure, called Adjacency Lattice, in
an offline step. At runtime, rules are then generated from the lattice upon the user request
for a specified parameter setting. Further, redundant rules can be eliminated by request
during this online generation process. Unfortunately, the change of even a single parameter
requires user to run rule generation algorithm again from scratch.

PARAS (Lin et al. (2013)) extends this approach by including rule generation into
the offline process. Not only are the rules that satisfy a low primary support and primary
confidence precomputed, but also the redundancy relationships among the rules are encoded.
A parameter space, in the context of rule mining, consists of an n-dimentional space of
parameters such as support and con fidence. The precomputed rules are compactly indexed
in this parameter space by their parameters for subsequent interactive rule exploration.
PARAS has been shown to outperform the state-of-the-art online association rule mining
systems by several orders of magnitude in terms of the online query processing speed.

However, both frameworks are designed to handle static datasets only, rendering them
ineffective for transaction databases. In transaction databases, new transactions are ap-

150



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

pended as time advances. This may introduce new rules as well as invalidate some existing
rules. Worse yet, this might lead to dramatic changes of corresponding redundancy relation-
ships among the rules over time. We observed, and verified in the retail dataset (Brijs et al.
(1999)) that daily transaction updates may at times affect a small portion of the dataset as
well as the precomputed parameter space. Simply re-mining from scratch may waste a huge
amount of computational resources and cause tremendous delays. Thus, the maintenance
of the parameter space for dynamic datasets is a critical problem to be tackled.

Motivating Example: By analyzing daily online transaction logs, a retail analyst at
Amazon may identify products that are frequently purchased together. Such products can
be placed together on amazon.com, made into bundled offers or used for recommendations
when users search for one of the products. The system can incorporate the updates made
by the customers’ daily transactions and can seamlessly update the existing patterns as well
as identify new patterns in its e-commerce transaction store.

The Proposed iPARAS Approach. An interactive parameter space system, capa-
ble of not only answering mining queries at near real time but also accommodating data
updates efficiently, ensures that insights and results are always delivered based on the most
up-to-date knowledge for fresh decision making. To dynamically update the pre-stored in-
formation, POQM could make use of existing incremental frequent itemset mining (FIM)
algorithms (Cheung et al. (1996),Ayan et al. (1999),Cheung and Zaiane (2003),Koh and
Shieh (2004), Leung et al. (2005)). We propose to extend the PARAS framework with
strategies for maintaining the parameter space up-to-date even over dynamic transaction
databases. Our proposed model iPARAS utilizes the previously computed results indexed
in parameter space to update the rules and the redundancy relationships in the parameter
space. iPARAS features two innovative techniques. First, iPARAS provides an end-to-end
solution, composed of three algorithms, to efficiently update the rules maintained in the
parameter space. Second, iPARAS designs a compact data structure to maintain the com-
plex redundancy relationships. Overall, iPARAS achieves several times speed-up for the
parameter space construction for transaction databases compared to the state-of-the-art
online association rule mining system PARAS.

2. Preliminaries

2.1. Foundation: The Parameter Space Model

The parameter space model (Lin et al. (2013)) forms the foundation of our proposed iPARAS
framework. A parameter space as depicted in Figure 1, in the context of rule mining, consists
of an n-dimensional space of parameters such as support and confidence. A parameter
setting is represented as a point located within this space. The key observation is that many
rules may map to the same location and thus can be compactly indexed by their location.
This finite number of points divide the parameter space into several non-overlapping regions,
called stable regions. The ruleset valid for any possible location within a stable region
remains unchanged, whereas rulesets valid for two locations not in the same stable region are
guaranteed to be distinct. The parameter space model supports instant response to user’s
mining request and reveals the overall distribution of rules within the space of interesting
parameters so that trial-and-error selection of parameters can be avoided. In addition, to
filter out redundant rules for presenting succinct mining results to users, the redundant

151



QIN AHSAN LIN RUNDENSTEINER WARD

relationships among the rules in parameter space are precomputed and encoded using a
compact representation, called dominating location. In the online phase, redundant
rules can be quickly identified and filtered out by comparing their dominating locations to
user specified parameters.

2.2. iPARAS Framework Overview

To efficiently update rules in the parameter space upon changes of the raw data, while
preserving instant responsiveness, we design the iPARAS framework, as depicted in Figure
3. iPARAS consists of two phases: (a) offline parameter space maintenance and (b) online
rule exploration. iPARAS adapts PARAS for the initial parameter space construction from
raw data and adopts PARAS to support the powerful online interactive rule exploration.

Offline Parameter Space Maintenance Online Rule Exploration
Raw Data Rule Redundancy T :arameter
Generator Resolver Parameter |_ pace
‘, | Generate ! | Abstract ! Space b
Constructor
i Update ! i Update ! ‘ Rule Explorer }47

Figure 3: The iPARAS framework overview

The Rule Generator operates in two modes, namely, Generate and Update. The
Generate mode is designed for processing the full dataset initially. In general, the associa-
tion rule mining is a two-step process: (a) Frequent Itemset Mining and (b) Rule Induction.
To perform the above tasks for rule generation, we adapt F'P-Growth (Han et al. (2000))
and GenerateRules (Aggarwal and Yu (2001)) respectively. The second mode, Update,
has been added to process the future batch updates. To efficiently update the parameter
space, we design a novel incremental frequent itemset mining algorithm, called ¢F'IM and
a rule updating technique.

