Scalable Visual Hierarchy Exploration

by
lonel Daniel Stroe

A Thesis
Submitted to the Faculty
of the
WORCESTER POLYTECHNIC INSTITUTE
In partial fulfillment of the requirements for the
Degree of Master of Science
in
Computer Science

by

May 2000

APPROVED:

Professor Elke A. Rundensteiner, Thesis Advisor

Professor Matthew O. Ward, Thesis Advisor

Professor Carolina Ruiz, Thesis Reader

Professor Micha Hofri, Head of Department



Cu dragoste, parintilor mei.



Abstract

More and more modern computer applications, from business decision support to
scientific data analysis, utilize visualization techniques to support exploratory activities.
Most visualization tools do not scale well with regard to the size of the dataset upon
which they operate. Specifically, the level of cluttering on the screen is typically unac-
ceptable and the performance is poor. To solve the problem of cluttering at the interface
level, visualization tools have recently been extended to support hierarchical views of the
data, with support for focusing and drilling-down using interactive brushes. To solve the
scalability problem, this thesis investigates how best to couple a visualization tool with a
database management system without losing the real-time responsiveness required in any
interactive application.

This integration must be done carefully. Visual user interactions often cannot be ef-
ficiently realized using standard database operations. In our context, the recursive pro-
cessing required for the visual data retrieval was prohibitively expensive; responding for
instance to a single user request took up to 30 minutes on a 200,000 tuple dataset. We suc-
cessfully address this problem by developing a tree labeling method, called MinMax tree,
that moves the recursive processing into an off-line precomputation step. Thus, at run
time, the recursive operations translate into linear cost range queries. To further reduce
the response time, we employ a main memory access strategy to support incremental
loading of data into main memory. We also proposed a novel prefetching technique to
bring data into memory when the system is idle. Prefetching is speculative, non-pure, and
adaptive. These techniques have been incorporated into XmdvTool, a multidimensional
visual exploration tool, in order to achieve scalability. The tool now efficiently scales up
to datasets of order 10° — 107 records. Lastly, we report experimental results to assess the

performance of the proposed techniques.



Acknowledgements

Many thanks to my professors and to my friends for their support.

This work is supported under NSF grant 11S-9732897 and NSF CISE Instrumentation
grant IRIS 97-29878.



Contents

1

Introduction
1.1 Caching and Prefetching for Large-Scale Visualization . . .. ... ...
1.2 OurApproach . . . . .. ... .
1.3 Contributions . . . . . . ...
1.4 ThesisOrganization . . . . . . .. . ... ... ...
Related Work
2.1 Visual Hierarchy Exploration . . . . . ... ... ... ... .......
2.2 Visualization-Database Integrated Systems . . . . . ... ... ... ...
2.3 Relational Processing of Hierarchies . . . . .. .. ... ... ......
2.3.1 JoINProcessing . . . . . ...
2.3.2 HierarchyEncoding . ... ... ... . ... .. ........
2.4 Main Memory Processing . . . . . . . . ...
241 HighLevelCaching ... ........... .. ........
242 Prefetching . . ... ... ... . ... ... . ..

Multivariate Data Visualization

3.1 BrushBasics . . . . . . . . .
3.2 Hierarchical Clustering . . . . .. ... ... ... .. ... .......
3.3 Structure-Based Brushes . . . . . . ... ..



3.3.1 Creation and Manipulation . . . . . ... ... .. ........
3.3.2 Geometric Representation . . . . . .. ... ... ...
3.3.3 Multidimensional Extension . . . . ... ... ... .......
3.4 Model Abstraction . . . . . . ...
Query Specification and Processing
4.1 MinMax Hierarchy Encoding . . . . . . .. .. ... ... ........
4.2 Query Processing Using MinMax . . . . . ... ... .. ........
4.2.1 Static Tree Hierarchies . . . . .. . ... ... .. ... .....
4.2.2 Dynamic Tree Hierarchies . . . . ... ... ... ... .....
4.2.3 Arbitrary Hierarchies . . . . . . . . ... ... ... . ... ...
Memory Management
51 Caching . . . . . . .
5.1.1 SemanticCaching . ... ..... ... ... . .........
5.1.2 ProbabilisticModel . . . . .. ... ...
5.1.3 CacheReplacement. . . . . . ... ... ... ... .......
5.1.4 Database IntensiveCase . . . . . ... .. ... ... ... ...
52 Prefetching . . . . . . . . . . .
5.2.1 General Characteristics . . . . . . . ... ... ... .......
522 Strategies . . . . . ...
Implementation
6.1 System Architecture. . . . . . . ...
6.2 Threads and Synchronization . . . . . . .. ... ... ... .......
6.3 Interacting withthe Database . . . . . .. ... ... ... ........



Experimental Results
7.1 Experimental Inputs. . . . . . ... ...
7.2 Settings . . ...

7.3 Experiments . . . . ...

Conclusions and Future Work
8.1 Conclusions . . . . . . . . .

8.2 Future Work . . . . . . . .

Navigation Operations

A.l NotationConventions . . . . . . . . . . . . e

A.2 Hierarchical Clustering . . . . .. .. ... .. ... ... .. ......

A3 Structure Based Brushes . . . . ... ... . ... ... ...
A3.1 The ALL StructureBasedBrush . . . . . ... ... ... ....
A.3.2 The ANY Structure BasedBrush. . . . ... ... ... .....

A.3.3 The Relational Semantics of Structure-Based Brushes . . . . . .

MinMax Hierarchy Encoding

B.1 Proofof Theorem1 . . . . . . . . . . . . . . . .. . ...
B.2 Proofof Theorem2 . . . . . . . . .. .. . . . . ... .. ...
B.3 Proofof Theorem3 . . . . . . .. ... .. . . . ... ... .. ...

Complexity of Memory Operations
C.1 Full Size Probability Table . . . . . . ... ... ... ... .......
C.2 Reduced Probability Table . . . . .. ... ... ... ... .......



List of Figures

11
1.2

3.1

3.2

3.3
3.4
3.5

3.6
3.7
3.8
3.9

Architecture of main memory-based implementation. . . . . . ... ...
Architecture of database-based implementation. Additional computation

stepsare /O intensive. . . . . . . . ...

Structure-based brush as combination of a focus region (a) and a density
factor (b). . . . . . ..
Structure-based brush as combination of a horizontal (a) and a vertical (b)
selection. . . . . ...
Partition map for atree hierarchy. . . . .. .. ... ... ... .....
Hierarchical tree obtained by clustering. . . . . . . ... ... ... ...
Structure-based brushing interface in XmdvTool. (a) Hierarchical tree
frame; (b) Contour corresponding to current level-of-detail; (c) Leaf con-
tour approximates shape of hierarchical tree; (d) Structure-based brush;

(e) Interactive brush handles; (f) Color map legend for level-of-detail con-

ALL initial selection with brush values3and 7. . . . ... ... ... ..
ANY initial selection with brush values3and 7. . . . . . ... . ... ..
2-D hierarchy map. Uniform levelsof detail. . . . . . ... ... .. ...

2-D hierarchy map. Arbitrary level of detail function. . . . .. ... ...

3.10 Selectionspace abstraction. . . . . . .. ... ... ... L

3

15

16

20



3.11
3.12
3.13
3.14
3.15
3.16
3.17

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
5.3
5.4

5.5

5.6

Active window in the selectionspace. . . . ... ... ... .......
Atreeexample. . . . . . . .
Navigationonatree supportset. . . . .. . ... ... ... .. .....
Navigationgrid. . . . . . . . . . . . . ...
Activewindow. . . . . . . . .
Baseset. . . . . . ..

Objects on the same level are totally ordered. . . . . ... ... ... ..

Acontinuous MinMaxtree. . . . . . . . . . ...
Adiscrete MinMaxtree. . . . .. . ... ... ...
An ALL structure-based brush. . . . . . . ... ... ... o L.
An ANY structure-based brush. . . . . . ... ... ... ... .. ...
Theallocationstrategy. . . . . . . . .. . . ... ... ... . ......
An arbitrary hierarchy. . . . . .. ... ... .. .. ..

