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Abstract

Traditional visualization techniques for multidimensional data sets, such as parallel coor-

dinates, star glyphs, and scatterplot matrices, do not scale well to high dimensional data

sets. A common approach to solve this problem is dimensionality reduction. Existing di-

mensionality reduction techniques, such as Principal Component Analysis, Multidimen-

sional Scaling, and Self Organizing Maps, have serious drawbacks in that the generated

low dimensional subspace has no intuitive meaning to users. In addition, little user inter-

action is allowed in those highly automatic processes.

In this thesis, we propose a new methodology to dimensionality reduction that com-

bines automation and user interaction for the generation of meaningful subspaces, called

the visual hierarchical dimension reduction (VHDR) framework. Firstly, VHDR groups

all dimensions of a data set into a dimension hierarchy. This hierarchy is then visual-

ized using a radial space-filling hierarchy visualization tool called Sunburst. Thus users

are allowed to interactively explore and modify the dimension hierarchy, and select clus-

ters at different levels of detail for the data display. VHDR then assigns a representative

dimension to each dimension cluster selected by the users. Finally, VHDR maps the

high-dimensional data set into the subspace composed of these representative dimensions

and displays the projected subspace. To accomplish the latter, we have designed several

extensions to existing popular multidimensional display techniques, such as parallel co-

ordinates, star glyphs, and scatterplot matrices. These displays have been enhanced to

express semantics of the selected subspace, such as the context of the dimensions and dis-

similarity among the individual dimensions in a cluster. We have implemented all these



features and incorporated them into the XmdvTool software package, which will be re-

leased as XmdvTool Version 6.0. Lastly, we developed two case studies to show how we

apply VHDR to visualize and interactively explore a high dimensional data set.
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Chapter 1

Introduction

1.1 Multi-Dimensional Visualization Motivation

Because of the rate of technological progress, the amount of data that is stored in comput-

ers is increasing rapidly [1]. Researchers from the University of Berkeley estimate that

every year about 1015 bytes of data is generated, with 99.997% only available in digital

form [1]. Most data is collected because people believe that it is a potential resource of

valuable information. However, finding the valuable information hidden in the data is a

hard task. One important approach to supporting the human in analyzing and exploring

such large amounts of data is to graphically present the data to the human and then to

allow the human to apply his or her perceptual abilities to make sense of the data, namely

“data visualization”.

Multivariate visualization is one sub-field of data visualization that focuses on Multi-

dimensional data set. Multidimensional data set can be defined as a set of data items D,

where the ith data item di consists of a vector with n variables, (xi1, xi2, ..., xin). Each

variable may be independent of or interdependent with one or more of the other variables.

Variables may be discrete or continuous in nature, or take on symbolic (nominal) values.
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Many multivariate visualization techniques and systems have emerged during the last

three decades, such as glyph techniques [2, 3, 4, 5], parallel coordinates [6, 7], scatterplot

matrices [8], pixel-level visualization [9], and dimensional stacking [10]. Each method

has strengths and weaknesses in terms of the data characteristics and analysis tasks for

which it is best suited.

Recently, lots of effort has been focussed on high dimensional data set visualization.

In the next section, we will discuss open challenges in visualizing high dimensional data

set.

1.2 Open Challenges in Visualizing High-Dimensional Data
Sets

With the development of database management systems and the information technology

industry, high dimensional data sets have been generated in many areas such as data

warehousing, multimedia, document visualization, census and so on. High dimensional

data sets can have hundreds or even thousands of dimensions. The need for visualizing

high dimensional data sets to facilitate analysis and exploration has steadily increased.

Traditional visualization techniques for multidimensional data sets, such as parallel

coordinates, glyphs, scatterplot matrices, and dimensional stacking, do not scale well

with high dimensional data sets. For example, Figure 1.1 shows the Iris data set, which

contains 4 dimensions and 256 data items, in parallel coordinates. Individual data items

can be seen clearly from the display. Figure 1.2 shows a subset of the Census Income data

set, which contains 42 dimensions and 200 data items in Parallel Coordinates. The num-

ber of data items in this display is less than that of Figure 1.1, however, individual data

items cannot be seen clearly from this display since the number of dimensions has greatly

increased. A large number of axes crowds the figure, preventing users from detecting

any details. Moreover, the figure is so complex that it requires a long time to refresh the
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display. Thus the response time when users interactively play with the data set is unac-

ceptable. The problems of the traditional visualization techniques for high dimensional

data sets can therefore be summarized as “cluttered” and “slow”.

Figure 1.1: Iris data set (4 dimensions, 256
data items) in Parallel Coordinates. Indi-
vidual data items can be seen clearly.

Figure 1.2: A subset of Census Income
data set (42 dimensions, 200 data items)
in Parallel Coordinates. Individual data
items cannot be seen clearly.

To overcome these problems, one promising approach is dimensionality reduction

[11]. This idea is to first reduce the dimensionality of the data, and then to visualize the

data set in the reduced dimensional space. There are currently three popular dimensional-

ity reduction techniques used in data visualization. Principal Component Analysis (PCA)

[12] attempts to project data into a few dimensions that account for most variance in the

data. Multidimensional Scaling (MDS) [13] is an iterative non-linear optimization algo-

rithm for projecting multidimensional data down to a reduced number of dimensions.

Kohonen’s Self Organizing Map (SOM) [14, 15] is an unsupervised learning method

to reduce multidimensional data to 2D feature maps [16]. There are several visualiza-

tion systems that have adapted one or more of these dimensionality reduction techniques

[17, 18, 16].

There are several inherent serious drawbacks in the existing dimensionality reduction
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techniques. One is that after the projection from the high dimensional space to a low

dimensional space, the original data values are lost and the dimensions in the low dimen-

sional space would likely have no clear meaning to the users. As noted by Brodbeck

[16], such techniques create a space with no inherent meaning other than the overall in-

formation relationship reflected in the collection [19]. Another drawback, although not

as obvious, is that little interaction is allowed during those highly automatic processes

besides adjusting weight factors. Often specialists in their field would understand the

meaning of the dimensions better than a general reduction technique could infer from the

data set. Such domain experts would know which dimensions are more important than

others. It is a major deficiency of current techniques that such “human intelligence” is not

effectively used in a dimension reduction approach.

A flexible approach for dimensionality reduction that generates meaningful subspace

and allows user interactions is needed in the field of multidimensional visualization. The

design and development of such an approach is the goal of this thesis.

1.3 Goals of This Thesis

In this thesis, we intend to explore a new approach to dimensionality reduction that gen-

erates meaningful subspaces, allows users to interact in an interactive, and visual way,

and is compatible with most of the existing multidimensional display techniques, such as

parallel coordinates, star glyphs and scatterplot matrices. We call our new approach for

the reduction and exploration process ”visual hierarchical dimension reduction” (VHDR).

The goals of VHDR are:

� to scale with data sets containing up to tens of thousands dimensions;

� to reduce the dimensionality of high dimensional data sets without losing without

losing the major information the data sets contained and generate “meaningful” low

4



dimensional subspaces in a multi-resolution manner;

� to allow users to take an active part in this dimension reduction approach in an

interactive and visual way, while avoid tedious manual operations;

� to be compatible with most of the existing multidimensional display techniques,

such as parallel coordinates, star glyphs and scatterplot matrices.

1.4 Overview of Our Approach:
Visual Hierarchical Dimension Reduction

Our visual hierarchical dimension reduction approach organizes all dimensions of a high

dimensional data set into a dimension hierarchy, generates lower dimensional subspaces

using this hierarchy, and displays the mapping of the data set in the lower dimensional

subspaces using existing multidimensional display techniques. This approach can be di-

vided into three steps:

� Step 1: Dimension Clustering

In this step, we organize all the original dimensions of a multidimensional data set

into a hierarchical dimension cluster tree according to the similarities among the

dimensions. Each original dimension is mapped to a leaf node in this tree. Similar

dimensions are placed together and form a new cluster, and similar clusters in turn

compose higher-level clusters. The tree is a hierarchy of the clusters, with the leaves

being clusters composed of one individual dimension only.

This dimension clustering process is an automatic process with user controlled clus-

tering parameters. Users can provide their own similarity calculation routines in-

stead of the system-provided similarity calculation routines. We also allow users to

create the hierarchical dimension cluster tree manually.
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A representative dimension is assigned or generated for each dimension cluster.

Several options of how to assign or generate the representative dimensions are pro-

vided. Users can either select one of them or provide their own options.

� Step 2: Interactive Dimension Hierarchy Visualization and Selection

In this step, users can visually explore the generated hierarchical dimension cluster

tree and select some dimension clusters from the tree in order to form a lower

dimensional subspace. The hierarchical dimension cluster tree is visualized in a

radial, space-filling display called an “Interactive Sunburst”(Sunburst). Users are

allowed to interactively navigate and modify the hierarchical dimension cluster tree

in Sunburst, and interactively select clusters from the hierarchical dimension cluster

tree. Several brush mechanisms are provided to users to facilitate their dimension

cluster selection.

� Step 3: Data Visualization in Lower Dimensional Subspace

In this step, we map the data set from the high dimensional space to a lower dimen-

sional subspace composed of the representative dimensions of the clusters selected

by users in Step 2. Then we visualize the mapped data set in the lower dimen-

sional subspace using the existing multidimensional visualization techniques to get

reduced dimensionality displays. Users can generate different lower dimensional

subspace by selecting different sets of dimension clusters from the hierarchical di-

mension cluster tree.

In the reduced dimensionality displays, some dimensions are representations of

clusters of dimensions. Users may be interested in the degree of dissimilarity within

the dimension clusters. We provide several options to visualize the dissimilarity

information in the reduced dimensionality displays.
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1.5 Thesis Organization

Recent research regarding visualization of high dimensional data sets, visualization of

hierarchies, distortion techniques and clustering algorithms are surveyed in Chapter 2.