The Redundancy Resolver captures and maintains the redundancy relationships
among the rules such that, if desired by the user, redundant rules can be efficiently filtered
out for any given parameter settings. We optimize the redundancy resolution introduced
in PARAS by leveraging our proposed Adjacency Index. In Abstract mode, this improved
strategy is used to compute the dominating locations for the rules generated from the initial
dataset. The Update mode updates the redundancy relationships among the rules in the
adjusted parameter space.

The Parameter Space Constructor takes the up-to-date ruleset and the correspond-
ing redundancy information to construct the parameter space. After the construction is
completed, the user then is able to explore the parameter space with instant responses
through the Rule Explorer to find interesting rules.

152



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

3. Offline Parameter Space Maintenance
3.1. Rule Generation & Updating

We introduce our Rule Generator module of iPARAS that provides an efficient solution
for rule induction and updating. The first task of this module is to generate and update
frequent itemsets. Apriori (Agrawal and Srikant (1994)), FP-tree (Han et al. (2000)), Eclat
(Zaki et al. (1997)) and their variations could all be used to generate frequent itemsets
in a database. However, it has been proven (Hunyadi (2011), Borgelt) that the FP-tree
solution outperforms Aprori because it requires fewer scans over the database and also the
execution time is not wasted in re-producing candidate items at each step. As FP-tree
can be applied to larger datasets and reduces I/O computation costs significantly, iPARAS
now adopts this method to generate frequent itemsets for the original dataset. Thereafter,
with each update it is maintained to accommodate new transactions efficiently. Frequent
itemset mining involves two phases. In the first phase the FP-tree is constructed while the
second phase, known as FP-Growth (Han et al. (2000)), derives the frequent itemsets from
FP-tree.

Table 1: (a) 10 transactions, (b) frequency of each tem  Iransaction D
item and (c) sorted transactions by the frequency order. : ::‘1 z Z : :09
TID | Items Ttem | Freq TID | Items ] -
1 a,c,d,f a 6 1 f,a,d,c ] 1.2,3,4,6.8
2 a,d,f b 5 2 fad o 5.7.9
3 a,d,f c 2 3 fa,d T 1,2,3,4,5,8 10
4 [ bdfg d 6 4 | fdb & 1]
5 b,c,f.e e 3 5 f,b,e,c h | 7]
6 a,b,d f 7 6 a,d,b N [&]
7 a,e,h g 1 7 a,e ] [s]
8 [ b,dfi h 1 8 | fdpb —
9 a,e,j i 1 9 a,e Figure 4: Inverted Index constructed
10 [ fb i 1 10 | £b on transactions in Table 1

Consider the example of database given in Table 1 with 10 transactions. The minimum
absolute support threshold is 2. In the first pass, the database is scanned to get the frequency
counts of each item. Items are sorted in descending order of frequency. The transactions
with now sorted frequent items are shown in Table 1 (¢). The header table is built which
contains the sorted frequent items and their frequency and link to the first node in the
FP-tree. FP-tree and header table for the database of Table 1 is shown in Figure 5.

Figure 5: Header Table and FP-Tree Figure 6: Adjacency Lattice

After the FP-tree has been constructed, the mining process FP-Growth is executed
which finds all frequent itemsets directly from the FP-tree. It is a recursive process that

153



QIN AHSAN LIN RUNDENSTEINER WARD

works bottom up according to the header table. A conditional FP-tree is generated for each
item and frequent itemsets are derived recursively from conditional FP-trees. Once frequent
items are generated, they are represented in a Adjacency Lattice proposed in (Aggarwal and
Yu (2001)) for rule generation process (see Section 3.1.5). The Lattice built on the frequent
items for the example database is illustrated in Figure 6.

3.1.1. INCREMENTAL FREQUENT ITEMSET MINING (iFIM)

The FP-tree on the original database must be built as described in the previous section be-
fore newly incoming transactions can be processed. During the construction of the FP-tree
the inverted index is created which contains the transaction number for each item. When
new transactions are added, iFIM processes them to update the tree in such a manner
that the resulting tree has a compact structure and assures that the frequent itemsets are
generated from tree efficiently. The algorithm for updating the FP-tree is introduced in
Algorithm 1, with the Sort Header procedure adopted from (Koh and Shieh (2004)).