Bottom-up labeling of an arbitrary hierarchy. . . . ... ... ... ...

LA=0: two regions of equal probability,0and1.. . . . . . . .. ... ..
LA=1: five regions of equal probability,0, 1, ....4.. . . . . .. ... ...
LA=2: ten regions of equal probability,0,1,...,9. . . . .. .. ... ...
Buffer content for a three level, twelve object example in case of a re-
duced probability table. . . . . . ... ... ... .. ... ...
Finishing reading. Current objects are painted solid; the overwritten ob-
jects striped. Dashed lines are undefined pointers. . . . . . .. ... ...
Starting re-reading. The traversal direction changes for both consumer

and producer. Buffer in an inconsistentstate. . . . . ... ... ... ...

Vi

21
21

30



6.1

6.2

7.1

7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13
7.14

System architecture. The ovals depict the flat-file data. Dashed-line rect-
angles show the separation between the on-line and the off-line computa-
tion. Solid-line rectangles represent the agents. Squares represent meta-
knowledge. Solid arrows show the control flow. . . . . .. ... ... ..
System synchronization. The dashed-line rectangle represents the main
thread. The rectangles on the left hand side of the main thread form the
prefetcher thread. The GUI acts as a separate process, due to the priority

queues of TK. . . . . . . . . e

Hot regions: selections in the navigation space that provide useful insight

intothedata. . . . . . . ... ...
MinMax vs. Recursive. Structure-based brushes for dataset D1. . . . . .
MinMax vs. Recursive. Structure-based brushes for dataset D2. . . . . .
MinMax vs. Recursive. Structure-based brushes for dataset D3. . . . . .
Varying the level value. Functions compared against 2*. Logarithmic y

scale. ...
Varying the extent value. Functions compared against x+1. . . .. . . .
Varying the dataset size. Levels 12 and 14 not defined for D1. . . .. . .
Varying the delays for strategy S2 and S3. Measured quality. . . . . . . .
Varying the delays for strategy S2 and S3. Measured hit ratio. . . . . . .
Varying the delays for strategy S2 and S3. Measured latency. . . . . . . .
Varying the delays for various datasets. Measured quality. . . . . . . . . .

Varying the number of hot regions. Measured both query and object hit

Varying the “keep direction” factor. Measured query and object hit ratio. .

Varying the “keep direction” factor for various datasets. Measured the hit

vii

52

60

61



7.15
7.16
7.17
7.18

7.19

7.20
7.21

Varying prefetching strategy. Measured object and query hitratio. . . .. 62
Varied prefetching strategy for D1k10k. Measured the latency. . . . . . . 63
Varied prefetching strategy for D1k1M. Measured the latency. . . . . . . 63
Providing hints to the query optimizer. Varying the prefetching strategy.

Measured the hitratio. . . . . .. .. ... ... ... ... ... ... . 63

Providing hints to the query optimizer. Varying the data size. Measured

thelatency. . . . . . . . . . .. 63
Varying the dataset. Measured the hitratio. . . . . ... ... ... ... 64
Varying the dataset. Measured the latency. . . . . . .. ... ... .... 64

viii



List of Tables



Chapter 1

Introduction

1.1 Caching and Prefetching for Large-Scale Visualiza-
tion

Visualization provides effective techniques for the analysis of data. While statistics offers
us various tools for testing model hypotheses and finding model parameters, the task of
guessing the right type of model to use is still a process that cannot be automated. Thus,
whether the domain is stock data, scientific data, or the distribution of sales, visualization
plays an important role in the analysis. Humans can sometimes detect patterns and trends
in the underlying data by just looking at it, without being aware in advance about what
data model they’ll face.

Human perception is of course greatly influenced by the way data is presented. Thus,
various techniques for displaying data have been proposed over the years, each of which
focuses on emphasizing some of the data characteristics [1, 26, 8, 14, 30]. However,
most of these techniques do not scale well with respect to the size of the data. As a
generalization, [17] postulates that any method that displays a single entity per data point

invariably results in overlapped elements and a convoluted display that is not suited for



the visualization of large datasets.

A new approach has been proposed recently for displaying large datasets [16]. The
idea there is to present data at different levels of detail based on applying an aggregation
function to a hierarchical structure, structure that might result for instance from a cluster-
ing process. The problem of cluttering at the interface level is solved by displaying only
a limited set of aggregates at a time. However, such hierarchical summarizations increase
the size of data to be managed by at least one order of magnitude.

Storing and retrieving the data sets efficiently has often been ignored in the context
of visualization applications. While storing the data in main memory and flat files is
appropriate for small and moderate sized datasets, it becomes unacceptable when scaling
to large datasets. One possible solution to enable scaling is to integrate visualization
applications with database management systems. The last couple of decades of research
in the area of databases can greatly contribute to increasing the performance of a data
intensive application such as exploratory visualization.

Coupling a database with the visualization tool cannot be performed blindly though.
Techniques used for main memory processing are typically not efficient any more if im-
plemented directly in a database environment. A trivial and well known example is sort-
ing. Internal sorting strategies differ significantly from external sorting ones. Another
example is presented in this work: the recursive processing involved when navigating
through hierarchies in main memory is no longer appropriate when storing those hier-
archies on the disk. Instead, we propose a technique called MinMax trees [40, 41] that
transforms the recursive processing into fast range queries.

In general, there are two questions to be answered when doing such an integration
between visualization and database tools. The first is how to most effectively translate
the visual exploration operations such as zooming and brushing into a database under-

standable language such as SQL. The second is how to store and manage the results of



the database requests in main memory and make subsequent memory access operations

as efficient as possible. This work gives solutions for both questions.

1.2 Our Approach

Our approach to reducing the system latency (i.e., the on-line computation time) is to
push expensive computations off-line whenever possible. Visual tools require data to be
in the same address space to access it. In a simple main memory system, the data resides
entirely in the main memory (Fig. 1.1). When the visualization tool issues a request, the
entire computation is performed “on-demand” (i.e., on-line). The result is a set of objects
(datapoints) that is then passed back to the front-end. When the data is moved from the
main memory to persistent storage, two additional steps have to be present (Fig. 1.2).
First, the request needs to be translated into a format which is supported by the query
processor and then passed to the database for processing (also on-line). Second, the result
set needs to be loaded into the main memory and sent to the front-end for display. The
“on-demand” computation as well as data loading are 1/O intensive and thus no longer
fast (compared to the main memory case). Our goal of minimizing the system latency can

be achieved by optimizing these two steps.

On-demand
Request Result set Request Result set ation
Translation m
i
G
Loading
On-demand
computation
Figure 1.1: Architecture of Figure 1.2: Architecture of database-based imple-
main memory-based im- mentation. Additional computation steps are 1/0 in-

plementation. tensive.

Our approach to making the first step efficient is to move part of the on-line compu-

3



tation into a pre-processing phase. In our case, the front-end operations are reducible to
a particular class of recursive unions of joins and divisions that operate on hierarchies.
By using adequate pre-computation (i.e., organizing the hierarchical structure into what
we call a MinMax tree), the recursive processing of the operations in this class can be
reduced to range queries. Extensions of our method for non-tree as well as for dynamic
hierarchies have also been designed (Chapter 4). Compared with alternate approaches to
similar problems from the literature [7, 44], our hierarchy labeling method is shown to
be superior in terms of both efficiency and functionality. The previous proposed methods
either do not support dynamic and arbitrary hierarchies, or were not able to efficiently
scale to large datasets.

To make the second step efficient, we employ a main memory strategy that supports
incremental loading of data into the main memory. We show that incremental loading is
highly desirable, given the set of operations to support (Chapter 5). To further reduce the
response time, we have designed a speculative prefetcher that brings data into memory
when the system is idle. The prefetcher is based on the property of exploratory systems
that queries remains “local”, i.e., given the set of currently selected objects we have a
small number of choices of which objects can be selected next. The property provides
therefore “implicit hints” to the system. Additional hints might be provided by the the

data and the user’s exploration as well.