Chapter 3 gives an overview of the XmdvTool system. Details of our VHDR approach

are presented in Chapters 4, 5 and 6. Chapter 7 describes our implementation. Chapter 8

presents two case studies. Conclusions and open issues for future work are described in

Chapter 9.
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Chapter 2

Related Work

2.1 Visualization Techniques for High Dimensional Data
Sets

Most traditional multi-dimensional visualizations become cluttered when the dimension-

ality of a data set it displays is high. Here we discuss some visualization approaches

intended to handle high-dimensional data sets.

2.1.1 Dimension Reduction Approaches

A natural way to handle high-dimensional data sets is to reduce their dimensionality

so they can be fit into traditional visualization techniques. There are three major ap-

proaches to dimensionality reduction. Principal Component Analysis (PCA) [12] at-

tempts to project data down to a few dimensions that account for most variance within

the data. Multidimensional Scaling (MDS) [13] is an iterative non-linear optimization

algorithm for projecting multidimensional data down to a reduced number of dimensions.

Kohonen’s Self Organizing Map (SOM) [14, 15] is an unsupervised learning method to

reduce multidimensional data to 2D feature maps [16].
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Recently, many new dimensionality reduction techniques have been proposed to pro-

cess large data sets with relatively high dimensionality. For example, Random Mapping

[20] projects the high dimensional data to a lower dimensional space using a random

transform matrix. [20] presented a case study of a dimension reduction from a 5781-

dimensional space to a 90-dimensional one with Random Mapping. Anchored Least

Stress [21, 22] combines PCA and MDS and makes use of the result of data clustering in

the high dimensional space so that it can handle very large data sets. We take their idea in

our dimension clustering approach by using data clusters as input instead of original data

items.

There are many visualization systems that make use of existing dimensionality reduc-

tion techniques [18, 16, 19]. Galaxies and ThemeScape [18] project high dimensional

document vectors and their cluster centroids down into a two dimensional space, and then

use scatterplots and landscapes to visualize them [22]. Bead [16] uses MDS to lay out

high dimensional data in a two dimensional or three dimensional space and uses image-

ability features to visualize the data.

All the above mentioned approaches have the common drawback that their generated

display spaces typically have no clear meaning for the users. In our approach, we reduce

the dimensionality in an interactive manner so as to generate a meaningful low dimen-

sional subspace.

2.1.2 Grouping, Clustering and Reordering Dimensions
Approaches

Worlds within worlds [23] visualizes a high dimensional data set in 3D space by grouping

the dimensions into triple sets. Each triple set of dimensions form a 3-D space. The first

set of dimensions form the outmost 3-D space. By selecting a point in it, users can enter

the 3-D space composed of the second set of dimensions. Recursively, users can go
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through all the dimension sets one by one.

One group of researchers [24] have proposed a clustering method to layout a m � n

multi-dimensional matrix composed of n variables and m data items. They rearrange the

matrix in such a way that the data items that are similar are close to each other, while

similar variables are also positioned close to each other. We go further by applying the

clustering approach into dimension reduction.

Ankerst et al. [25] use similarity clustering of dimensions to order and arrange di-

mensions in a multidimensional display. They arrange the dimensions so that dimensions

showing a similar behavior are positioned next to each other. Their work gave us the hint

that similarity among the dimensions is an important parameter that can be used to group

the dimensions.

2.2 Visualization Techniques for Large-Scale
Multidimensional Data Sets

There are many approaches towards visualizing large-scale multi-dimensional data sets,

such as pixel-oriented techniques (including spirals [26], recursive patterns [9], and circle

segments [27]), multiresolution multidimensional wavelets [28], pixel bar charts [1], and

Interactive Hierarchical Displays [29, 30].

Hierarchical Parallel Coordinates [31] is one of the Interactive Hierarchical Displays

[30] developed for visualizing large multidimensional data sets in the context of our

XMDV project. Since displaying a large number of data items will clutter the screen,

Hierarchical Parallel Coordinates group the data items into a hierarchical cluster tree. A

set of clusters selected from a certain level of detail in the hierarchical cluster tree is visu-

alized on the screen instead of all the data items in the data set. The clusters are visualized

by center lines and bands which respectively represent the mean points and extents of the

clusters. Through interactive operations such as roll-up and drill-down, users can visu-
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ally select the set of clusters to be shown on the screen at their preferred level of detail.

Moreover, users can select part of the clusters displayed on the screen to be highlighted

or masked. The same framework used to develop Hierarchical Parallel Coordinates has

been also applied to Hierarchical Scatterplot Matrices, Hierarchical Star Glyphs, and Hi-

erarchical Dimensional Stacking. Details of these can be found in [30].

Hierarchical Parallel Coordinates group the data items into a hierarchical cluster tree

to avoid the clutter problem. In our approach of reducing dimensionality, which is aimed

at avoiding clutter caused by a large number of dimensions rather than a large number

of data items, we instead group the dimensions into a hierarchical dimension cluster tree.

Although at first glance these two approaches appear to be completely different, there

is actually a large overlap of strategies that can be brought to bear to solve these two

problems. As a result, we can reuse some concepts of Hierarchical Parallel Coordinates

in our approach. In particular, we adapt interactive operations such as structure-based

brushing and roll-up/drill-down for our navigation of the hierarchical dimension cluster

tree.

2.3 Visualization Techniques for Hierarchies

How to display a hierarchical information structure, or, in short, trees, is a problem that

has been widely studied. The main difficult in tree visualization is to visualize the struc-

ture of large trees efficiently. For example, using the best known file browsers, it can be

hard to form a mental image of the overall structure for large trees [32]; traditional node

and link diagrams [33], in which elements are shown as nodes and relations are shown

as links from parent to child nodes, use the display space inefficiently and in general are

only effective for very small trees.

There are many tree visualization methods aimed at visualizing large trees, such as
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improved node and link diagrams [34, 35], cone trees [36, 37] and their variations [38,

39, 40], collapsible cylindrical trees [41], botanical trees [42], radial layouts [43, 44,

45, 46], hyperbolic layouts [47, 48, 49, 50, 51], skeletal images [45], and castles [52].

Among them, space-filling techniques [53, 54, 55]are very popular. Among the space-

filling techniques, there are rectanguler space-filling techniques, such as treemaps and its

variations [53, 54, 55, 56, 57, 58], and radial (also called circular) space-filling techniques

[56, 57, 58].

A treemap [53, 54] is constructed via recursive subdivision of the initial rectangle.

It uses the display space very efficiently when sizes of the nodes are the most important

feature to be displayed. It has a major disadvantage in that it falls short in visualizing

the structure of the tree as clearly as some of the other methods [55]. Figure 2.1 shows

a treemap of the Iris data set generated by XmdvTool. Nested treemaps [54] improve

treemaps by using a slightly smaller rectangle instead of the initial rectangle during the

subdivision process to view the hierarchical structure better. However, the effective dis-

play space is reduced at the same time. Cushion treemaps [55] improve the structure-

revealing ability through another approach. In a cushion treemap, ridges are added to the

rectangles during the subdivision, which are rendered with a simple shading model. The

result is a surface that consists of recursive cushions. Figure 2.2 is a cushion treemap

from the cushion treemap paper [55].

Recent user studies indicate that radial space-filling techniques work better in reveal-

ing hierarchical structures than treemaps [59, 60], while also making efficient use of the

display space. Sunburst [58] is an example of the radial space-filling hierarchy visual-

ization technique. In Sunburst, deeper nodes of the hierarchy are drawn further from the

center and child nodes are drawn within the arc subtended by their parents. The angle

occupied by a node is proportional to its size.

Radial space-filling techniques have some advantages over other tree drawing strate-
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Figure 2.1: Treemap Figure 2.2: Cushion Treemap from [55]

gies. First, as one of the space-filling techniques, they use more implicit containment and

geometry characteristics to present a hierarchy than tree drawing algorithms. The later

utilize edges between nodes to indicate parent-child structure [58]. Second, compared to

treemaps, radial space-filling techniques are better in conveying the hierarchy structure

[56, 57, 58].

Radial space-filling techniques have a drawback, the small slices are difficult to dis-

tinguish. This drawback can be overcome by using “context+focus” techniques. Andrews

and Heidegger’s radial space-filling system [56] uses two semi-circular areas as a form

of two-level “overview and detail” [58]. Stasko and Zhang felt that this was not smooth

and flexible enough in alternating between global and detailed views [58]. They proposed

three distinct distortion methods to solve this problem: angular detail method, detail out-

side method, and detail inside method. The angular detail method shrinks the entire hi-

erarchy and pushes it aside. The selected area is then enlarged and put in the center of

the display. While this looks natural to the users, it does waste space. The detail outside

method shrinks the entire hierarchy in the center. The selected nodes are expanded to be

a new complete circular ring-shaped region around the overview [58]. The detail inside

method pushes the entire hierarchy outward and shows the selected items inside the entire

hierarchy. Using this method the item in the overview can be viewed clearer.
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We have selected Sunburst to visualize our hierarchical dimension cluster tree because

of its advantages mentioned above. However, our Sunburst is different from Stasko and

Zhang’s Sunburst in several ways. In particular, it is different in that:

� we use color to convey structural information of the hierarchy displayed, while

Stasko and Zhang use color to convey other information, such as file attributes in a

file hierarchy;

� we propose our angular distortion technique to view details within context. It allows

multi-focus distortion and is different from the existing distortion techniques for the

radial space-filing hierarchical visualization;

� we allow users to interactively modify the hierarchy directly from the Sunburst

display;

� we provide brushing mechanisms to the users to allow them select clusters from the

hierarchy.