Algorithm 1: iFIM Algorithm Algorithm 2: Sort Header
Input: FPTree, inverted_index, header, suppl, Input: FPTree, header
Dt begin
Output: {FPTreet} // Updated FPTree Apply bubble sort on header;
begin if item X, Y in header are to be exchanged
foreach Transaction T; in DT do then
foreach Item a; in T; do foreach node X, Y in FPtree do
if a; present in header then if node X.count > node Y.count then
| header[a;].count-++; insert new node X’ as child of X
else parent;
Lrescan,vector[aj].count ++; X’.count=node X.count - node
Y .count;
delete_Item(F PTree, header, suppl ); X’.children= X.children- node Y;
rescan_Item(header, inverted_index, else
rescan_vector, suppl); Lnode X.count=node y.count;
sort_header(F Ptree, header); exchange parent & child links of node X
foreach Tansaction T; in DT do | and Y;
| process the transaction L =

Algorithm 4: Delete Item

Input: FPTree, header, suppl

begin
foreach Item a; in header do
Algorithm 3: Rescan Item if header/a;].count < suppl then
foreach node X corresponding to item
Input: header, inverted_index, rescan_vector, a; do
suppl assign node X children to X parent;
begin if parent has two child with same
foreach Item a; in rescan_vector do item then
if rescan-vectorfa;].count >= suppl then merge nodes and add node
get transaction number from counts;
inverted_indezx ; .
insert item a; in header; delete item a; from header;
process the transaction; delete node X from tree;

154



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

3.1.2. INCREMENTAL FREQUENT ITEMSET MINING EXAMPLE

Table 2: The three new transactions and frequency count of each item in new and updated database.

% fjtef:ms Item alb|lc|d|e|f|g|h|i]]
5 d’g’gi Sqppm D’ |0 |00 20 2111
T Supp 61528393222

Let D be the database shown in Table 1 and let minimum support threshold be 2. For the
original database the inverted_index is built (see Figure 4). Sorted transactions according
to frequencies is shown in Table 1 and corresponding FP-tree in figure 5. Items f, a, b,
d, ¢ and e are frequent in D. Let DT as shown in Table 2 contain 3 transactions. Let
Incrementalsupport (suppl) be 3. The new transactions are scanned to get the counts of
each item. The header table is updated and update status of each changed item is set. The
updated count of each item is determined. In Figure 7, item c¢’s updated support is below
threshold so it is deleted.

Items that have become frequent after the update yet were infrequent before are pro-
cessed next. Item g’s updated support is now above the threshold, but was not present in the
original FP-tree. It is inserted in rescan_vector and header table. Transactions containing
any of the items in rescan_vector are obtained from inverted_index. Only those selected
transactions are indexed rather than scanning the whole database again. This avoids un-
necessarily scan of the whole database again. For item g only transaction 4 needs to be
rescanned. After deletion of item ¢ and rescanning item g, the resulting tree is depicted in
Figure 7.

Header

Item | Freq
f

m (M| T |w
Wi w| oo o |

Figure 7: The header table and FP-tree after ~ Figure 8: The header table and FP-tree after
deleting item c and rescanning transactions. exchange process.

Next, bubble sort is applied on the header table. In our running example in Figure
8, Item a is exchanged with Item d. The nodes in FP-tree are exchanged and merged
accordingly. The items in each new transactions are ordered according to the updated
descending order of frequencies of items. They are then processed in same way as FP-tree
is constructed originally to get updated FP-tree as shown in figure 9.

155



QIN AHSAN LIN RUNDENSTEINER WARD

3.1.3. MoDIFIED GROWTH ALGORITHM

Header
Item | Freq
f 9

m | 0| T | |
wWlw o |

Figure 9: Final header table and FP-tree after Figure 10: Conditional FP-tree for item g.
all new transactions are processed.

We design a modified growth function that generates frequent itemsets from this updated
FP-tree avoiding to generate all frequent itemsets from scratch. It recursively processes
those items in the header table whose counts have been updated and ignores those that are
not modified.

Lemma 1 If the candidate itemset X is not affected by the current update over the database,
then no extension > X + I; of X, where |I;| > |Ix| for any I in X must be changed.

According to Lemma 1, for any item whose count is not changed by current update,
any itemset in which it occurs cannot have changed. Thus it can be ignored. A conditional
FP-tree is generated for each modified frequent item. From this tree, frequent itemsets are
recursively derived. The conditional FP-tree of each item in turn only contains the modified
items thus reducing the size of the conditional tree. Consider the updated FP-tree shown in
Figure 9. Conditional FP-tree for item g is shown in Figure 10 where conditional FP-tree
does not contain item b. The modified growth function then modifies the Adjacency Lattice
to reflect the changes for each updated frequent itemset. Any frequent itemset that is below
the threshold is removed, while new itemsets are added into the lattice. The updated lattice
is shown in Figure 12.

3.1.4. ADJACENCY INDEX

(

| Index’t = {(df => a), (df => b))} :
: Index? = {(b => ), (f => d)} :

Figure 11: Adjacency Index L Figure 12: Updated Adjacency Index L’

In this section, we describe our proposed data structure Adjacency Indexr which extends
the capabilities of Adjacency Lattice (Aggarwal and Yu (2001)) to facilitate rule updating

2. Given a set of items I, an itemset X + Y of items in [ is said to be an extension of the itemset X if
XNY =0 (Agrawal et al. (1993))

156



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

and redundancy resolution in {PARAS. Adjacency Lattice is a compact data structure to
store the frequent itemsets. It is also used for association rule induction. An itemset X
is said to be adjacent to an itemset Y, if X can be obtained from Y by adding just one
item. In that case, X and Y are connected by a one-directional link from Y to X. Each
node in the Adjacency Lattice represents a frequent itemset. Our proposed Adjacency Index
structure extends the capability of the Adjacency Lattice. As shown in Figure 11, in each
node which represents an itemset X, there are two embedded indices, namely Index® and
Index™. Inmdex®" indexes the rules whose Antecedents = X, while Indez® indexes the
rules with (Antecedents U Consequents) = X. In addition, the one-directional links among
the itemsets are replaced by bi-directional links to support both top-down and bottom-up
traversal functions.