1.3 Contributions

Our main contribution consists of developing a set of techniques that can be applied to
interactive visualization tools in order to enable them to explore large datasets. The char-
acteristics of the system to which these techniques can be applied to are presented in

Chapter 2.



We first designed and implemented an encoding technique that efficiently supports
on-line retrieval of data. We further designed a high level cache policy that reduces the
latency in the system by incrementally loading the data into the memory buffer. When
the system is idle, a prefetcher will bring into cache the data that is likely to be used
next. For this purpose, we used a novel technique that combines a low granularity of
data (object level) and a “semantic” description of the content of the buffer. We also
performed experiments to assess the efficiency of our approach. First, we tested our
encoding technique as a stand-alone method and found that it performed and scaled well.
Second, we tested the system to work with various input and under different settings. The
system scales well to support millions of data points with between 8 and 20 dimensions.
We confirmed the important role of precomputation in such applications and showed that

the benefit of using prefetching exceeds significantly the result from using the cache only.

1.4 Thesis Organization

Chapter 2 presents the related research from both the visualization and the database per-
spective. Chapter 3 introduces basic concepts in visualization and describes our approach
to achieve scalability from a front-end perspective. It also formalizes the requirements
under which our proposed approach works. The hierarchy encoding as well as the pro-
cessing of MinMax queries is further presented in Chapter 4. Chapter 5 introduces the
memory management, specifically the caching and prefetching strategies. The imple-
mentation of the system is discussed in Chapter 6. Experimental results are reported in
Chapter 7. Finally, we present conclusions as well as directions for further research in

Chapter 8.



Chapter 2

Related Work

2.1 Visual Hierarchy Exploration

There has been considerable research in the visualization area toward finding effective
methods to display and explore hierarchical information, such as Tree-Maps [37], Cone-
Trees [32] and Reconfigurable Disc Trees [22]. Most of these methods provide only
modest modes of interaction for navigating the hierarchy. Navigation plays an important
role in aiding users to find their way through the complex structure: to see where they are,
what information is available and how to identify information of interest.

On the other hand, techniques for visual exploration of hierarchies [27] have indepen-
dently been proposed. Hierarchy visualizations are evident for instance in many commer-
cial applications, such as Microsoft Windows Explorer, Norton Commander, and so on.
The major disadvantage of such interfaces however is that there is a limited display space
for the hierarchy. Hence, they are not suitable for displaying large data sets. The visu-
alization technique we use in this work [16, 17] has both the capability of interactively

navigating the hierarchical structures and the capability of displaying large datasets.



2.2 Visualization-Database | ntegrated Systems

Integrated visualization-database systems such as Tioga [39], IDEA [34], and DEVise
[28] represent the work closest related to ours in terms of problem area. The approaches
are however different. Tioga [39] implements a multiple browser architecture for what
they call a recipe, a visual query. The system is able to buffer the computed data; however,
the problem of translating front-end operations into database queries is not present since
database queries are directly (explicitly) specified by the graphical interface. IDEA [34]
is an integrated set of tools to support interactive data analysis and exploration. Some
constraints on the data model are imposed by the application domain, but on-line query
translation and memory management are not addressed. In DEVise [28], a set of query
and visualization primitives to support data analysis is provided. The number of primi-
tives supported is itself relatively large. However, caching data is done at the database
level using default mechanisms only; special memory management techniques are not
considered.

Other work in the same area includes dynamic query interfaces [43, 21], dynamic
query histograms [13] and direct manipulation query interfaces [20, 24, 19]. They all have
a visual interface and a database back-end. However, the operations translate differently:
to dynamic range queries in [13], to temporal queries in [20], and to 2-D spatial queries

in [24]. These works do not deal with hierarchy exploration support.

2.3 Relational Processing of Hierarchies

2.3.1 Join Processing

In relational systems, hierarchies (as composite objects) have to be broken down into

multiple fragments that are then stored as tuples in separate relations [46]. Traversing the



hierarchical structure in order to gather all fragments together or to query specific prop-
erties requires a large number of joins. Since relational joins are expensive operations, an
immediate improvement in handling hierarchical structures is achieved by improving join
efficiency.

Valduriez et al. [45] introduce a new access path for processing joins, called a join
index. The join index is simply a binary relation that contains pairs of surrogates (unique
system identifiers) of the tuples that are to be joined. An algorithm that uses join indices
is also presented in [45]. The join index efficiently supports the computation of joins and
particularly the join composition of complex objects in the case of a decomposed storage
representation [46].

Another method that speeds up join processing uses hidden pointer fields to link the
tuples to be joined. The hidden pointers are special attributes that contain record identi-
fiers. Three pointer-based join algorithms, simple variants of the nested-loops, sort-merge
and hybrid-hash join, are presented and analyzed in [36].

A hash-based method for large main memory systems is described in [35]. The author
concentrates on the improvement of joins based on the traditional strategy of sort and
merge. Three algorithms are evaluated: a simple hash, the GRACE hash from the 5th
Generation Systems, and a hybrid of the two. When the available main memory exceeds at
least the square root of the size of one relation, the hash-based algorithms can successfully
be applied for computing joins. Their gain is especially significant when large relations
are involved.

The above techniques make join processing efficient, but they don’t limit in any way
the recursive processing typically involved when traversing hierarchies. The number of

system calls is high and many intermediate tuples are unnecessarily retrieved.



2.3.2 Hierarchy Encoding

Another way to handle hierarchies has emerged with the development of object-relational
systems [38]. Using object extensions a composite object can be represented using nested
(non 1-st NF) relations. However, recursive relations do not always have a pre-defined
depth and therefore they cannot be represented using nesting.

A novel idea in hierarchical processing was introduced by Ciaccia et al. [7]. They en-
code tree hierarchies based on the mathematical properties of simple continued fractions
(SICFs). Basically, each node of the tree has a unique label that encodes the ancestor path
from that node up to the root. The trees are assumed to be ordered (i.e., children have
order numbers) so that the ancestor path simply corresponds to a sequence of integers.
The sequence gives us the code of the ancestors of a node without any physical access to
the data. This information is sufficient for performing some operations, such as getting
the first common ancestor of two nodes or testing if a node is the ancestor of another
one, without any recursive retrieval of data. However, given a node n, this method can-
not, for example, efficiently provide the list of descendants of n. This limitation reduces
the number of operations that can be supported and, moreover, makes updates difficult to
handle. Another important limitation of this method is that it can only be applied to tree
hierarchies and not to arbitrary hierarchies.

A similar idea was introduced by Teuhola in [44]. He used a so called signature
for encoding the ancestor path. The important difference of the signature method to the
previous approach is that now the code is not unique. Given a node n, the code of n
IS obtained by applying a hash function to it and by concatenating the resulting value
with the code of its parent. The non-unigque code can make the quantity of data retrieved
be much larger than needed. Moreover, the code obtained by the concatenation of all
ancestor codes could exceed the available precision for deep trees. A fragmentation of

the initial tree and consequently additional joins would thus need to be performed.



2.4 Main Memory Processing

24.1 High Level Caching

High level caching systems in which objects are not individually identified, but rather a set
of objects together is identified with the query that generated it, is called semantic caching
[12] or predicate caching [25]. Our memory management is similar to the one present in
semantic caching. The buffer content is specified by a set of queries. However, due to
the specific requirements we had and for efficiency, we applied the concepts of semantic
caching quite different, enabling data to be handled also at a smaller granularity (i.e., at
the object level). Other work in the area of object level caching for database applications
have been addressed for example in [9, 33]. Also, object based caching has been studied

recently in the context of web applications [15].