2.4 Clustering Algorithms

For the purpose of constructing a hierarchical dimension cluster tree, we need to first

cluster the dimensions. Our idea is to adapt one of the existing data point clustering

algorithms to the dimension clustering problem.

There are two basic types of clustering algorithms [61, 62]: partitioning [63, 64] and

hierarchical algorithms [65, 66, 67]. Partitioning algorithms divide all the data points

into a given number of clusters, while hierarchical algorithms construct a hierarchical

cluster tree by recursively splitting the data set into smaller clusters until every leaf cluster

contains only one or a few data points.
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The k-Means algorithm is a popular partitioning algorithm. It picks k cluster centroids

and assigns points to the clusters by picking the closest centroid to the point in question.

The centroids of the clusters may shift when new points are added into clusters so the

process may need to be repeated. BFR [64] is an algorithm based on k-Means algorithm.

It intends to cluster large data sets that cannot be loaded into the main memory at one time

by identifying regions of the data that are compressible, regions that must be maintained

in memory, and regions that are discardable. This algorithm works best if the clusters are

normally distributed around some central points.

CURE [65] is a sampling-based hierarchical clustering algorithm for large data set.

Compared with k-means approaches, which work well only for clusters that are neatly

expressed as Gaussian noise around a central point, CURE is more robust in that it is

able to identify clusters having non-spherical shapes and wide variances in size. CURE

achieves this by representing each cluster by a certain fixed number of points that are

generated by selecting well scattered points from the cluster and then shrinking them to-

ward the center of the cluster by a specified fraction. Having more than one representative

point per cluster allows CURE to adjust well to the geometry of non-spherical shapes and

the shrinking helps to dampen the effects of outliers. To handle large databases, CURE

employs a combination of random sampling and partitioning. A random sample drawn

from the data set is first partitioned and each partition is partially clustered. The partial

clusters are then clustered in a second pass to yield the desired clusters.

BIRCH [67] is another efficient clustering algorithm for large data sets. In the BIRCH

algorithm, objects are read from the database sequentially and inserted into incrementally

evolving clusters that are represented by generalized cluster features (CFs). A new object

read from the database is inserted into the closest cluster, an operation which potentially

requires an examination of all existing CFs. Therefore BIRCH organizes all clusters in an

in-memory index, a height-balanced tree called a CF-tree. For a new object, the search for
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an appropriate cluster now requires time logarithmic in the number of clusters as opposed

to a linear scan.

For high dimensional space, it is common that clusters only exist in some subspaces.

CLIQUE [68] is a clustering algorithm that is able to find clusters embedded in sub-

spaces of high dimensional data. It identifies dense clusters in subspaces of maximum

dimensionality. It generates cluster descriptions in the form of DNF expressions that are

minimized for ease of comprehension.

In this thesis work we need to construct dimension hierarchies from a high dimen-

sional data sets. We achieve this by clustering the dimensions. We can adapt existing data

clustering algorithm for dimension clustering. But in the dimension clustering, the roles

of data points and dimensions have to be interchanged. From the view of a data clustering

algorithm, the dimension clustering works with relatively fewer data points (the number

of dimensions that need to be clustered) while in a much higher dimensional space (the

number of data points used to cluster the dimensions) since usually the latter is much

larger than the former. In such a high dimensional space, data is sparse in nature and clus-

ters only exist in subspace. Thus we need an approach that can find clusters in subspaces.

Moreover, since we want a multi-resolution exploration of the dimension hierarchy, our

dimension clustering must be bend on a hierarchical approach towards clustering.
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Chapter 3

Background on the XmdvTool

3.1 Overview

To prove that our VHDR approach is practical and compatible with existing multidimen-

sional display techniques, we built a VHDR prototype as an extension to the XmdvTool

system developed by Ward et al. at WPI [69, 70, 29, 71, 72, 30]. XmdvTool is a public-

domain software package for interactive visual exploration of multivariate data sets. It is

available on all UNIX platforms which support XR4 or higher. XmdvTool 4.0 and later

versions are also available on Windows95/98/NT platforms, and are based on OpenGL

and Tck/Tk. It supports four methods for displaying both (non-hierarchical) flat form

data and hierarchically clustered data, namely scatterplots, star glyphs, parallel coordi-

nates, and dimensional stacking. XmdvTool also supports a variety of interaction modes

and tools, including brushing in screen, data, and structure spaces, zooming, panning, and

distortion techniques, and the masking and reordering of dimensions. Univariate displays

and graphical summarizations, via tree-maps and modified Tukey box plots, are also sup-

ported. Finally, color themes and user customizable color assignments permit tailoring

of the aesthetics to the users. XmdvTool has been applied to a wide range of application
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areas, such as remote sensing, financial, geochemical, census, and simulation data.

We introduce the existing functions of XmdvTool briefly below. To learn detailed

information about the flat visualization and N-dimensional brushing techniques, see [69,

70]. To learn detailed information about the hierarchical visualization techniques and

their interactive tools in XmdvTool, see [29, 71, 72, 30]. More information about the

XmdvTool project can be obtained from http://davis.wpi.edu/˜xmdv.

3.2 Flat Visualization Techniques in XmdvTool

3.2.1 Flat Visualization Techniques

XmdvTool supports four methods for displaying flat form data, namely Parallel coordi-

nates (see Figure 3.1), star glyphs (see Figure 3.2), scatterplot matrices (see Figure 3.3),

and dimensional stacking (see Figure 3.4).

In parallel coordinates [6, 7], each dimension is represented as a uniformly spaced

vertical axis. A data item in this multidimensional space is mapped to a polyline that

traverses across all the axes. Figure 3.1 shows the Iris data set (4 dimensions, 150 data

items) using parallel coordinates.

In star glyphs, each data item is represented by an individual shape [2, 4, 5]. In a star

glyph, the data values are mapped to the length of rays emanating from a central point,

and the ends of the rays are linked to form a polygon. We can view these rays as axes,

with each axis representing a dimension. The directions of these axes are from the center

point to the outside. Figure 3.2 shows the Iris data set using star glyphs.

In scatterplot matrices, each data item is projected to N � N plots, with N being

the number of dimensions of the data set. The position of the projected point in a plot

is decided by the values of the data item in the two dimensions that compose this plot.

Figure 3.3 shows the Iris data set using scatterplot matrices.
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Flat dimensional stacking [10] displays an N dimensional data set by recursively em-

bedding pairs of dimensions within one another. Each dimension is discretized into a

small number of subranges, and two dimensions are initially selected to subdivide the dis-

play space into subimages whose size depends on the number of subranges or bins used

for those dimensions. These subimages are subdivided based on the next two dimensions,

and the process repeats until all dimensions have been mapped. Thus the multivariate

space is split into a number of small cells that each map to a segment of the screen. Each

data item will fall into one of these small cells, and thus have an assigned screen position.

Figure 3.4 shows the Iris data set using dimensional stacking.

3.2.2 Brushing in Flat Visualizations

XmdvTool has implemented N-D brushes in the flat visualizations [70] to allow users to

select subsets of data items from the visualized data sets. Many useful operations, such

as highlighting, magnifying, or saving as new data sets, can be applied to the selected

subsets. N-D brushes have the following characteristics:

� N-D hyperbox shape

� step edge or ramp edge boundary

� boolean operations among multiple brushes

� multiple methods to control the sizes and positions of the brushes

XmdvTool4.1 provides a function for saving brushed data. This function will save the

brushed data as a new file in the XmdvTool format.
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Figure 3.1: Iris Data Set in Flat Parallel
Coordinates

Figure 3.2: Iris Data Set in Flat Star
Glyphs

Figure 3.3: Iris Data Set in Flat Scatterplot
Matrices

Figure 3.4: Iris Data Set in Flat Dimen-
sional Stacking

3.3 Hierarchical Data Analysis in XmdvTool

3.3.1 Hierarchical Visualization Techniques

The flat visualizations become very crowded when they are applied to large-scale data

sets. To overcome this clutter problem, we have developed an Interactive Hierarchical

Display framework [30]. The underlying principle of this framework is to develop a multi-

resolution view of the data via hierarchical clustering, and to use hierarchical variations of
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traditional multivariate visualization techniques to convey aggregation information about

the resulting clusters. Users can then explore their desired focus regions at different levels

of detail, using our suite of navigation and filtering tools.

By applying this framework to the flat visualization techniques, we extent XmdvTool

with hierarchical parallel coordinates (see Figure 3.5), hierarchical star glyphs (see Fig-

ure 3.6), hierarchical scatterplot matrices (see Figure 3.7) and hierarchical dimensional

stacking (see Figure 3.8).

Hierarchical parallel coordinates are an extension of traditional (flat) parallel coordi-

nates. In hierarchical parallel coordinates, the clusters replace the data items. The mean

of a cluster is mapped to a polyline traversing across all the axes, with a band around it

depicting the extents of the cluster in each dimension. The lower edge of the band in-

tersects each axis at the minimum value of its respective cluster in that dimension. The

upper edge of the band intersects each axis at the maximum value of its respective cluster

in that dimension. To give the user a sense of the location of data points in a cluster and

to convey the overlap among clusters, each band is translucent. We assume that there

is a linear drop-off in the density of cluster data from its center to the edge, and set the

maximum opacity proportional to the population.

Hierarchical star glyphs are an extension of flat star glyphs. In hierarchical star glyphs,

each star glyph represents a cluster. The mean values are used to generate the basic

star shape. The band around the mean polygon has two edges; one is outside the mean

polygon and another one is inside the mean polygon. The inside edge intersects each

axis at the minimum value of its respective cluster in that dimension, while the outside

edge intersects each axis at the maximum value of its respective cluster in that dimension.