3.1.5. RULE INDUCTION FOR INITIAL DATASET

Table 3: Association Rule Table

Rule S C Rule S C Rule S C
Ri = (a=d) 4 4/6 R105(d:>af) 3 3/6 Rig=(f=c¢) 2 2/7
Ro=(a=df) || 3| 3/6 | Rir=(d=0b) || 3] 3/6| Reo=(f=4d) || 5 | 5/7
Rs=(a=e) || 2| 2/6 | Riz=d=0f) || 2 || 2/6 || Ra1 = (ad = /) || 3 || 3/4
R5 E(bﬁd) 3 3/6 R14E(e:>a) 2 2/3 R23E(bd:>f) 2 2/3
Re=0b=df) || 2| 2/6 || Ris=(f=a) || 3| 3/7 || Raa=(bf =d) || 2 || 2/4
R7:(b=>f) 4 4/6 R15£(f:>ad) 3 3/7 R25E(df:>a) 3 3/5
Rs E(C=>f) 2 2/2 Ri7 = (f:>b) 4 4/7 RQgE(de}b) 2 2/5
Ro=(d=a) |4 4/6 |[ Ris=(/=0bd) || 2 || 2/7

The second task of Rule Generator is to induce and update rules from the generated
itemsets. For the Generate mode, we adapt the GenerateRules (Aggarwal and Yu (2001))
rule induction algorithm and leverage the Adjacency Index L to generate the ruleset {R}
from the initial dataset. The rule generation algorithm forms a rule based on the examina-
tion of two itemsets where one is a subset of another. Consider two itemsets X and Y, where

Xcv,if % is larger than the primary confidence threshold, then R = (X = (Y —X))

is generated and indexed by Index%" and I nde:vg/” respectively. To find out all possible
pairs to form the rules, for each itemset Y, the algorithm GenerateRule(Y) performs a
Depth-First Search (DFS) to traverse its ancestors {X;}. Any item in {X;} is a subset of
Y. Therefore, {X;} is sufficient for Y to form rules where X; is the Antecedents. This
process is performed on each itemset of Adjacency Indexr L. We modify this algorithm such
that whenever a rule is formed, this rule will be immediately indexed by Index%™, . ...

and [ ndem‘(lﬁntece dentsUConse . Consider the itemset “bd” on L. “bdf” is its only descen-
quents)

dant. When the modified algorithm GenerateRule(“bd”) generates the rule R = (bd = f),

R will be indexed by Index%", and I ndex%llfdf,, in preparation for iPARAS rule updating

algorithm and redundancy resolution.

157



QIN AHSAN LIN RUNDENSTEINER WARD

3.1.6. RULE UPDATING FOR BATCH UPDATE

Table 4: Updated Association Rule Table

Rule S C Rule S C Rule S C
Ri=(a=4d) 4 || 4/6 Rio = (d = af) 3| 3/8 Royo = (f=4d) 5 5/9
Ry = (a = df) 3| 3/6 Rii=(d=0) 3| 3/8 Ro1 = (ad = f) 31 3/4
Ri=(a=f) 3 3/6 Riz=(d=f) 5 5/8 Ra2 = (af = d) 3 3/3
Rs = (b=d) 3 3/6 Ri5 =(f = a) 3 3/9 Raos = (df = a) 3 3/5
Rr=(b=f) 4 4/6 Ris = (f = ad) 3 3/9 Ror = (d=g) 3 3/8
RgE(d:>a) 4 4/8 Riz=(f=0) 4 4/9 RQSE(g:>d) 3 3/3

In Section 3.1.1, we demonstrated how to update the Adjacency Index L into L’ for a given
batch update. The operations performed on L are Delete, Insert and Update. Each of
these operations will correspondingly trigger certain actions in our proposed rule updating
algorithm. In the Adjacency Index L, if an itemset X is:

Deleted: All the rules in I nde:p%l should be deleted. Because all rules indexed by

I ndem%l consist of X. For instance, as indicated in Figure 12, “cf” has been deleted from
L. It is obvious that the two rules indexed by I ndew‘igjm which are ¢ = f and f = ¢
should be deleted from {R}.