2.4.2 Prefetching

In many interactive database applications, there is often sufficient time between user re-
quests, and therefore the amount of data that can be prefetched is limited only by the
cache size. This situation is refered to as pure prefetching and constitutes an important
theoretical model in analyzing the benefit of prefetching. In practice however prefetch
requests are often interrupted by user requests, resulting in less data being prefetched at
a time. In such cases, called non-pure prefetching, issues of cache replacement also need
to be considered. Pure prefetchers can be converted into practical non-pure ones by com-
bining them with a cache replacement strategy. In [11] for instance, a pure prefetcher is
used with the least recently used (LRU) cache replacement strategy, and a significant re-
duction in the page fault rate was shown. A multi-threaded implementation of a non-pure
prefetcher is reported in [42]. There, the latency of the disk operations is improved by

using threads.

10



The estimation strategy, called also a predictor, is usually based on either a proba-
bilistic model or some recorded statistics [5]. A widely used predictor in systems similar
to ours is based on Markov chain theory [2, 23]. The main idea is that given a string
s = (aj,,qj,, ..., aj,) of letters over an alphabet = = (a;);, we can compute the probability
of letter a; being at position n+- 1 based on the patterns existing in s. Markov predic-
tors have been first used in prefetching in the context of paged virtual memory systems
[2] under the name correlation-based prefetching. [23] also uses Markov predictors for

prefetching and reports good results.

11



Chapter 3

Multivariate Data Visualization

The work presented in this paper was triggered by our goal of scaling XmdvTool to work
on large data [47]. XmdvTool in a software package designed for the exploration of mul-
tivariate data. The tool provides four distinct visualization techniques (scatterplot matri-
ces, parallel coordinates, glyphs, and dimensional stacking) with interactive selection and
linked views. Recent efforts have produced hierarchical parallel coordinates, that allow
multi-resolution data presentation [16]. The main idea is to cluster the datapoints based
on a distance metric, apply an aggregation function to the datapoints from each cluster and
have those aggregate values displayed instead of the datapoints themselves. The model
can be conceptualized as a hierarchy that provides the capability of visualizing data at
various levels of abstraction. The hierarchical structure can be explored by interactively
selecting and displaying points at different levels of detail. We term this exploration pro-
cess navigation. In what follows we describe these visual exploration operations in more

detail and then provide a formal model that summarizes the semantics of these operations.

12



3.1 Brush Basics

Selection is a process whereby a subset of entities on a display is isolated for further
manipulation, such as highlighting, deleting, or analysis. Wills [48] defined a taxonomy
of selection operations, classifying techniques based on whether memory of previous
selections is maintained or not, whether the selection is controlled by the underlying data
or not, and what specific interactive tool (e.g., brushing, lassoing) is used to differentiate
an area of the display. He also created a selection calculus that enumerates all possible
combinations of actions between a previous selection and a new selection (replace, add,
subtract, intersect, and toggle) and attempted to identify configurations of these actions
that would be most useful.

Brushing is the process of interactively painting over a subregion of the data display
using a mouse, stylus, or other input device that enables the specification of location
attributes. The principles of brushing were first explored by Becker and Cleveland [3] and
applied to high dimensional scatterplots. Ward and Martin [47, 29] extended brushing to
permit brushes to have the same dimensionality as the data (N-D instead of 2-D). They
also explored the concepts of multiple brushes, composite brushes (formed by logical
combinations of brushes), and fuzzy brushes, that allow points to be partially contained
within a brush. Haslett et al. [18] introduced the ability to show the average value of the
points that are currently selected by the brush.

One common method of classifying brushing techniques is to identify in which space
the selection is being performed, namely screen or data space. This can then be used to
specify a containment criterion (whether a particular point is inside or outside the brush).
In screen space techniques, a brush is completely specified by a 2-D contiguous subspace
on the screen. In data space techniques, a complete specification consists of either an

enumeration of the data elements contained within the brush or the N-D boundaries of a

13



hyper-box that encapsulates the selection.

A third category, namely structure space techniques, which allows selection based on
structural relationships between data points, has been introduced in [17]. The structure of
a data set specifies relationships between data points. This structure may be explicit (e.g.,
categorical groupings or time-based orderings) or implicit (e.g., resulting from analytic
clustering or partitioning algorithms). Examples of structures include linear orderings,
tree hierarchies, and directed acyclic graphs (arbitrary hierarchies). In this work we focus
on tree hierarchies. A tree is a convenient mechanism for organizing large data sets.
By recursively clustering or partitioning data into related groups and identifying suitable
summarizations for each cluster, we can examine the data set methodically at different
levels of abstraction, moving down the hierarchy (drill-down) when interesting features
appear in the summarizations and up the hierarchy (roll-up) after sufficient information
has been gleaned from a particular subtree.

As described earlier, brushing requires some containment criteria. For our first con-
tainment criterion, we augment each node in the hierarchy, that is each cluster, with a
monotonic value relative to its parent. This value can be, for example, the level number,
the cluster size/population, or the volume of the cluster (defined by the minimum and
maximum values of the nodes in the cluster). This assigned value determines the control
for the level-of-detail. Our second containment criterion for structure-based brushing is
based on the fact that each node in a tree has extents, denoted by the left- and right-most
leaf nodes originating from the node. In particular, it is always possible to draw a tree
in such a way that all its children are horizontally ordered. These extents ensure that a
selected subspace is contiguous in structure space.

A structure-based brush is thus defined by a subrange of the structure extents and
level-of-detail values. Intuitively, if looking at a tree structure from the point-of-view of

its root node (Fig. 3.1), the extent subrange appears as a focus region (with the focus point

14



at its center), while the level-of-detail subrange corresponds to a sampling rate factor or
a density. In a 2-D representation of the tree (Fig. 3.2), the subranges correspond to a

horizontal and vertical selection, respectively.

74 )
y i /\
/ﬁ & |
A B

|

(3 (a

Figure 3.1: Structure-based brush Figure 3.2: Structure-based brush
as combination of a focus region (a) as combination of a horizontal (a)
and a density factor (b). and a vertical (b) selection.

3.2 Hierarchical Clustering

In what follows, we describe the clustering process used to organize the data in Xmdv-
Tool. The clustering phase generates the hierarchical tree which is further used during
exploration, but is not a pre-requisite for our technique. Any other method that generates
a similar data structure may be used as well.

Let X be a data set composed of m data points. The elements of X are called base data
points. A hierarchical clustering is obtained by recursively aggregating elements of X into
intermediate groups (clusters). Conceptually, the hierarchical clustering can be thought
as an iterative process of successive cluster aggregations that starts with the elements of
X (m clusters of one element each) and ends with a large cluster that incorporates all
the elements of X. A state of this transitory process can be defined as a partition on the
elements of X. The next state is also a partition obtained by grouping some of the sub-sets
of the previous partition. Two such successive partitions are called nested. Consequently,

we can define a hierarchical clustering of X as a sequence of nested partitions, in which

15



the first one is the trivial partition and the last one is the set itself. A formal definition of
hierarchical clustering is presented in Appendix A.

A graphical representation of an example of hierarchical clustering is presented in
Fig. 3.3 for a set of five elements {a,b,c,d,e}. We call this representation a partition

map.

{af b! c! d! e}

. {a,b, ¢, d, e} .
I 1 b d
A UL S CL) S {af ‘.’\c} {/’E}
L ® {b, c} 1 d i R 1 :
| | | | | |
WMEY S AR a {b, c} d e
a b c d e
Figure 3.3: Partition map for a tree Figure 3.4: Hierarchical tree ob-
hierarchy. tained by clustering.

A hierarchical clustering may also be organized as a tree structure T, where the root
is the whole X and the leaves are base data points. A node of T corresponds to an aggre-
gation whenever it has more than one child. A graphical representation of such a cluster
tree, obtained by hierarchical clustering of the same set of five elements, is presented in
Fig. 3.4.

Data can be hierarchically structured either explicitly, based on explicit partitions
(such as, for example, in category-driven partitioning) or implicitly, based on the intrinsic
values of the data points. In the latter case a clustering algorithm needs to be used to form
the hierarchy. We have tried two clustering algorithms in our system, but others would be

suitable as well. Specifically, we have used BIRCH [50] as well as a simple one of ours

16



[49].