Obviously, if we draw a star glyph starting from the same center point to present a data

item included in that cluster, this star glyph would be inside the band of that cluster. Thus

the band successfully depicts the extent of the cluster.
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Hierarchical scatterplot matrices are an extension of flat scatterplot matrices. The

mean of a cluster is drawn as an ordinary data item in flat scatterplot matrices. The extents

of each cluster form rectangles around the projected mean in each plot. The projections of

a cluster on different plots are drawn in the same color, which gives users the possibility

to more easily link a cluster from one plot to another. In the flat form scatterplot matrices,

all the data items have the same color. Hence users can have difficulty linking a data

item when they move from one plot to another, although selective highlighting helps this

linkage.

Hierarchical dimensional stacking is an extension of flat dimensional stacking. The

clusters replace the data items. The mean of a cluster will fall into a single small block

as if it were an original data item in the flat form dimensional stacking. The band of

this cluster depicting the cluster extents may potentially map to many blocks. This time

it is possible that some parts of the band are disjoint from others due to the embedding

process, even though they are adjacent in N -dimensional space.

3.3.2 Interactive Tools in Hierarchical Visualizations

There are several interactive tools, such as the structure-based brush, drill-down/roll-up

operations, extent scaling, and dynamic masking, to interactively explore the hierarchical

visualizations. These are described briefly below. Details can be found in [71, 31, 72, 30].

� Structure-based Brush

A structure-based brush allows users to select subsets of a data structure by spec-

ifying focal regions as well as a levels-of-detail on a visual representation of the

structure.

� Drill-down/Roll-up Operations
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Drill-down/roll-up operations allow users to change the level of detail of interactive

hierarchical displays intuitively and directly. Drill-down refers to the process of

viewing data at an increased level of detail, while roll-up refers to the process of

viewing data with decreasing detail [29]. The drilling operations are coupled with

brushing. XmdvTool permits selective drill-down/roll-up of the brushed and non-

brushed region independently.

� Extent Scaling

Extend scaling solves the problem of overlapping among the bands by decreasing

the extents of all the bands in each dimension by scaling them uniformly via a dy-

namically controlled extent scaling parameter. Users can still differentiate between

clusters with large and small extents after the bands have been scaled.

� Dynamic Masking

Dynamic masking refers to the capability of controlling the relative opacity between

brushed and unbrushed clusters. It allows users to deemphasize or even eliminate

brushed or unbrushed clusters. With dynamic masking, the viewer can interactively

fade out the visual representation of the unbrushed clusters, thereby obtaining a

clearer view of the brushed clusters while maintaining context regarding unbrushed

areas. Conversely, the bands of the brushed clusters can be faded out, thus obtaining

a clearer view of the unbrushed region. Used together with the structure-based

brush, dynamic masking reduces the overlapping and density of the clusters on

the screen by fading out uninteresting clusters so that users can concentrate on the

clusters of interest.
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3.4 Common Interactive Tools Used in Both Flat and Hi-
erarchical Visualizations

There are some interactive tools in XmdvTool that can be used in both the flat and hierar-

chical displays. There are briefly described below:

� Zooming and Panning

The whole display area can be zoomed and panned.

� Dimension Distortion

In Parallel Coordinates, the distance between two adjacent axes can be increased

or decreased. In Scatterplot Matrices, the size of a single plot can be enlarged or

reduced. In Star Glyphs, the angle between two adjacent arms can be increased or

decreased.

� Dimension Enabling/Disabling and Reordering

Dimensions can be enabled/disabled and reordered.
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Figure 3.5: Iris Data Set in Hierarchical
Parallel Coordinates

Figure 3.6: Iris Data Set in Hierarchical
Star Glyphs

Figure 3.7: Iris Data Set in Hierarchical
Scatterplot Matrices

Figure 3.8: Iris Data Set in Hierarchical
Dimensional Stacking
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Chapter 4

Dimension Clustering and
Representative Dimensions

4.1 Dimension Clustering

Dimension clustering is the first step in the VHDR approach. The dimension hierarchy

generated by the dimension clustering step plays an important role in the overall VHDR

process. One of the most important assumptions of VHDR is that if dimensions are placed

into one cluster of the dimension hierarchy, then they are more similar to each other than

to any dimensions outside that cluster. Given this assumption, we argue that we can use

a representative dimension to represent all the dimensions in a cluster and that we can

visualize the data set in a subspace composed of the representative dimensions without

losing too much information.

The goal of the dimension clustering step is to efficiently generate an acceptable di-

mension hierarchy even when there are thousands dimensions and millions of data items.

This dimension hierarchy should be able to reflect the similarities among the dimensions

as accurately as possible. Online dimension clustering is required since we want to give

the users the flexibility of regenerating the dimension hierarchy within an acceptable re-

sponse time after the users enable or disable some dimensions. Finally, since most high

dimensional data sets also have large numbers of data items, we need to maintain the
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effectiveness and efficiency of the dimension clustering algorithm even if the data set is

very large.

4.1.1 Overview of Our Dimension Clustering Algorithm

The basic idea of our dimension clustering algorithm is to cluster the dimensions iter-

atively. In each iteration, the clusters generated should have dissimilarities less than or

equal to a threshold dissimilarity (this threshold dissimilarity increases from 0 to 1 grad-

ually from the first iteration to the last iteration). First, we compare each pair of the

“candidate” dimensions (all the original dimensions in the first iteration) and record the

dimension pairs that have dissimilarities smaller than or equal to the threshold dissimilar-

ity as “similar pairs” in a similar pairs array. After that, we determine the dimension that

forms the maximum number of similar pairs. We label this a cluster center. We include

all the dimensions that formed similar pairs with the cluster center into this cluster. Once

a dimension is included into a cluster, we delete all the similar pairs that include that di-

mension from the similar array list. We repeat this process until there are no similar pairs.

Then we generate a representative dimension for each generated cluster(see Section 4.2).

The representative dimension of the newly formed clusters and the candidate dimensions

that did not get included in any newly formed clusters are the input for the next itera-

tion. If a representative dimension is included in a cluster, it means that the cluster it

represents is a child of that cluster. The threshold dissimilarity is increased in the next

iteration. Started from the first iteration with all the original dimensions as the candidate

dimensions, the process will end up when all the original dimensions have been grouped

into one cluster. The threshold dissimilarity of 1 at the last iteration makes sure that the

process will terminate.
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4.1.2 Data Issue: How To Handle Large-Scale Data Sets

When we calculate the dissimilarity of two dimensions, a natural method to do this is to

use all the data items in the original data set. However, for a large data set, if we use all

of the data items to calculate the dissimilarities, the calculations would be slow and the

memory required would be large. We hence look for a way to improve this situation. Our

solution is to use a data hierarchy of the large data set (it has been built in our hierarchical

visualizations) to perform the dimension clustering, as explained below.

First, we select some data clusters from the data hierarchy using the structure-based

brush in the hierarchical visualizations [71]. In the data hierarchy, every data cluster has

a radius and the distance between any two data items in a cluster is less than its radius

multiplied by two. In the selection, a threshold radius is given and all the data clusters

selected must have radii less than or equal to the threshold radius. We limit the radii of

the clusters selected since this would have an effect on the dissimilarity calculation (as

discussed in Section 4.1.3). Each leaf node in the data hierarchy should be covered exactly

once in the selected data clusters so that every data item is counted in the dissimilarity

calculation.

Second, we use these selected data clusters instead of the original data items to calcu-

late the dissimilarity between dimensions (see Section 4.1.3 for details). In the dissimilar-

ity calculation, the means of the data clusters (averages of all their data items), the cluster

radii and the cluster entries (the number of data items included in a cluster) are used.

By using data clusters instead of original data items, we accelerate the dissimilarity

calculation and reduce the memory requirement. For example, assume a dissimilarity

calculation between two dimensions on n data items has a time complexity of o(n2). By

using n=2 data clusters instead of n data items, the time complexity can be reduced to

o(n2=4).

However, there is a tradeoff between the efficiency and accuracy. The larger the
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threshold radii, the higher the efficiency, but the lower the accuracy (we will discuss it

in detail in Section 4.1.3). In our system, the threshold radius is adjustable. When the

threshold radius is equal to zero, it means that all the original data items in the data set

are used in the dissimilarity calculations.

4.1.3 Dissimilarity Calculation

The lion’s share of our dimension clustering algorithm is performing dissimilarity cal-

culations. In section 4.1.2, we show how we reduce the complexity of the dissimilarity

calculation by using a smaller number of data clusters instead of all the original data items.

Here we discuss how the data cluster parameters affect the dissimilarity calculation:

� entries: a data cluster with many members means that it represents more original

data items than a data cluster with fewer members. Hence the former should have

more contribution to the calculated dissimilarity than the latter.

� radius and mean: In Figure 4.1, d1 and d2 are the means of a data cluster projected

to dimension 1 and dimension 2 (suppose d1 > d2). Suppose that the data cluster

has a radius r, then the projections of all the data items in the data cluster on dimen-

sion 1 and dimension 2 will be within the ranges: [d1�r; d1+r] and [d2�r; d2+r].

Thus the maximum possible dissimilarity of all the original data items in this data

cluster max dis is d1 � d2 + 2 � r. Similarly, the minimum possible dissimilarity

of all the original data items in this data cluster min dis is d1 � d2 � 2 � r. Hence

the average dissimilarity of all the original data items in this data cluster ave dis

is in the range: [d1 � d2 + 2 � r; d1 � d2 � 2 � r]. When r is much smaller than

d1 � d2, we can approximate that ave dis = d1 � d2. It means that the threshold

radius for the data cluster selection should be much smaller than the dissimilarity

threshold used in the dimension clustering algorithm.
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Figure 4.1: Effect of Radius and Mean of Data Cluster on Dissimilarity Calculation: d1
and d2 are the means of a data cluster projected to dimension 1 and dimension 2 (suppose
d1 > d2). The data cluster has a radius r. The projections of all the data items in the data
cluster on dimension 1 and dimension 2 will be within the ranges: [d1 � r; d1 + r] and
[d2� r; d2 + r].