Inserted: Similar to the rule generation algorithm GenerateRule(Y), AddRule(Y') runs a
DFS to traverse Y’s ancestors {X;}. The newly generated rules conform to the template
R; = (X; = (Y — X;)) and they will be immediately indexed on L’. For example, for the
newly inserted itemset “dg” in L', two new rules d = g and g = d will be added to {R}.
Updated: The rules originally formed by X and its descendants {Y;} may be updated or
expired due to the change of their support and con fidence values. It is also possible to
introduce new rules for some R = (X = (Y; — X)) whose original con fidence value was
not larger than the primary confidence value. Similar to the Generate Rule(X) algorithm,
Update Rule(X) traverses X’s descendants to examine the above cases and make changes
to {R}. For instance, the support of “d” being increased will affect the con fidence of Ry,
Rl(], R11 and R13 in Table 3.

3.2. Redundancy Resolution in iPARAS

Aggarwal and Yu (2001) defined redundancy relationships among rules, such that redundant
rules, if desired, may be filtered out for presenting succinct result to the user. In particular,
redundancy relationships can be of two types , as defined below:

Definition 1 Simple Redundancy: Let R = ((A1 : A,) = (C1: Cy,)) be a rule. All rules
that simple dominate it conform to the template R>5™ = (((A; : A,) — (A, 1 Ay)) =
((Ay : Ay) U (Ch : Cp))) where (Ay @ Ayw) C (A1 = Ayp). The rule R is simple redundant
with respect to the rule R>5™.

Definition 2 Strict Redundancy: Let R = ((41: Ay,) = (C1: Cp)) be a rule. All rules
that strict dominate it conform to the template R = (((A1 : An) — (Ay : Ay)) =
((Ay 1 Ayp)U(C1 : Chape))) where (Ay : Ay) C (A1 Ay) and (Cy : Cy,) C (Ch i Chge). The
rule R is strict redundant with respect to the rule R~>S'.

Consider Ros = (ad = f) and Ry = (a = df) in Table 3. By Definition 1 above,
Ry is simple dominating Rso. The support values of them are guaranteed to be the same

158



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

because RS always consists of the same items as R>*"™. Consider R5 = (b = d) and
R¢ = (b = df) in Table 3. By Definition 2 above, R is strict dominating Rs. Note that
both support and con fident values of R<$" are greater or equal to the values of B>,

The rules produced in the parameter space may contain redundancies. However, redun-
dancy relationship is a runtime phenomenon. In other words, the redundancy among
rules depends on runtime input parameters, rendering it impossible to eliminate a rule as
redundant at an offline step. For instance, let R; be the only rule that dominates R; in the
parameter space, R; is said to be redundant if and only if both of them exist in the ruleset
that is generated based on a user specified parameter setting. While eliminating redundant
rules can only be performed at runtime, the system must isolate as much as possible the
redundancy relationships inside the parameter space in the preprocessing phase. Moreover,
database updates may trigger changes of the redundancy information, hence the need for an
updating mechanism to identify those changes. In the parameter space model, redundancy
information can be abstracted and updated compactly as an offline step by utilizing the
certain properties (Lin et al. (2013)) of the redundancy relationships. By leveraging the
Adjacency Index, our proposed redundancy abstraction method is exponentially faster by a
factor of approximately 1.5" comparing to the state-of-the-art PARAS approach, where n
is the number of unique items in D.

3.2.1. REDUNDANCY ABSTRACTION IN PARAS

Lin et al. (2013) identified a compact representation of the rule redundancies in the param-
eter space model, namely, the simple dominating location and the strict dominating
location. Given a parameter setting, to determine whether or not a candidate rule R is
redundant, it is sufficient to compare it with only two dominating locations instead of an ex-
ponential number of dominating rules. The simple and the strict dominating location
are described below.

Lemma 2 Simple Dominating Location: For each simple dominated rule R<S™ | the
set of simple dominating rules {R>5"™} contains a rule R?szm closest to the dominated
rule RS such that YR S'™ € {R>*"™} where k # i, R .conf > R?*".conf. The

location of rule R>*"™ is called the simple dominating location of R<*"™, denoted by
l>>sim.

Fora R = ((A; : A,) = (C1 : Cy)), Lin et al. (2013) revealed that ™ can be obtained
from the candidate rules which conform to the template R>*"™ = (((A; : A,) — 4;) =
(A; U (Cy : Cp))). Since R and its simple dominating ruleset {R>*"™} share the same
support value, the goal here is to find out which candidate has the biggest confidence value.
We know that the smaller the antecedents.support, the larger the R.confidence. So the
problem has been transferred into the problem to find the smallest support value from
{((A1 : A,) — A;).support}. This takes O(n). In the Adjacency Index, {((A1 : An) — A;)}
are the parents of (A; : 4,).

Lemma 3 Strict Dominating Location: For each strict dominated rule R, the set of

strict dominating rules {R>*""} contains a rule R closest to the dominated rule R,
such that VR,?SW € {R>5'"}, where k # i, R .supp > R?Str.supp and R7*".conf >

159



QIN AHSAN LIN RUNDENSTEINER WARD

Rl?s".con f. The location of rule R?Str is called the strict dominating location of RS,
denoted by 125",

For a R = ((A1 : A,) = (C1 : Cp)), Lin et al. (2013) showed that [Z5" can be
obtained from the candidate rules which conform to the template R>5" = ((4; : A,) =
((Cy : Cp)UC;)). Since R and its strict dominating ruleset {R>*"™} share the same
antecedents, the goal here is to find out which candidate has the biggest support value. So
the problem has been mapped to the problem of finding the biggest support value from
{((A1: A,) U (Cy : Cyy) U C;).support}. This takes O(e) where e is the number of children
of ((A1: Ap) U (Cy : Cy,)) in the Adjacency Index.