3.3 Structure-Based Brushes

3.3.1 Creation and Manipulation

Figure 3.5 shows the structure-based brushing interface implemented in XmdvTool [17].
The triangular frame depicts the hierarchical tree. The contour near the bottom of the
frame delineates the approximate shape formed by chaining the leaf nodes. The colored
bold contour across the tree delineates the tree cut that represents the cluster partition
corresponding to the specified level-of-detail. XmdvTool uses a proximity-based coloring
scheme in assigning colors to the partition nodes [16]. In this scheme, a linear order is
imposed on the data clusters gathered for display at a given level-of-detail. This linear
order is directly derived from the order in which the tree is traversed when gathering the
relevant nodes for a given level-of-detail. Colors are then assigned to each cluster by
looking up a linear colormap table. The same colors are used for the display of the nodes
in the corresponding data display. The two movable handles on the base of the triangle,
together with the apex of the triangle, form a wedge in the hierarchical space.

Since, as shown before, a structure-based brush is defined as the intersection of two
independent selections, it necessarily follows that setting such a brush requires two com-
putational phases as well. The first one, the horizontal selection, is accomplished in two
steps. In the first step a set of leaf nodes is initially selected based on the order property
using the two handles indicates by e in Fig. 3.5. Basically, this step corresponds to “select
all leaves between the two extreme values e1 and e,”. Examples of initial selections cor-
responding to ALL and ANY operators are depicted in Fig. 3.6 and Fig. 3.7 respectively.
The brush values for both examples are nodes 3 and 7. The selected nodes are highlighted

by a shaded region. In the second phase, the initial selection is propagated up towards the

17



Figure 3.5: Structure-based brushing interface in XmdvTool. (a) Hierarchical tree frame;
(b) Contour corresponding to current level-of-detail; (c) Leaf contour approximates shape
of hierarchical tree; (d) Structure-based brush; (e) Interactive brush handles; (f) Color map
legend for level-of-detail contour.

root based on what we termed an ALL semantic: “select nodes that have all their children
already selected” (other semantics such as ANY or MOST are also possible [40]). The
second computation phase, the vertical selection, consists of refining the set of nodes gen-
erated in phase one. Basically, the nodes on the desired level-of-detail are only retrieved

out of the whole phase one selection. A formal definition of structure-based brushes can

be found in Appendix A.

2 8
2]

1 9
1] L4 o

Figure 3.6: ALL initial selection Figure 3.7: ANY initial selection
with brush values 3 and 7. with brush values 3 and 7.

18



The brush operations, as described above, are inherently recursive. Recursive process-
ing in relational database systems can be extremely time consuming and thus unsuitable
for interactive applications. In Chapter 4 we develop equivalent but non-recursive compu-
tation methods for setting structure-based brushes based on assigning some pre-computed

values to the nodes that recast retrievals as range queries.

3.3.2 Geometric Representation

Based on structure-based brush definition, we can extend partition maps to incorporate
information about the level value also. The objects get now a spatial representation. An
example of a four level hierarchy is presented in Fig. 3.8. We called this type of represen-
tation a 2-D hierarchy map. Hierarchy maps are especially useful when we generalize the
concept of level of detail to extend to any type of monotonic function. Such an example
is presented in Fig. 3.9. In this case, two level values (initial and final) need to be stored
for each object. The semantics of the structure-based brushes changes under hierarchy
maps. As we will see in Chapter 4, it reduces to a containment test on both dimensions.
A typical example would be “select all points that touch the level of detail L and the brush

interval (X, y).

3.3.3 Multidimensional Extension

The structure-based brushes, as just introduced, imply that a natural order of the base
data points (leaf nodes) exists. This may not always be the case. In fact, the space upon
the initial selection is performed is one dimensional. Principally, the initial selection
can be performed in an arbitrary k-dimensional space, if that is preferable for the user.
Particularly, we anticipate that an n-dimensional selection will be useful. Moreover, 2-

D hierarchy maps naturally generalize to n-D hierarchy maps by using n-dimensional

19



Figure 3.8: 2-D hierarchy map. Figure 3.9: 2-D hierarchy map. Ar-
Uniform levels of detail. bitrary level of detail function.

objects instead of rectangles. This extension, however, is not implemented in the current

version of XmdvTool.

3.4 Mode Abstraction

We now introduce a formal model characterizing the salient features of the proposed
techniques, thus establishing the applicability and scope of our solution. The input space
is composed of entries in the extent (x) dimension and in the level (y) dimension. Since
the two dimensions are independent, the space is actually a Cartesian product of entries.
We can envision this space by overlapping a 2-D grid over the tree hierarchy (Fig. 3.10).
In this representation, a selection is a sequence of consecutive regions with the same
level value (Fig. 3.11). The data points are spatial objects whose distribution may be
unknown and which can be retrieved by a so called query mechanism. Thus, there must
be a containment criterion that specifies for each object whether it is included in the
current selection window or not. In order for us to be able to implement a structure-based

brush as previously specified, an order is enforced on the set of leaf nodes and in general

20



on the nodes with the same level-of-detail value.

levels levels

mxn ‘ ‘ extents mxn ‘ ‘ extents

Figure 3.10: Selection space ab- Figure 3.11: Active window in the
straction. selection space.

An example of transforming a tree structure into a navigation space (i.e., the set of
spatial objects) is given below. The tree (Fig. 3.12) is first represented as a 2-D hierarchy

map and then overlapped on a 2-D grid of integers.

ol T

Figure 3.13: Navigation on a tree

Figure 3.12: A tree example. support set.

The set of characteristics below identifies the requirements that a system needs in

order for our approach to apply (besides providing the naming conventions):

1. Navigation consists of continuously changing a selection window (called the active

window) defined over an n x m grid of integers (called the navigation grid).

21



2. On both axes of the navigation grid, the intervals are indexed rather than the points.
Thus, on the x axis (called the extent axis) the intervals are denoted as e;, while on
the y axis (called the level axis) the intervals are denoted as L. The grid is therefore

a set of rectangle regions of the form (ej, Ly) (Fig. 3.14).

e € e

Figure 3.14: Navigation grid. Figure 3.15: Active window.

3. Anactive window is a “compact” selection of points {(ej, L), (€i+1, Lk), ---, (€j,Lk) }
on the same level (Fig. 3.15). Thus, an active set is specified by a triplet of the form

(ei,ej, Ly).

4. Each active window uniquely identifies a set of spatial objects (called the active set)

being selected among the objects of a given set (called the base set (Fig. 3.16)).

- - -

= €

Figure 3.17: Objects on the same

Figure 3.16: Base set. level are totally ordered.

The following properties about the base set are assumed:

e There is a partial order relationship defined on the objects of the base set.
However, there is a total order relationship among objects on the same level

(Fig. 3.17).

22



e Any active set can contain 0, 1 or multiple objects. This number, however, is

not known in advance.

e An object can spread over multiple regions on the same level and can belong
to multiple levels. Thus, the active windows are not additive, i.e., the union of
two active sets corresponding to two windows W1 and W 2 is not necessarily
the same as (although included in) the active set corresponding to W1UW 2.
Moreover, the active sets for two disjoint active windows are not necessarily

disjoint.

5. The active window may only change incrementally, i.e., only one of the three pa-
rameters can change at a time and only by a single unit. This is an essential property

exploited by our memory management strategy, as shown in Section 5.

23



Chapter 4

Query Specification and Processing

The question addressed in this section is “how do we translate the visual exploration op-
erations into database operations”. For this purpose we have developed a technique called
the MinMax tree [40]. The method places the recursive processing in a precomputation
stage, when labels are assigned to all nodes. The labels provide a containment criterion:
simply by looking at the parameters of an active window and at a node’s label, we are

able to determine whether that node belongs to the active selection or not.

4.1 MinMax Hierarchy Encoding

A MinMax tree is a n-ary tree in which nodes correspond to open intervals defined over
a totally ordered set, called an initial set. The leaf nodes in such a tree form a sequence
of non-overlapping intervals. The interior nodes are unions of intervals corresponding to
their children.