Since we need to keep the threshold radius relatively small, the number of selected

data clusters could be still very large when the size of the data set is extremely large.

Thus we need to view the speed of the dissimilarity calculations as one important factor

when we choose our approach to the dissimilarity calculations.

The most commonly used dissimilarity calculation statistics model, Pearson’s R, is

computationally costly, and many other more complicated statistics models exist. Hence

we did not use them. However, we allow users to plug in Pearson’s R or other approaches

as a substitute for our own approach.

We have the following considerations in our approach:

� A data cluster’s dissimilarity between two dimensions is calculated as the distance

between the normalized means of the two dimensions.

� There are always outliers in the data sets. We consider that two dimensions have a

dissimilarity thre dis if for certain percentage of the data items, their projections

on these two dimensions have differences less than or equal to thre dis. For this

sake a percentage threshold is given. For example, we can stipulate that if there
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exist more than 90% of the data items whose projections on these two dimensions

have differences less than or equal to thre dis, dissimilarity of the two dimensions

is thre dis. Here the percentage threshold is 90%. The percentage threshold can

be adjusted by users.

� Assume there are three dimensions A, B and C. Assume A and B have a dissim-

ilarity that is less than th1 at the percentage threshold 90%, and A and C have a

dissimilarity of th2 at the percentage threshold 90%. Since we know that there are

at most 10% data items whose projections on A and B have differences larger than

th1 and there are at most 10% data items whose projections on A and C have dif-

ferences larger than th1, we know that there are at least 100%�10%�10%= 80%

data items have projections on B and C less than or equal to th1 + th2. Thus B

and C have a dissimilarity of th1 + th2 at the percentage threshold 80%. Gener-

ally, if every dimension in a dimension cluster has a dissimilarity of thre dis at the

percentage threshold X% with a certain dimension (cluster center), then each pair

of dimensions in the dimension cluster has a dissimilarity under 2 � thre dis at the

percentage threshold 100 � 2 � (1 �X)%. Hence the maximum dissimilarity and

the percentage threshold for a dimension cluster is controllable by adjusting the two

parameters thre dis and X .

Figure 4.2 is the algorithm to judge if two dimensions (i1 and i2) have a dissimilarity

thre dis given the percentage threshold and the size of the data set. thres dataitems is

defined as the percentage threshold multiplied by the size of the data set.

4.1.4 Alternative Approaches for Dimension Clustering

Other approaches to achieving dimension clustering are possible. For example, we can

use factor analysis [73] to form a dimension hierarchy since it is able to group dimensions
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Bool JudgeTwoDimensionsDissimilarity(dimension d1, dimension d2,
double thres dis, int thres dataitems)

Begin
int count = 0;
For every data cluster C i

Begin
If (fabs(Ci:data[d1]� Ci:data[d2]) < thres dis)

count+ = Ci:entries;
Endif

End
If ( count > thres dataitems )

Return true;
Else

Return false;
Endif

End

Figure 4.2: Algorithm of Judging Two Dimensions’ Dissimilarity

according to their correlations. In the future, these and other different approaches should

all be incorporated into our system in order to be compared.

4.2 Representative Dimensions:
Assign or Create?

Having built the hierarchical dimension cluster tree, we need to assign or create a rep-

resentative dimension for each dimension cluster so that it can be used to represent the

dimensions in its dimension cluster in the multi-dimensional displays. Below we pro-

pose several possible approaches. In the description, if we mention original dimensions

composing a dimension cluster, we mean all the leaf nodes included in this dimension

cluster.
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4.2.1 Approach 1: Averaging the Original Dimensions

This approach uses the average of the original dimensions in a dimension cluster as the

representative dimension. It means that when we calculate a data item’s projection to the

representative dimension, the projection is equal to the average of the projections of these

data items to all the original dimensions composing this dimension cluster. This approach

seems a fair solution to the original dimensions since every original dimension equally

contributes to the representative dimension. This is the approach we currently used in our

system.

This approach can be extended to a weighted averaging approach by keeping a weight

for each original dimension and taking the weights into account when calculating the aver-

age. In this way more important dimensions can have a larger impact on the representative

dimension.

4.2.2 Approach 2: Using One Original Dimension

Since all the original dimensions in a dimension cluster are similar, we could also use one

of them to represent all the others. One way to do so is to randomly select an original

dimension from the dimension cluster, such as selecting the first original dimension or

the last original dimension in the cluster. A better way is to choose the cluster center

of the dimension cluster since its dissimilarity to every other dimension in the cluster is

less than or equal to the radius of the dimension cluster. If the cluster center happens

to be a non-leaf node, then select its cluster center recursively until reaching an original

dimension. If users know all the pair-wise relations, they can choose the one whose sum

of correlations with all others is minimal.
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4.2.3 Approach 3: Applying Principal Component Analysis

This approach applies principal component analysis or dimension scaling to the original

dimensions composing the dimension cluster and uses the first principal component as

the representative dimension. This approach has the advantage that it maintains the main

characteristics of the original dimensions. However, it has the inherent disadvantages of

principal component analysis, such as the generated dimensions have no intuitive mean-

ing. Even so, it is an interesting approach that we plan to implement in the future.

The above approaches of generating representative dimensions we proposed are only

several among many possible approaches. Selecting a most suitable approach is an issue

that is related closely to the particular application domain. Due to this reason, we keep

our system open to user customized representative dimension generating approaches. In

Section 5, we will describe how to interactively explore the hierarchical dimension cluster

tree.

34



Chapter 5

Interactive Dimension Hierarchy
Visualization

5.1 Overview

The purpose of interactive dimension hierarchy visualization to allow users to interac-

tively navigate and modify the hierarchical dimension cluster tree built by dimension

clustering (see Chapter 4), and allow users to select dimension clusters from the tree for

convenient and efficient exploration.

We adopt a radial, space-filling hierarchy visualization technique named Sunburst by

Stasko and Zhang [58] to visualization the hierarchical dimension cluster tree. In a Sun-

burst display, deeper nodes of the hierarchy are drawn further from the center; child nodes

are drawn within the arc subtended by their parents; the angle occupied by a node is pro-

portional to the number of leaf nodes under it.

Sunburst has some advantages over other tree drawing algorithms. First, as one of

the space-filling techniques, it uses more implicit containment and geometry features to

present a hierarchy than tree drawing algorithms which utilize edges between nodes to

indicate parent-child structure[58]. Second, compared to treemap, another space-filling

technique, radial space-filling techniques are better at conveying the hierarchy structure

[58].
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Our Sunburst is different from Stasko and Zhang’s Sunburst in that:

� we use color to convey the hierarchical structure;

� we allow users to interactively modify the hierarchical dimension cluster tree di-

rectly through the Sunburst display by simple drag and drop operations;

� we provide interactive brushing to users so that they can select clusters of interest

from the hierarchical dimension cluster tree directly through the Sunburst display;

� we propose a new distortion technique for Sunburst display in a more intuitive way;

� we implement drill-up/roll-down, zooming in/zooming out and panning operations

for Sunburst display.

Figure 5.1 shows our dimension hierarchy dialog. The main canvas in the dialog is

the Sunburst display for a hierarchical dimension cluster tree (we call it the Sunburst

hierarchy). Under the main canvas there is a status bar that can show messages. On

the upper right side there are four function buttons for switching among different canvas

modes followed by two action buttons. On the lower right side there is a slider for the

zooming operation. At the bottom of the dialog, there is an OK button that is used to close

the dialog.

There are four different canvas modes that can be switched between by clicking the

four function buttons:

� Normal - in this mode, distortion, modification and selection are forbidden, and the

status bar will show the name of the node that the cursor is placed on;

� Distort - in this mode, users can distort the Sunburst display by clicking and drag-

ging the mouse;
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Figure 5.1: Dimension Reduction Dialog

� Modify - in this mode, users can modify the Sunburst hierarchy by clicking and

dragging the mouse;

� Select - in this mode, users can highlight some nodes of the Sunburst hierarchy;

Details of distortion, modification, and selection are introduced in Sections 5.5, 5.3

and 5.4.

The two action buttons are used to:

� Customize - cause a customize dialog to pop up. Users can select among different

degrees-of-dissimilarity representation methods from this dialog (see Chapter 6 for

detail);

� Apply - use the highlighted nodes to construct a subspace in the multi-dimensional

displays. (see Chapter 6 for detail).

In the following sections, we will discuss color assignment, modification, selection

(brushing), distortion, and other interactive operations we implement for our Sunburst.
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5.2 Color Assignment

In our Sunburst, we use the color of the nodes to convey the hierarchical structure of the

dimension cluster tree. The principles of color assignment are:

� nodes belonging to the same cluster should have similar colors;

� a parent node’s color should be a combination of the colors of its children;

� a larger child contributes more to its parent’s color than its smaller siblings;

We have tried two different approaches to assign colors to the nodes of the sunburst:

“middle color assignment” and “average color assignment”. In both of these approaches,

a whole linear colormap is mapped to the 360 degrees of the circle of the Sunburst display.

We use hue as the variable for the colormap. In both approaches all the leaf nodes are

assigned colors based on the degree of the center of their subtended angles. The difference

lies in that in the middle color assignment, non-leaf nodes are assigned colors based on

their position in the circle, while in the average color assignment, non-leaf nodes’ colors

are the average of their children’s colors. The entry (the number of leaf nodes included in

a cluster) of each child is used as a weight in the average calculation.