3.2.2. OPTIMIZED REDUNDANCY ABSTRACTION IN IPARAS FOR INITIAL DATASET

For each rule in the parameter space, PARAS takes linear time to obtain its dominating
locations. However, how many rules are in the parameter space? Let n be the number of
unique items in D, then the maximum number of frequent itemsets is 2" and the maximum
number of rules is 3" — 2" + 1. Even for some small datasets such as Chess and Mushroom
(Newman and Asuncion (2007)), where the number of unique items n are 75 and 119, an
immense amount of rules exist in the parameter space, resulting in the high computational
costs for abstracting redundancy information. Fortunately, we made the important obser-
vation that some rules share exactly the same computation in the process of redundancy
abstraction. This provides an optimization opportunity.

Lemma 4 If R;.antecedents = Rj.antecedents, {R7*"™} # 0 and {R7*™} # 0, then
there must exist a R S located at Z?Sim and a R3>>5im located at lj>>sm sharing the same
antecedents.

Based on Lemma 4, we can conclude that if there are two rules having the same an-
tecedents, then they share the same computation for obtaining their stmple dominating
location. Consider Rys = (df = a) and Rgg = (df = b) in Table 3. RZ™ at 12°™ is
Rip = (d = af). R%S"m at l;%“m is Ri2 = (d = bf). Observe that R1p and Rjy share the
same antecedents.

Lemma 5 If R;.items = Rj.items, {R>*""} # () and {R?s“"} # 0, then there must exist
a R located at li>>5t’" and a R]?>m located at l?s” sharing the same items.

Based on Lemma 5, we can conclude that if there are two rules consisting of the same set
of items, then they share the same computation for obtaining strict dominating location.
Consider Ri3 = (d = f) and Ry = (f = d) in Table 3. R3*" at I133°" is Rip = (d = af).
R2>>Os” at l2>>05”’ is R16 = (f = ad). Observe that Ryg and Rig consist of a same set of items.
In the Adjacency Index L, a node, representing an itemset X where the length of X is n,
indexes rules which have the same antecedents as X and rules which consist of X. Instead of
obtaining the stmple dominating location for each rule in this first set at a cost of O(n),
the computation can be performed only once by leveraging this index. Similarly, O(e) time
computation is sufficient to obtain their strict dominating locations for the second set of
rules. Considering the fact that the maximum number of rules is exponentially larger than

160



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

the maximum number of itemsets. Our optimized redundancy resolution is exponentially
faster than PARAS by a factor of approximately 1.5" where n is the number of unique
items in the database.

3.2.3. REDUNDANCY RELATIONSHIPS UPDATING FOR BATCH UPDATE

Algorithm 5: Redundancy Update

Input: L', {Itemset}chaonged [(R+}
Output: {R*}// Rules with redundancy info
begin
switch Itemset; do
case Updated
forall the Itemset in {Parents of
Itemset;} do
L RedundancyAbstraction(Index‘}” );

temset
forall the Itemset in {Children of
Itemset;} do

. antecedent).
L RedundancyAbstractzon(]ndewltemset 5

case Inserted
RedundancyAbstraction(Indez‘}ilemseti )

antecedent

Figure 13: An example of Adjacency Redundancy Abstraction(Index i 2o8°"");
Index update | Update Process in the “Updated” case;

Given a batch update to dataset D, new rules may be introduced and old ones expired
or updated in terms of their support and confidence values, resulting in corresponding
changes of the redundancy information in the parameter space. As we discussed in Section
3.2.2, the redundancy can be abstracted in the Adjacency Index. Therefore, changes of
the itemsets can be used to identify the possible changes of redundancy information. The
update strategies for redundancy information fall into two different cases:

I. The support of an itemset in the Adjacency Index is updated.

In Figure 13, the support of “a”, “c¢” and “ac” has all changed. All corresponding
changes of the ruleset have been made by the rule updating mechanism as well. Con-
sider the node “ac” on the left side in Figure 13, it is the least frequent parent of
“abc”. However, on the right side, “ab” becomes the least frequent parent of “abc”
due to increasing frequency of “ac”. Therefore, once an itemset is updated, all its child
nodes have to be re-examined for possibly having to update the simple dominating
locations for the rules in Index® in each child node. On the left side, “ac” is not
the most frequent child of “a”. However, on the right side, “ab” is no longer the most
frequent children of “a” due to the increasing frequency of “ac”. Therefore, once an
itemset is updated, all its parent nodes have to be re-examined for possibly having to

update the strict dominating locations for the rules in Indez® in each parent node.

II. A new itemset is inserted into the Adjacency Index.

Our optimized redundancy abstraction is first executed on this node. Then the above
redundancy updating algorithm is performed.