The initial set can be continuous (such as an interval of real numbers) or discrete (such
as a sequence of integers). In either case, the nodes are labeled as pairs of values: the

extents of their interval. As the intervals are unions of child intervals, it follows that a node

24



will be labeled with the minimum extent of its first interval and the maximum extent of its
last interval, i.e., a node n having for example two children c1 = (a, ) and c2 = (y, &) will
be labeled as n = (a, ) (Appendix B). Hence, the trees are called MinMax. Examples of

MinMax trees are depicted for a continuous initial set in Fig. 4.1 and for a discrete initial

set in Fig. 4.2.
6 0,1 6 0,5
2 0,.5 8 5,1 2 0,3 8 35
//\\ /f\.\ /\\ /(\\
NN N\ D N
1 4 7 9 < b 1 7 9
0, .25 5, .75 75,1 0,1 3,4 4,5
3 5 3 5
.25, .375 375, .5 1,2 2,3
Figure 4.1: A continuous MinMax Figure 4.2: A discrete MinMax
tree. tree.

Essentially, the process of labeling the nodes is a recursive one. The intervals are
computed and assigned off-line at the time the hierarchy is created and their value and
distribution (as well as the tree structure itself) depend on the clustering method. Specif-
ically, the interval size and the distribution are influenced by whether the hierarchy is
created bottom-up or top-down. In the bottom-up case, the leaf intervals have the same
size, while in the top-down case, the node intervals on the same level have the same size.
Fig. 4.1and Fig. 4.2 present an example of a top-down tree and an example of a bottom-up
tree respectively.

An important property of a MinMax tree is captured in Theorem 1 and will be further

exploited when implementing the navigation operations.

25



Theorem 1 Given a MinMax tree T and two nodes x and y of T whose extent values are
(x1, Xx2) and (y1, y2) respectively, node x is an ancestor of node y if and only if x1 <y1 and

y2 < Xo.

The theorem is based on the intuition that each node in the tree is included in its parent

as an interval (as constructed). A proof of the theorem is given in Appendix B.

4.2 Query Processing Using MinM ax

Data is represented as a relational table HIER. According to the the previous section,
HIER incorporates L (the node level), X (the minimum extent) and Y (the maximum

extent) as well as n aggregate values:

HIER (L, X, Y, a1, ... an)

421 Static TreeHierarchies

In this section we give an implementation of the navigation operations in the case of
a static tree hierarchy, i.e., no updates are present during navigation. First, we notice
that any tree can be labeled as a MinMax tree if, for example, we start with an arbitrary
continuous initial interval as the root and recursively divide it into equal sub-intervals,

each sub-interval being assigned to a child (see, for example, the binary tree in Fig. 4.1).

ALL Structure-Based Brushes

Having the hierarchy labeled as a MinMax tree, we can implement an ALL structure-
based brush (as introduced in Section 3) as a non-recursive operation based on the fol-

lowing property.

26



Theorem 2 Given the brush values vyin and vimax, an ALL structure-based brush gener-

ates the union of all nodes n = (n1,n2) whose extents are fully contained in the brush

interval (Vmin, Vmax), 1-€., (N1,n2) € (Vimin, Vmax)-

The selection defined by an ALL structure-based brush for the example in Fig. 4.1
and the brush values 3 and 7 is visually depicted in Fig. 4.3. The selected nodes in the

figure are underlined. A proof of Theorem 2 is given in Appendix B.

N
-]

W |

3

0 0.25 0375 0.

= - — — —

[
I
| 'l
I L
[ [ ]
I i
1 'l
I I
0 50

0 0.75

-

0

Figure 4.3: An ALL structure-based brush.

The ALL structure-based brush for a hierarchy labeled as a MinMax tree is now a
simple range query, expressed in SQL2 as:

select *

from hi er

where X >=:v_mn
and Y <= :v_max
and L =:level;

ANY Structure-Based Brushes

An ANY structure-based brush as defined in Section 3 can also be implemented as a

non-recursive operation. The non-recursive computation method is based on Theorem 3.

Theorem 3 Given the brush values Vpin and vimax, an ANY structure-based brush gener-

ates all the nodes n = (n1,n2) whose intersection with the brush interval (Vyin, Vimax) iS

not empty, i.e., (N1,N2) N (Vmin, Vmax) 7 O.

The property states that all nodes that “touch” the brush interval are selected. As

shown in Fig. 4.4, this is intuitively true, all the underlined nodes (that are “touched”

27



by the shaded brush area) are part of the ANY structure-based brush as presented in the

example in Section 3. A proof of Theorem 3 is given in Appendix B.

= IN |
N |l
-]

W | e

3
i

0 025 0375 0.

= — — — —

I
i
[ [ ]
I I
I 'l
i L
| 'l
I I
D 50

0 0.75

—

0

Figure 4.4: An ANY structure-based brush.

The non-recursive query for an ANY structure-based brush defined over a MinMax

tree is therefore of the form:

select *

from hi er

where X < :v_nmax
and Y > :v_mn
and L = :level;

Clearly, the above technique is powerful when the tree structure remains unchanged
during exploration. However, in practice nodes often need to be added or removed dy-

namically. The next subsection addresses the case of a dynamic hierarchy.

4.2.2 Dynamic Tree Hierarchies

In a dynamic hierarchy, the tree (graph) structure changes during exploration. The type of
updates we consider in this section are adding new nodes (as leaves) and deleting existing
nodes. If the node to be deleted is an inner node, then we interpret this to mean that the
whole sub-tree rooted at that node is removed.

Deleting nodes (sub-trees) in a MinMax tree does not require special computation
(such as rearranging the trees or re-labeling the nodes) in order to preserve the properties
of the MinMax trees. Deleting a subtree rooted at the node n = (n1,ny), for example, is

similar to setting an ALL structure based brush with the brush values n; and na:

28



delete from hier
where X >=:v_mn
and Y <= :v_nmax,

When inserting a new node n, however, the out-degree of the parent node changes
and all siblings of n (and their descendents) need to update their intervals. We say that
the node interval “splits”. In order to increase the efficiency of this process, we use a
two-step method. First, we delay the interval splitting by inserting some “gaps” in the
tree nodes (Section 4.2.2). Second, we re-label the affected nodes when splitting by using

a fast non-recursive method (Section 4.2.2).

De-Compacting The Tree

Let us consider the case of a node n = (n1,ny) that has three children. The method so far
divides the (n1,ny) interval into three sub-intervals. If a fourth node is inserted, n has to
split. If, instead of 3, we first had divided n into more, let’s say 5, intervals, the fourth
node could have been added without any problem, and thus the splitting would have been
delayed.

Based on this idea, we chose the allocation management suggested in [10]. We first
label the MinMax tree as an N-ary tree (we say that we “allocate” N positions for each
node). Then, when a new node k+ 1 is inserted in a node n which has only k positions
allocated, n just doubles its interval (it expands from k to 2k positions) (Fig. 4.5). By
using an amortized analysis, this allocation strategy was proven to be optimal when the

maximum number of elements that has to be stored is unknown (and cannot be estimated)

([10]).

Re-Labeling The Nodes

When a node n = (ng, nz) splits, a re-labeling process takes place. The extents of all nodes

in the sub-tree rooted at n have to be recomputed. But, the sub-tree can be selected based

29



new node D full

n Ny, Ny / n Ny, Ny |:| ey
ﬂ\ /M

€ | €2f oo | — Cif | €2 oo | €& ck+,] Cic+d woe [ Cx

My cer eeep e - My e verg e —eMf2 2, ... ... ey N2

Figure 4.5: The allocation strategy.

on the ny and n» values. Moreover, for the selected tuples, an affine transformation can

be utilized to update the extent values:

update hier

set X=:v.mnt(X-:v_mn)/2
Y = :v_max+(Y-:v_max)/ 2

where X >=:v_mn

and Y <= :v_nmax;

4.2.3 Arbitrary Hierarchies

An arbitrary hierarchy is one in which a node can have more than one parent, i.e., a
non-tree acyclic di-graph (Fig. 4.6). One example application of arbitrary hierarchies
is CAD/CAM part hierarchies. In these applications our structure-based brushes have
an interesting semantic. Given a set S of basic components (the leaf nodes), an ALL
structure-based brush defines the set of super-components that can be manufactured using
only parts from S. An ANY structure-based brush gives the super-components that need
to use any (at least one) part from S.