Figure 5.2 depicts the algorithm to assign color to a node using the middle color

assignment approach, whereas Figure 5.3 shows the algorithm to assign color to a node

using the average color assignment approach.

color MiddleColorAssignment(Colormap cm, DimensionCluster dc)
Begin

double mid angle =GetMediumAngle(dc:start angle, dc:end angle);
return cm.MapColor(mid angle);

End

Figure 5.2: Algorithm of Middle Color Assignment
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color AverageColorAssignment(Colormap cm, DimensionCluster dc)
Begin

If ( dc is a leaf node )
Begin

double mid angle =GetMediumAngle(dc:start angle,
dc:end angle);

return cm.MapColor(mid angle);
End

Else ( dc is a non-leaf node )
Begin

For Each child Ci Do
Ci:color =AverageColorAssignment(cm, C i);

Int R = 0, G = 0, B = 0;
Int entries = 0;
For Each child Ci Do

Begin
R+ = Ci:color:R � Ci:entries;
G+ = Ci:color:G � Ci:entries;
B+ = Ci:color:B � Ci:entries;
entries+ = entries;

End
color:R = R

entries
;

color:G = G

entries
;

color:B = B

entries
;

End
Endif

End

Figure 5.3: Algorithm of Average Color Assignment

Figure 5.4 shows a Sunburst display using the middle color assignment, while Figure

5.5 shows a Sunburst display using the average color assignment. Comparing these two

figures, we find that Figure 5.5 reflects the hierarchical structure better than Figure 5.4.

The reason is that in the average color assignment, a non-leaf node’s color has a closer

relationship with its children’s colors - it is a mixture of them. Thus the parent-children

relationship is more explicitly represented than in the middle color assignment. It makes

sense since it will be close to the colors of the children with large entries - if a child
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node’s entry is large, it will gain a large weight in the parent node’s color calculation. In

the middle color assignment, only if the color scale reflects a strict “linear” numeric scale,

would the relationship between the parent’s color and children’s color be revealed clearly.

However, it is very difficult to get such an ideal color scale. It seems that the average

color assignment fits our requirement better. Thus we adopted this approach.

Figure 5.4: Dimension Hierarchy of Cars
Data Set Colored Using Middle Color As-
signment

Figure 5.5: Dimension Hierarchy of Cars
Data Set Colored Using Average Color
Assignment

5.3 Modification Functions

We provide the following modification functions to users for two reasons:

� Although users can adjust the dimension clustering process by setting different pa-

rameters and changing similarity calculation methods, it is still an automatic pro-

cess. Users cannot interactively take part in the dimension clustering process.

� Users could be experts with the data sets being visualized. They sometimes know

that some relationships exist in the data sets according to their experience and
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knowledge in their fields. These relationships could be undetected by the algo-

rithm. Hence allowing users to interactively adjust the generated dimension cluster

tree benefits the whole process.

Using our modification function, users can remove a sub-cluster from a cluster by

dragging it and dropping it into any other cluster to be its new parent. The color of the

removed cluster is retained to help users keep track of it. Figures 5.6 and 5.7 show a

highlighted cluster being removed with all its children.

Figure 5.6: A cluster is highlighted. Figure 5.7: The highlighted cluster has
been moved

In the future, we may explore use of highlighting or animation to help users perform

the restructuring process more intuitively.

5.4 Brushing

The purpose of brushing in the context of our Sunburst display is to allow users to select

dimension clusters efficiently for the sake of constructing a lower dimensional subspace

for the data display. We have implemented two different brushing mechanisms. One is
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called “simple brushing” and the other is called “structure-based brushing”.

Simple brushing is just a clicking operation. When users click the left button of the

mouse on a cluster of the Sunburst display, this cluster will be highlighted and added to

the end of the selected cluster list. When a user clicks it one more time, it will return to

its normal color and be deleted from the selected cluster list.

Structure-based brushing allows users to select multiple clusters at the same time.

When users click the right button of the mouse on a cluster of the Sunburst display, a

small dialog pops upt. Users can select a threshold between 1 and the numbers of leaf

nodes of the cluster through this dialog. We can consider the cluster and all its descendants

as a tree rooted at the cluster. A structure-based selection will be done on this tree using

the threshold. The selection starts from the root cluster. If its number of leaf nodes is

less than or equal to the threshold, then it is selected and the process stops. Otherwise

this process is repeated for all its children. Using this brush, we can select approximately

uniformly sized clusters and cover all the leaf nodes of the root cluster at one time. We

define a leaf node as covered if either itself or one of its ancestors is selected. When the

threshold equals to 1, it means all the leaf nodes of the cluster will be selected. When the

threshold equals to the number of leaf nodes of the cluster, then this cluster itself will be

selected. Figure 5.9 shows the selection result of applying the structure-based brushing

to the root node using a threshold of 3.

Since the structure-based brushing works on a cluster, we can apply it multiple times

to different clusters using different thresholds. Hence we can select clusters in different

levels of detail in different regions.

A variation of structure-based brushing is to allow users to input a threshold between

0 and the global degree of dissimilarity of the cluster. Then we select the sub-clusters

that have global degrees of dissimilarity lower than or equal to this threshold. Thus the

selected clusters would have approximately the same degree of dissimilarity.
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In our data space, we highlight the selected data items by redrawing them using a

highlight color. In the dimension hierarchy visualization, we want a similar approach to

maintain the consistency of the system. We have tried two different highlighting strategies

for selected clusters: “highlight all strategy” (see Figure 5.8) and “highlight part strategy”

(see Figure 5.9). The first strategy is to cover the whole node with the highlight color in

the Sunburst display, so we named it the “highlight all strategy”. The original color of

a node conveys information about the hierarchical structure. It no longer conveys such

information when it becomes the highlight color. Thus our second strategy, named “high-

light part strategy”, is to highlight only part of the node. Hence the node is highlighted

and the structure information is remained. We believe that the second strategy is better

than the first.

For very large dimension hierarchies, adjacent leaf nodes will be assigned a very

similar color. To overcome this problem, we can divide the 360 degree of the Sunburst

display into several segments and map the whole color scale to each of the segments.

Thus the color distance of adjacent leaf nodes would be enlarged.

We have provided users an option of showing names for selected clusters. Once this

option is selected, the names of the selected clusters are shown on the display, with the

names’ left bottom corners located at the centers of selected clusters (see Figure 5.10.

5.5 Distortion

In the related work section, we mentioned several different distortion approaches to pro-

vide focus+context in Sunburst, such as Andrews and Heidegger’s [56] two semi-circular

approach and Stasko and Zhang’s angular detail, detail outside, and detail inside ap-

proaches. Those approaches have the following disadvantages:

� There is a big visual “jump” before and after the distortion operation. That is, the
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display before the distortion is quite different from the display after the distortion.

This disadvantage is often remedied using complex animation so that users can

follow the changes;

� They need more space for the focus + context display than the original display;

� It is difficult to have multiple levels of detail in one display.

To overcome these disadvantages, we propose a new distortion approach with the

following features:

� It is easy for users to follow with simple animation;

� No extra space is needed for the focus + context display compared to no distortion;

� There can be multiple levels of detail in one display.

However, it should be noticed that after the distortion the angles occupied by the nodes

are no longer proportional to their sizes.

The principle of this distortion approach is similar to the following valve moving

process. Let’s consider applying a distortion to a child of a parent cluster. In Sunburst,

all the direct children of a parent cluster are in the same radius level of the display, inside

the angle range of the parent cluster. We consider the left and right boundary of this

angle range as a fixed left and right “baffle” limiting movement of its children. Also, we

consider the radius level as a “channel”. The first child is adjacent to the left baffle and

the second child. The last child is adjacent to right baffle and the next to last child. All the

other children are adjacent to their previous and next siblings. We view the boundaries

between the children as “valves” that can slide along the channel. Two adjacent valves

and the channel are the boundary of a child cluster. We can imagine that the clusters are

filled with air.
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When we want to enlarge a child cluster, we can fix its left valve, and move the right

valve outwards. As a consequence, the air between the moved valve and the right baffle

is compressed so that the valves in this area also move uniformly. Hence all the children

after the enlarged child are uniformly compressed. We can also fix the right valve and

move the left valve outwards. In this case all the children before it would be compressed

uniformly.

When we want to deemphasize a child cluster, we can fix its left valve, and move

the right valve inwards. As a consequence, the air between the moved valve and the

right baffle is expanded so that the valves in this area also move uniformly. Hence all

the children in the right side of the decreased child are uniformly enlarged. We can also

fix the right valve and move the left valve inwards. In this case all the children before it

would be enlarged uniformly.

Whenever a cluster is enlarged or decreased, the size of all its decendents also change

proportionally so that they are always in the angle range of the cluster. A baffle of a

cluster is a valve from the viewpoint of its parent cluster. So whenever we move the baffle

of a cluster, the cluster as a whole is distorted.

Since this distortion is localized to a cluster, we can apply distortion to different clus-

ters. We can even apply distortion to a cluster that is a child of another cluster that has

already been distorted. In this way we can achieve multi-level distortion. Moreover, we

don’t need extra space for the distorted view.

When we implement this distortion operation, we have to make some changes to the

ideal situation:

� We set a minimum angle for the leaf clusters. Hence the minimum angle of a

cluster is its number of leaf nodes times the minimum angle of leaf clusters. A

cluster cannot be compressed any more if it reaches its minimum angle. At this

moment, the air in this cluster cannot be compressed any more.
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� Users distort the display by dragging a valve. However, a valve between two clus-

ters can be understood as the right valve of the left cluster or the left valve of the

right cluster and the distortion consequence could be different. Thus we stipulate

that if the cursor is closer the left cluster, we view the valve as the right valve of the

left cluster, otherwise it will be viewed as the left valve of the right cluster.