161



QIN AHSAN LIN RUNDENSTEINER WARD

4. Experimental Results

Setup. Experiments are conducted on a OS X machine with 2.4 GHz Intel Core i5
processor and 8 GB of RAM. The system and its competitors are implemented in C++
using Qt Creator with Clang 64-bit compiler.

Datasets. We evaluated the performance of the iPARAS system using synthetic and real
dataset benchmarks. The retail dataset (Brijs et al. (1999)) contains 88,163 transactions
collected from a Belgian retail supermarket store in 5 months. To better measure the
performance of the systems, we replicated the retail dataset 10 times denoted as 10retail.
We also generated 6 datasets by the IBM Quest data generator modeling transactions in a
retail store. On average, each transaction has 10 items.

Table 5: Datasets

10retail T20000k T5000k T1600k T800k T400k T200k
Transactions | 881,630 | 19,663,637 | 4,016,218 | 1,573,347 | 786,700 | 393,210 | 196,601
Unique Items | 16,470 23,870 7,062 7,599 7,596 7,589 7,576
Size 40.8 MB 1.2 GB 2488 MB | 79.6 MB | 39.8 MB | 199 MB | 10 MB
4.1. Evaluation of Online Processing Time
le12 - Aplliori A le12 Apr‘iori A
o 1e10 - v > o 1e10 POQM —Xé—
g T 1e8fy
g § 1le6
g g le4
é le2 . - : s E le2
Z 1e0 - : : : = % 1e0
8, le-a - 7 | 8, le-2
o T R G B
0.2 0.3 0.4 0.5 0.6 0.7 0.8 e 0.0006 0.0008 0.001 0.0012 0.0014 0.0016 0.0018 0.002

Minconfidence (0-1)

Figure 14: support = 0.1%

Minsupport (0-1)

Figure 15: confidence = 60%

To evaluate the online processing time, we compared the iPARAS system against the
original Apriori, Eclat, FP-growth implementations from (Borgelt) and POQM. The pri-
mary support setting for POQM and iPARAS is 0.03% and the primary confidence setting
for iPARAS is 15%. Figure 14 and 15 illustrate the mining request processing time for
T5000K. First, we fixed the support to a constant value and measured mining request
processing times by varying confidence values. In Figure 14, for all of the five alternate
algorithms, the mining request processing times decreased with increasing confidence value.
As confidence increases, more rules get filtered, producing fewer rules in output. Overall,
iPARAS outperformed four competitors by several orders of magnitude. Second, we fixed
the confidence value and measured mining request processing times by varying support val-
ues. Figure 15 shows that the trend of the five alternatives is similar. {PARAS performed
several orders of magnitude better than the four competitors. Overall, iPARAS consistently
outperformed Apriori, POQM, Eclat and FP-growth by 4, 4, 3 and 4 orders, respectively.

162



INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

4.2. Evaluation of Offline Construction Time

To evaluate the offline construction time, we compared the the iPARAS system against the
state-of-the-art rule mining system PARAS. Both iPARAS and PARAS precompute the
frequent itemsets and association rules to construct the parameter space. When new data
arrives, iIPARAS can utilize the previous knowledge for construction while PARAS has to
start from scratch. First, we used each system to process a large initial dataset. Then we
measured the precomputing time of each system given a relatively small batch update.

Update processing time (sec)
Update processing time IPARAS/PARAS (%)

PARAS _ IPARAS PARAS__ iPARAS PARAS _ IPARAS PARAS__ IPARAS
1% 2% 4% 8%
 of transactions in the update(%)

ssactions in the update(%)

Figure 16: Construction time for one update Figure 17: Ratio of construction time

For the 10retail, we divided the dataset into two sets: one with 90 percent of the dataset,
for initial construction, and one with 10 percent of the dataset, for randomly batch update
generation. We measured the precomputing times by varying the size of the updates.
For both systems, the primary support is 0.1% and the primary confidence is 10%. In
Figure 16, iPARAS achieved about 16-fold, 10-fold, 7-fold and 5-fold speed-up of overall
offline precomputing time compared to PARAS with respect to the update size of 1%, 2%,
4% and 8%. The differences of time consumed decrease with increasing size of the batch
updates. Figure 17 shows the ratios of the running time of modules in iPARAS to the
running time of corresponding modules in PARAS by varying the size of the updates. The
trend of frequent itemset mining module is similar to the trend of overall performance in
Figure 16. The performance of the rule induction (updating) module, however, shows an
opposite trend on this dataset. The times used of rule induction module are similar for
iPARAS and PARAS when the size of the updates is small. E.g., the ratio is 86% for 1%
update. The reason in this case is that even the size of the update was small, it brought
significant changes to previous ruleset. The system is likely to search and make changes of
the entire rule collection in the Adjacency Index which made this process only a little faster
than re-inducing from scratch. Yet the time saved becomes significant when the size of the
updates increased. The optimized redundancy resolver in iPARAS, as expected, significantly
reduced the redundancy information abstracting time as compared to re-abstracting from