One extension of our method can be designed to handle arbitrary hierarchies, too. In
an arbitrary hierarchy, more than one interval can be assigned to a node. For example, by
using a discrete bottom-up labeling for the tree in Fig. 4.6, two intervals are assigned to
node 5, as shown in Fig. 4.7.

This case is handled by inserting two copies of node 5 into the HIER table. Thus, the

first copy will be assigned the first interval and labeled (0, 1) while the second copy will

30



0,3
- ~

0,1

&

2 5 2\ 0,2 > 2,3
N A Nt |
A 1 3 6

1 3 6

0,1 1,2 2,3

Figure 4.7: Bottom-up labeling of
an arbitrary hierarchy.

Figure 4.6: An arbitrary hierarchy.
be assigned the second interval and labeled (2, 3). It is important to notice that the number
of additional tuples to be inserted in the HIER table depends on the ordering of the nodes.
For example, if nodes 1 and 3 change their position then node 5 will be labeled (1,3) and
thus no duplicate copies need to be inserted. However, in this paper we do not address the
problem of how to organize the hierarchy nodes in order to decrease the number of stored
tuples.

If more that one copy of the same node exists in the hierarchy, the (non-recursive)
implementation queries for the structure-based brushes change. Thus, because the same
nodes may occur multiple times in the table having different interval values, some of
them possibly inside and some of them possibly outside the brush interval, the ALL brush

becomes “select the nodes that do not have intervals outside the brush interval™:

31



select distinct *
from hi er

where L = :level
except
select *

from hi er
where X > :v_ max
or Y <:v_mn;

The ANY structure-based brush query also changes to handle duplicates:

select distinct *
from hi er

where X < :v_max
and Y > :v_mn
and L = :level;

While still non-recursive, the new queries are significantly more expensive than those
designed for tree hierarchies. Therefore, when no duplicate copies are used, the queries

designed for tree hierarchies are preferred.

32



Chapter 5

Memory Management

5.1 Caching

The questions addressed in this section are “how do we organize the local memory?” and
“when and what data do we request from the database?”. The memory organization is
critical in interactive applications since it influences the performance of the subsequent
operations. When a request for new objects is issued by the front-end, the difference
between the new active set (i.e., the set of objects just selected) and the current content of
the buffer has to be quickly computed. Thus, we need to be able to know in each moment
what data resides in the memory without fully traversing the buffer.

A significant difference in the buffer management is made by whether the buffer is
large enough to store all the objects in the active set or not. We refer to these two cases as
database intensive (DBI) and database semi-intensive (DBSI). We are primarily concern
about the DBSI case when the active set of objects does not occupy the whole space
available, although we also propose a technique that would handle the DBI case.

When there is still space available in the memory and the system is idle, we can load

additional data from the slow memory (disk). If that data, in full or partially, is needed

33



further (before it gets replaced) then the time that would have been spent bringing it into
the buffer is a gain in the system’s overall latency.

For this purpose, we designed and implemented a speculative, adaptive, and non-pure
strategy for prefetching. The prefetcher is speculative in that it doesn’t use any explicit
information about the next operations but tries to guess them. Adaptive refers to the
ability to change the prefetching strategy dynamically, as more information is available in
the system. In our case, as shown in Chapter 6, we do not fully implement the adaptability
part. However, more than one strategy has been proposed, and as we will show later,
strategies perform better when more information is available. The prefetcher is non-pure
in that it implements a non-penalty policy, in which user actions preempt the prefetching

decisions.

51.1 Semantic Caching

Semantic caching is a high level type of cache in which queries are cached rather than
pages or tuples. A characteristic of the objects that are placed in the buffer is that they
are not referenced by their IDs when accessed by the front-end. In other words, the front-
end doesn’t ask for objects using requests such as ID = x or ID =y; instead, it passes
a query Jrequested t0 the back-end: “are the objects with these characteristics (within this
brush) available?”. Thus, although there are object attributes (the extents) that uniquely
identify each entry, a classical lookup for a cache key is not possible when testing whether
an object is in the buffer or not. Instead, a set of queries Ly e IS associated with the
buffer, similar to semantic caching [12]. The query Qrequested IS then compared with each
Ohorent 1O determine what objects from Orequested @re not in Ohorent> aNd those objects are
retrieved next. This difference results in new queries (q‘+) that correspond to those to be
loaded next objects.

The problem of determine the qi+ queries is usually known as query folding [31]. It has

34



been shown that the problem is reducible to the query containment problem [4]. Query
containment is undecidable in the general case but decidable in the case of conjunctive
queries [6]. As shown in Chapter 4 the queries in our case are all range queries, and
therefore conjunctive.

Special attention has to be paid in a semantic caching environment to not allow dupli-
cates in the buffer. Thus, when more than one gy e QUery is stored in the buffer, they are
forced to be disjoint. This means that a new grequested query will modify the semantic of
the existing qLoey GUEries such that they do not refer to any common objects any more.
As we will show later, we partition our objects based on the level value. This partitioning
makes the task of testing for containment reduce to checking the extent values only.

In order to make the object additions and subtractions efficient, we store the objects in
the buffer ordered by their extent value. The order can be ensured by the query mechanism
itself or can be added as a new processing step. In our case we can request that the objects
in all queries (as defined in Section 4) be retrieved in order by adding an ORDERED
BY clause to or MinMax-derived SQL queries. This SQL clause will not require extra
processing time if we store the objects in the database ordered by their extent values (left,
for example). It would require only minimal extra processing if we store the objects
unordered but have an index built.

A problem that all cache strategies need to solve is the cache replacement policy, i.e.,
to determine what objects have to be removed from the cache to make room for new
objects. The first step in implementing a replacement policy is to provide an estimation
strategy able to measure the likelihood that an object will be needed in the near future. The
estimation strategy, also called a predictor, is usually based on heuristics, probabilistic
models, or some recorded statistics. In our case we use a probability function. The
probability function also defines a partition on the set of objects.

The objects in the memory are thus partitioned based on both the level and the proba-

35



bility value. An efficient way to implement this is to use two hash (bucket) tables and hash
(distribute) the objects into the appropriate buckets. The objects in the same bucket are
connected by a double linked list. We will explain the functionality of this organization

in Section 5.1.3.

5.1.2 Probabilistic Modd

Let’s consider a navigation grid A = (1..1) x (1..K) as introduced in Chapter 3. Each
point from the support set, and thus each region (ej, Lx) from the navigation grid, has an
associated probability 2(m, i, k) that measures the likelihood that the point will belong to
the active set after user’s next m operations. Also, a probability ?*(m,i,k) will measure
the likelihood that the point will belong to the active set at any time during the next m
operations. Obviously, we have: P*(m,i,k) = & ,P(t,i,k), where @ is a probability
sum, i.e., p1® p2 = p1+ p2 — p1p2 (from the principle of inclusion and exclusion).

The lookahead parameter (LA) is the number of operations considered in advance
when computing the probabilities 7 and P*, i.e., the parameter m from the definitions
above.

We say that the monotonicity property (MP) holds on level k for a function (distri-
bution) f if there exists an extent value E = E (k) such that f(-,k) is monotonically in-
creasing for values less than E and monotonically decreasing for values greater than E,
i.e, for each j; < jo» < E we have f(ji,k) < f(jo,k) and for each j; > jo» > E we have
f(J1,k) < f(j2,K)-

The LA parameter dictates how many operations the predictor will predict. In general,
the bigger LA is the more speculative the system becomes and thus the more errors are
involved. We used in our implementation an LA equal to 1. If the prediction model is
very accurate (generates high confident predictions) an LA equal to 2 may eventually be

used. We don’t anticipate though that a value greater than 2 will ever be used.