Figure 5.11 shows a distortion process. In the left Sunburst, cluster 2 is to be decreased

in size. Its right valve is fixed and its left valve is moved inwards. Cluster 1 is its only

sibling that is before it. So it will occupy all the angle cluster 2 gives up. The figure on

the right is the result of this distortion.

5.6 Other Interactive Operations

We have implemented many other interactive operations besides distortion in the Sunburst

display, such as drilling-up/rolling-down, zooming in/zooming out, panning, and rotating

operations.

Drilling-up/rolling-down are used to hide/show all the descendants of a cluster by

simple mouse clicking. It helps users to prevent the display of some branches that they

don’t want to study. Figures 5.12 and 5.13 show a Sunburst display before and after hiding

a large branch.

Zooming in/zooming out and panning operations allow users to enlarge the canvas

and move around to examine details of the display. Figure 5.14 shows the same Sunburst

of Figure 5.13 after zooming in and panning.

The rotating operation is a unique and necessary operation for the circular Sunburst

display. In the distort mode, users can rotate the Sunburst display around its center in both

directions by clicking mouse buttons in the blank place in the Sunburst display window.

This operation helps users rotate their interested clusters to their favorite angles and avoid
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the clutter of the names of the selected clusters. Figure 5.14 shows the same Sunburst of

Figure 5.13 after rotating it approximately 100 degrees anti-clockwise.
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Figure 5.8: Highlight All Strategy Figure 5.9: Highlight Part Strategy. High-
lighted clusters are selected by applying
the structure-based brushing to the root
node. The threshold is 3.

Figure 5.10: The names of the highlighted
clusters are shown.
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Figure 5.11: Distortion in Sunburst
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Figure 5.12: A Sunburst Display Figure 5.13: A big branch of the Sunburst
in Figure 5.13 has been hidden.

Figure 5.14: Sunburst in Figure 5.13 has
been zoomed in and panned to view the
detail of its middle right half.

Figure 5.15: Sunburst in Figure 5.13 has
been rotated approximately 100 degrees
anti-clockwise.
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Chapter 6

Applying Visual Dimension Reduction
to Multidimensional Visualization

6.1 Overview

The ultimate goal of our approach is to reduce the dimensions displayed in the multi-

dimensional visualizations to decrease the clutter problem and to increase the drawing

speed. After the second step (described in Chapter 5), we have selected a set of repre-

sentative dimensions (the number of the representative dimensions is much less than the

number of original dimensions in the data set). Now we need to apply this reduction to

the existing multi-dimensional visualizations, that is, to map the original data set from

the original high dimensional space to a lower dimensional subspace. The result of this

mapping can be visualized using existing multidimensional visualization techniques.

In this step, we have to address the following problems:

1. How to implement this mapping with low expense in space and time?

2. How to preserve useful information in the visualizations?

We address the first problem in Section 6.2, and then discuss our solutions to the

second problem in Section 6.4.
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6.2 Mapping

There is an ”Apply” button in the Sunburst dialog. When users click this button, our

system will collect the pointers to the currently highlighted dimension clusters into a

selected cluster list. Given a data item in the original data set, we can calculate its image

in the lower dimension space composed of the representative dimensions of the selected

clusters according to this list. Suppose there are N selected clusters in the selected cluster

list, and data items in the original data set are stored in a double array old data, we get

the algorithm showed in Figure 6.1:

double* MapData(double* old data, int N )
Begin

double new data = newdouble[N ];
For ( int i = 0; i < N ; i++ )
Begin

double value =getRepresentativeDimensionValue(i, old data);
new data[i] = value;

End
Return new data

End

Figure 6.1: Algorithm of Data Mapping

There are two options for mapping the whole data set from the original high dimen-

sional space to the lower dimensional space:

� Option 1: After every time the selected cluster list is updated, map all the data items

of the original data set, one by one, and store their images into some data structure

in memory. When redrawing the multi-dimensional displays, directly read from this

data structure as the input to the multi-dimensional displays. We call this approach

“pre-mapping”;

� Option 2: For every redrawing of the multi-dimensional displays, for every data

item, we read it from the original data set, map it to the lower dimensional space
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according to the selected dimension cluster list, and then draw the mapping result.

We call this approach “online-mapping”.

The pre-mapping approach seems to be more efficient since it only does the mapping

once for every selected cluster list update, no matter how many times we redraw the

displays. However, it requires memory to store the mapping results. Memory is a critical

resource when displaying large data sets, since the original data set already occupies a

large amount of memory. Moreover, when users update the selected cluster list often

(which can happen when users are in search of the best lower dimensional space), this

method’s advantage in time savings will disappear.

The online-mapping approach needs no extra memory. But on a first glance, it wastes

lots of time to recalculate the mapping result. However, compared to the time used to

draw a data item on the screen, the time needed to calculate a mapping of that data item is

negligible. So the online-mapping doesn’t have any significant difference for the response

time to users. Thus the online-mapping is a good selection for us. We adopted this

approach in our system.

In our system, all multi-dimensional displays share a selected dimension cluster list

and a mapping function. So no matter to which display we apply the dimensional reduc-

tion, the other displays will be modified using the same mapping automatically.

6.3 Visualizations and Interactions

6.3.1 Visualizations

Generally speaking, applying the dimension reduction result to the existing multi-dimensional

visualizations is simply using the mapped image of the data items as the input of the vi-

sualizations. Nothing is special here. However, we have applied the following techniques
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to enhance the existing multi-dimensional visualizations to convey useful information to

the user after the dimension reduction:

� We tell users how many original dimensions a cluster dimension contains by adding

a number in parentheses after the name of the dimension. For example, in Figure

6.3, we can see that the first cluster dimension represents 48 original dimensions,

while the second one represents 2 original dimensions.

� We provide the degree of dissimilarity within a cluster by various methods. We

have tried several different approaches to conveying this dissimilarity information

for clusters. Since the disagreement representation is an important topic that we

have studied a lot, we will discuss it in detail in a separate section (Section 6.4).

Here is an example of the dimension reduction applied to the hierarchical parallel co-

ordinates. Figure 6.2 shows the Ticdata2000 data set, which contains 86 dimensions and

5822 data items. Figure 6.4 shows its hierarchical dimension cluster tree automatically

generated by our system in Sunburst. There are 9 clusters highlighted (marked by red

arcs). These 9 clusters have been included in the selected dimension cluster list. Figure

6.3 shows the same data set mapped in the lower dimensional space composed of the rep-

resentative dimensions of the selected clusters. Comparing Figure 6.2 and Figure 6.3, we

find that the former is so cluttered that it is nearly impossible to interpret, while the latter

is much clearer.

6.3.2 Interactions

All the existing interactive tools can still be used in the reduced dimensional displays.

Besides those previously described, we generated a roll-up/drill-down interactive tool

specifically for the reduced dimensional displays. This tool allows users to roll-up/drill-

down the dimension clusters in the reduced dimensional displays by mouse clicking on
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the axes without going to the Sunburst hierarchical dimension cluster tree dialog. The

highlighted clusters in the Sunburst dialog will change automatically consistent with the

reduced dimensional displays.

Figures 6.5 and 6.6 show an example of the drill-down operation. By right mouse

clicking on the right-most axis in Figure 6.5, it has been drilled down to its two childen

in Figure 6.6.

6.4 Degree of Dissimilarity (DOD) Representation

6.4.1 DOD Definition

Before we study the different methods for dissimilarity representation, we need to de-

fine the term “degree of dissimilarity”(DOD). We observe that two kinds of DOD exist,

namely DOD for a single data item in every dimension cluster, and DOD for the data set

as a whole in every dimension cluster. We name the former the “local degree of dissim-

ilarity (LDOD)” and the latter the “global degree of dissimilarity (GDOD)”. They are

defined as follows:

� GDOD - the degree of dissimilarity for the entire data set in a dimension cluster. It

is a scalar value. It is calculated according to the following rules:

– For a leaf node that contains only one original dimension, its GDOD is zero.

– Whenever a child is inserted into a cluster, we label the dissimilarity (see

Chapter 4) between the representative dimension of the existing children in

the cluster and the new child as “dis12”, denote the old GDOD of this cluster

as “dis1”, mark the GDOD of the new child as “dis2”. The new GDOD of this

cluster is assigned as maximumfdis1; dis2; dis12 + dis1=2 + dis2=2g.
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� LDOD - the degree of dissimilarity for a data item in a dimension cluster. It is rep-

resented by a mean, a maximum, and a minimum value. The mean is the mapped

image of the data item on the representative dimension. The minimum is the min-

imum value among the values of the data item on all the original dimensions be-

longing to the dimension cluster. The maximum is the maximum values among the

values of the data item on all the original dimensions belonging to the dimension

cluster. Here all the dimensions have been normalized so values lie between 0 to 1.

We discuss our different approaches to graphically depicting LDOD and GDOD in

the following subsections.

6.4.2 Approach 1: Mean-Band Method to Represent LDOD

The first method is an extension of the mean-band method in the interactive hierarchical

displays (IHD) framework we built for the hierarchical displays [30]. It is used to repre-

sent LDOD here. In this approach, every data item in the reduced dimension displays is

composed of a mean and a band. For each cluster dimension, the mean corresponds to

the mean of the data item in that dimension cluster, that is, the mapped image of the data

item on this cluster dimension, while the band ranges from its minimum to its maximum.