SCT%%@@&@@WO@QE@Q& dataset, we used T20000K for initial construction and
T200K, T400K, T800K, T1600K for batch updates. For both iPARAS and PARAS, we
set the primary support as 0.01% and the primary confidence as 10%. As shown in Figure
18, iPARAS achieved about 62-fold, 42-fold, 21-fold and 12-fold speed-up of overall offline
precomputing time with respect to the update size of 1%, 2%, 4% and 8%. The time
differences decrease with increase of the size of the batch updates. Figure 19 shows the ratios
of the running time of modules in iPARAS to the running time of corresponding modules
in PARAS by varying the size of the updates. All three modules show similar trends as the

163



QIN AHSAN LIN RUNDENSTEINER WARD

Frequent Itemset Mining o1

ind
Redundancy Resolution o

fate processing time (sec)

Upd

Update processing time IPARAS/PARAS (%)

111111

. . o 5 %%

PSS, 1PARAS PARAS__iP# PARAS _iPARAS PARAS _ IPARAS

2% 5%

the update(%) ssactions in the update(%)

Figure 18: Constrwlulcmta;{g"n time for one update Figure 19: Rétlo '°8'f construction time

overall performances of iPARAS in Figure 18. Each of the modules significantly reduced
the precomputing time as compared to corresponding modules in PARAS.

5. Conclusion

We present our iPARAS framework for incremental parameter space construction to assure
online association rule mining. {PARAS corresponds to an end-to-end solution, composed of
three algorithms, for efficiently updating the precomputed ruleset for transaction databases.
In the context of the parameter space, we can achieve fast redundancy abstraction at offline
step by leveraging the proposed Adjacency Index. In a variety of tested cases, iPARAS
outperforms the overall performance of the state-of-the-art online association rule mining
systems, POQM (Aggarwal and Yu (2001)) and PARAS (Lin et al. (2013)). Our experi-
mental evaluation using benchmark datasets confirms that iPARAS achieves several orders
of magnitude improvement over the state-of-the-art approaches in online rule mining, as
well as dozen folds speed-up in offline construction in a variety of tested cases.

References

Charu C. Aggarwal and Philip S. Yu. A new approach to online generation of association
rules. IEEE Trans. Knowl. Data Eng., 13(4):527-540, 2001.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules
in large databases. In VLDB, pages 487-499, 1994.

Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules between
sets of items in large databases. In SIGMOD Conference, pages 207-216, 1993.

Necip Fazil Ayan, Abdullah Uz Tansel, and M. Erol Arkun. An efficient algorithm to update
large itemsets with early pruning. In KDD, pages 287-291, 1999.

Christian Borgelt. Efficient apriori, eclat & fp-growth. http://www.borgelt.net.

Tom Brijs, Gilbert Swinnen, Koen Vanhoof, and Geert Wets. Using association rules for
product assortment decisions: A case study. In KDD, pages 254-260, 1999.

David Wai-Lok Cheung, Jiawei Han, Vincent T. Y. Ng, and C. Y. Wong. Maintenance of
discovered association rules in large databases: An incremental updating technique. In
ICDE, pages 106—-114, 1996.

164


http://www.borgelt.net

INCREMENTAL CONSTRUCTION OF PARAMETER SPACE FOR ONLINE ASSOCIATION MINING

William Cheung and Osmar R. Zaiane. Incremental mining of frequent patterns without
candidate generation or support constraint. In IDEAS, pages 111-116, 2003.

Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate genera-
tion. In SIGMOD Conference, pages 1-12, 2000.

Daniel Hunyadi. Performance comparison of apriori and fp-growth algorithms in generating
association rules. In ECC, pages 376-381, 2011.

Jia-Ling Koh and Shui-Feng Shieh. An efficient approach for maintaining association rules
based on adjusting fp-tree structures. In DASFAA, volume 2973, pages 417-424. 2004.

Carson Kai-Sang Leung, Quamrul I. Khan, and Tariqul Hoque. Cantree: A tree structure
for efficient incremental mining of frequent patterns. In ICDM, pages 274-281, 2005.

Xika Lin, Abhishek Mukherji, Elke A. Rundensteiner, Carolina Ruiz, and Matthew O.
Ward. Paras: A parameter space framework for online association mining. PVLDB, 6
(3):193-204, 2013.

David Newman and Arthur Asuncion. UCI machine learning repository, 2007.

Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei Li. New
algorithms for fast discovery of association rules. In KDD, pages 283-286, 1997.

165



	Introduction
	Preliminaries
	Foundation: The Parameter Space Model
	iPARAS Framework Overview

	Offline Parameter Space Maintenance
	Rule Generation & Updating
	Incremental Frequent Itemset Mining (iFIM)
	Incremental Frequent Itemset Mining Example
	Modified Growth Algorithm
	Adjacency Index
	Rule Induction for Initial Dataset
	Rule Updating for Batch Update

	Redundancy Resolution in iPARAS
	Redundancy Abstraction in PARAS
	Optimized Redundancy Abstraction in iPARAS for Initial Dataset
	Redundancy Relationships Updating for Batch Update


	Experimental Results
	Evaluation of Online Processing Time
	Evaluation of Offline Construction Time

	Conclusion