36



We say that probabilities assigned to the objects are operation-driven if they are based
on the probabilities that the predictor assigns to the possible next operations. In our case
we have six possible operations (restricting or enlarging any of the three active window’s
parameters). Let us assume, for example, that we have an active window w = (i1, i2,k)
and from this configuration, going left with iy is 50% probable, going up with k is 25%
probable, and so on. Then, objects in (i1,i2,k) will have a probability of 1, objects in
(i1 — 1,i1,k) will have a probability of .50, objects in (i1,i,k — 1) a probability of .25,

and so on.

Theorem 4 Let A= (1..1) x (1..K) be a navigation grid. For any operation-driven prob-
ability model and any lookahead LA = 0, 1 or 2, the MP holds on each level (1..K) for
both # and P*.

PROOF: (1) We consider P first. Let the six operations (k 1, k |, 11 <, i1 —, 12 +,

i —) be numbered 1 to 6 (in order).
e LA=0. For any given selection there are two regions of equal probability (Fig. 5.1).

MP holds trivially in this case.

- Region 0: P = 0 (unselected points)
- Region 1: P =1 (selected points)

k=t |olololofo]o k=t [olololololo] | | |
k=2 lololololo]o k=2 Jolofil11 2
k=3 J|olo 11 k=3 [o]z]z]s 4 4 |

Figure 5.1: LA=0: two regions of Figure 5.2: LA=1: five regions of
equal probability, 0 and 1. equal probability, 0, 1, ..., 4.

37



e LA=1. The six operations that possibly change a given selection define five regions
of equal probability (Fig 5.2). Let p1,..., ps be the probabilities associated with the

operations. Then, 2 can be computed for each region.

Region 0: 7 =0
Region 1: P = p1

Region 2: P = p3
Region 3: P = p3+ p4+ Ps
Region 4: P = p3+ P4+ P5+ Pe

On levels, we have three possible types of configurations (distributions); MP holds

on all of them.

- Level 1: 0,0,...0
- Level 2: 0,0, p1,...p1,0,0

- Level 3: 0, p3, p3+ P4+ Ps, P3+ P4+ Ps+ Pe, ---P3+ P4+ P5+ Pe, P3+ Pa+
p57 p570

e LA=2. Let ay,...,ag be the probabilities associated with the first user operation
and b1, ..., bg the probabilities associated with the second. Similarly, there are 10

regions of equal probability (Fig. 5.3). For all these regions P is computed below.

It is again easy to see that the MP holds in this case also.

- Region0: P=0

- Region 1: P =ajb1

- Region 2: P = ajbz+asb;

- Region 3: P = aj(b3+ bs+ bg) + (az+as+as)b1

- Region 4: P =aj(bs+bs+bs+bg) + (az+a4+as+ag)bs
- Region 5: P = asbs

- Region 6: P = az(bs+bg) + (as+ ag)bs

38



- Region 7: P = a1by + aby +asbz+ (az+as+ae) (b3 + ba+ bs + be)

- Region 8: P = ajba+azhy +as(bs+bs+bg) + (az+as+ag) (b3 + ba + bs +
bs)
- Region 9: P = a;by +azby + (a3 +as +as+ as) (b3 + ba+ bs + be)

k=t |olofil1l1]2
k=2 [ofz2]3]4 4 4
k=3 Islelzlz]e @

Figure 5.3: LA=2: ten regions of
equal probability, 0, 1, ..., 9.

(2) Let us consider * now. For a given selection, there exists at least one extent value
E (the median extent of the active set) that doesn’t depend on the level or the lookahead
value (< 2) and that makes the MP hold for © on all levels. Therefore for each k, P(-,K) is
monotonic on both (—eo, E) and (E, +) for any lookahead value (< 2). Since 2*(-,k) isa
probability sum (&) of monotonically increasing functions on (—oo, E) and monotonically
decreasing functions on (E,+o), it necessarily (p1é p2 > max(pi, p2)) has the same
monotonicity property and therefore the MP holds on level k (g.e.d.)

In what follows, a probabilistic model with a lookahead value of 0, 1 or 2 is assumed

(so that MP holds on all levels for both  and P*).

5.1.3 Cache Replacement

As shown in Section 5.1.1, the buffer is first organized as a bucket table based on the
probability values. The objects in the buffer are hashed by rounding, based on a fixed
number of values (a given precision). The buckets will thus have values ranging uniformly

from O (an open entry) to 1 (an object being currently in the active set). The objects in the

39



same bucket are linked by a double linked list. Independently, the buffer is also hashed
based on the level value. Again, we have a bucket table with as many buckets as the level
values. The objects in the same bucket are linked by a double linked list. In addition, the
header keeps a pointer to the last element in the list. An invariant of the model is that,
on each level, the objects are ordered (and linked in the linked list) by their extent values.
This is assumed to be always possible, as discussed in Chapter 3.

In what follows we will focus on the operations that this structure needs to support.
The main task of a cache replacement policy is to find in the buffer the entries that have
the lowest probability of being used and to remove them when more room is needed. This
operation needs to be efficient, since it occurs frequently.

When new objects are brought in they have to comply with the internal organization.
Updating the hash tables is then required.

When a request is issued by the front-end, a containment test is performed. The
system first checks whether the requested data reside entirely in memory or not. In case it
doesn’t, a compensation query has to be send to the loader, an agent that fetches the data
from the persistent storage.

The front-end may also send “refresh” queries when all objects within the current
selection are needed.

An important requirement of the system that comes from its interactive nature is that
the user needs to be able to preempt the other agents’ actions. Thus, when the current se-
lection changes, the loading process is interrupted and will only restart after recomputing
the new probability values for the objects.

In conclusion, the buffer access operations can be summarized as:

A: Remove old objects. Get the objects with the lowest probability that reside in the
buffer (and further remove them one at a time when more room in the buffer is

needed).

40



B: Bring new objects. Place an object from the database cursor into the memory

buffer (and rehash the buffer entry).

C: Display active set. Get those objects from the buffer that form the active set (and

send them to the graphical interface to have them displayed).

D: Recompute probabilities. Recompute the probabilities of the objects in the buffer

once the active window gets changed (to ensure accurate predictions in the future).

E: Test containment. Test whether the new active set fully resides in the buffer and

gets the missing objects (if any) from the support set (when a new request is issued).

In the remainder section we will show how these operations are implemented in our
buffer strategy.

A speed up in the buffer processing can be achieved by using a simplified version
of the probability-based bucket table. Thus, instead of storing all objects of the same
probability in one bucket, we only store the ones which are extreme elements (first and
last) in the level based lists. However, for a better understanding of the problem I will
describe both cases.

As an example let us consider the navigation grid displayed in Fig. 5.4. We have here
twelve regions of equal probability, the active window covering the middle two ones. For
simplicity we consider that only one object resides in each region. We also number the ob-
jects from 1 to 12. The picture presents only three levels (1, 2, and 3). Also, probabilities
are assigned to each region and implicitly to each object, based on a “operation-driven”
probability model. Thus, objects 6 and 7 have a probability of 1, there is 40% chance that
the window expands to the left, and so on. In this example a probability precision of 0.1 is
assumed, and consequently 10 probability-based buckets are used. The probability table
is reduced; one can see here for instance that only 5 and 8 are hashed out of the entire

level 2.

41



P;=0.0 | P,=0.3 P;=0.3 | P;=0.0 00/01 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Pg=0.0 Pm=0.2 P11=0.2 P12=0.0

Figure 5.4: Buffer content for a three level, twelve object example in case of a reduced
probability table.

An important assumption made at this point is that the query mechanism is able to
provide the objects from the active set in both the increasing and the decreasing order of
their extent value. If not, a sorting stage has to follow all calls to the query mechanism.

The main idea behind the buffer access strategy is to keep the sets of objects on each
level always convex in the buffer (with respect to the relation of total order defined among
the objects of the same level). This is possible due to the fact that the lowest probab