The mean-band method in the IHD framework was applicable to multiple multi-

dimensional visualization techniques, as is the mean-band method here. We have suc-

cessfully applied it to the flat parallel coordinates (see Figure 6.7). We are also able to

apply it the flat star glyphs, scatterplot matrices, and dimensional stacking.

However, there are some drawbacks to this method:

� this method causes serious overlaps in the displays. The situation can be relieved

by applying extent scaling to it, that is, proportionally reducing the bands of all the

data items.
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� this method increases the response time. Drawing a band for each data item in the

display is time consuming.

� this method is difficult to be applied to the hierarchical displays since bands would

then have be assigned another meaning in the hierarchical displays [29, 71, 72, 30].

Figure 6.7 shows the Detroit data set (7 dimensions, 13 data items). The second and

fourth axis representing clusters containing 4 and 2 original dimensions respectively. The

bands have been decreased by 70% percent. From the figure we find that most data items

have larger LDODs in the former cluster than the latter.

Figure 6.8 shows the Aaup data set (14 dimensions, 1161 data items). The second and

fourth axis represent non-leaf dimension clusters of size 6 and 5 respectively. Although

the bands have been decreased by 85% percent, the figure is still seriously cluttered.

It seems surprising that similar principles have different effects (the mean-band method

for disagreement representation and for hierarchical displays.) In fact, it is not so surpris-

ing after a careful analysis. In the hierarchical display, lots of data items are represented

by one band, but for representing a single disagreement, nothing can be removed from the

screen, while a band is added for every data item! We hence conclude that the mean-band

method is not suitable for application to this problem except for cases with very small

numbers of data records.

6.4.3 Approach 2: Three-Axes Method to Represent LDOD

The basic idea of this method is to use two extra axes around a cluster dimension to

indicate the minimum and maximum of the dimension cluster for every data item. These

extra axes can be viewed as common dimensions in the visualizations. The three-axes

method can be applied to the flat and hierarchical parallel coordinates and star glyphs.

In the flat parallel coordinates, two extra axes are arranged closely on each side of a
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cluster dimension axis (middle axis) that represents more than one original dimension.

The minimums of the dimension cluster of the data items are mapped to the left side axis,

and the maximums are mapped to the right side axis. These three axes together form a

group that can be distinguished from other dimensions. Moreover, the left side, middle

and right side axes are assigned different colors to help users to distinguish among them.

In the hierarchical parallel coordinates, the axes are arranged in the same way as in the

flat parallel coordinates. The only difference is that the means and bands representing

clusters instead of single lines representing single data items are mapped to these axes.

Figures 6.9 and 6.10 show the Aaup data set (14 dimensions, 1161 data items) in flat

and hierarchical parallel coordinates. The second and fourth red axis represent non-leaf

dimension clusters of size 6 (dimension cluster 1) and 5 (dimension cluster 2) respectively.

The dark yellow and dark blue axes adjacent to them are their left side and right side axes.

In Figure 6.9 we can see that the highlighted data items have larger LDOD in dimension

cluster 2 than in dimension cluster 1, i.e., their projections on the right side axis are much

higher than the left axis for cluster 2. From Figure 6.10 using IHD, we find that the

yellow data cluster has a LDOD in dimension cluster 1 than the blue data clusters, while

in dimension cluster 2, it has a smaller LDOD than the blue data cluster, although it is

larger in size.

The three-axes method has the advantage that it works on the flat and hierarchical

displays equally well, since it doesn’t change the nature of the displays. It works much

faster than the mean-band method, while allowing users to see the LDOD with less over-

lap. However, it adds extra axes to the display. We feel it is not suitable for the scatterplot

matrices since it will increase the number of the plots significantly. Also it is not suitable

for the star glyphs, since in the star glyphs, each star glyph only occupies a small space,

so extra arms clutter the display.
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6.4.4 Approach 3: Using Diagonal Plots to Represent LDOD in Scat-

terplot Matrices

We have implemented a unique way to represent LDOD in the flat scatterplot matrices.

We noticed the fact that the diagonal plots in the scatterplot matrices convey little useful

information; all the points clutter in the diagonal lines in these plots. Thus we designed a

new way to use this space of these plots to convey LDOD.

In the flat scatterplot matrices, the x and y coordinates of a diagonal plot are the

same dimension. In our reduced dimensional space, if the dimension is a representative

dimension, we map the minimum and maximum of the dimension cluster to the x and y

coordinates of its diagonal plot. Thus the display of the diagonal plot would no longer

contain points cluttering in the diagonal lines if the LDODs of this dimension cluster are

non-zero. Rather the points are now spread out in the plot. A point far away from the

diagonal line means a large LDOD.

Figures 6.11 and 6.12 show the Aaup data set (14 dimensions, 1161 data items). The

second and fourth axes represent non-leaf dimension clusters of size 6 (cluster 1) and 5

(cluster 2) respectively. Figure 6.12 used the diagonal plots (special colors are used on

their boundary to distinguish them from other plots) to represent the LDODs of the data

items, while Figure 6.11 does not. Comparing the two figures, we find Figure 6.12 does

not introduce any extra overlaps. Moreover, it indicates that cluster 2 has a large degree

of disagreement since in the fourth diagonal plot, the points are scattered in the plot, with

some points far away from the diagonal line. Although cluster 1 has a larger size than

cluster 2, it has smaller degrees of disagreement for most data items. However, there is

a small portion of data items that do have significant LDODs that form a small area far

away from the diagonal line.

This method puts forward a new way to make use of the diagonal plots in the scatter-
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plot matrices and does not introduce extra overlaps. By this method, users can extract the

disagreement extent of a representative dimension from the display. This is the best way

we have discovered thus far for conveying disagreement information for the flat scatter-

plot matrices.

6.4.5 Approach 4: Outer and Inner Stick Method to Represent LDODs

in Star Glyph

The outer and inner stick method adheres some small sticks to the star glyphs to convey

LDOD. An outer stick has a length of (maximum�mean). One of its ends is placed

at the end of an arm with the other end extending outward along the directions of the ray.

An inner stick has a length of mean�minimum. One of its ends is placed at the end of

an arm with the other end extending inward along the direction of the ray. The arm, the

outer stick and the inner stick have distinguishable colors so that users can easily perceive

them. By watching the length of the inner sticks and the outer sticks, users can detect the

LDOD of a data item (a glyph) easily.

Figures 6.13 and 6.14 show the same part of the Aaup data set (14 dimensions, 1161

data items) using the flat star glyph. The second arm (72 degree) and fourth axis (216

degree) represent non-leaf dimension clusters of size 7 (dimension cluster 3) and 6 (di-

mension cluster 1) respectively. Figure 6.14 uses the outer and inner stick method (outer

sticks are blue and inner sticks are red) to represent the LDODs, while Figure 6.13 does

not. Comparing the two figures, we find Figure 6.14 does not introduce any extra over-

laps. Moreover, it indicates that most data items have large LDODs in dimension cluster 3

and small LDODs in dimension cluster 1. We also find an exception that the star glyph at

the right bottom corner bears a large LDOD in dimension clusters that makes it different

from other data items.
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6.4.6 Approach 5: Axis Width Method to Represent GDOD

The idea of the axis width method is to use the width of a representative dimension axis

to convey the GDOD for the dimension cluster it represents. The larger the disagreement,

the wider the axis. It can be applied to various flat and hierarchical displays. Currently,

we have applied it to the flat and hierarchical parallel coordinates, scatterplot matrices

and star glyphs. The width of an axis is calculated using the following equation:

width = 1 + whole disagreement � 10

Figures 6.15 and 6.16 show the Aaup data set (14 dimensions, 1161 data items) in flat

and hierarchical parallel coordinates with the wide axes method applied to show GDOD.

The second and fourth red axes represent non-leaf dimension clusters of size 6 (dimension

cluster 1) and 5 (dimension cluster 2) respectively. It can be seen that dimension cluster

2 has a larger GDOD than dimension cluster 1. This is consistent with the conclusion

we draw by watching LDODs using other approaches. Figures 6.17 and 6.18 are the

counterparts of Figure 6.15 and Figure 6.16 in flat and hierarchical scatterplot matrices.

The axis width method can also be applied to the star glyphs. However, it does not

work well for the star glyphs. The reason is that since each star glyph only occupies a

small space, wide axes (arms) clutter the displays. From another point of view, the wide

axes method is an approach to represent GDOD, while there are no global axes in the star

glyphs that show global properties.

6.4.7 Discussion

Some of these methods can be applied to multiple multi-dimensional visualizations, while

some are only suitable for particular visualization techniques. All of them have their own

advantages and disadvantages.

In future work, we want to try to develop one uniform approach suitable for most or
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ideally for all displays. It should have the following features:

� it should be understandable by users;

� it should not introduce too much overlap; and

� it should not increase the response time significantly.
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Figure 6.2: Ticdata2000 Data Set (86 di-
mensions, 5822 data items) in Hierarchi-
cal Parallel Coordinates

Figure 6.3: Ticdata2000 Data Set Mapped
to a 9 Dimensional Subspace in Hierarchi-
cal Parallel Coordinates

Figure 6.4: Hierarchical Dimension Clus-
ter Tree of Ticdata2000 Data Set in Sun-
burst
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Figure 6.5: Aaup data set in Hierarchical
Parallel Coordinates before drilling down
the right-most axis.

Figure 6.6: Aaup data set in Hierarchical
Parallel Coordinates after the drill-down
operation.

Figure 6.7: Detroit data set in Flat Par-
allel Coordinates. The second and fourth
axis are non-leaf dimension clusters. The
bands are decreased by 70%.

Figure 6.8: Aaup data set in Flat Paral-
lel Coordinates. The second and fourth
axis are non-leaf dimension clusters. The
bands are decreased by 85%.
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Figure 6.9: Aaup data set in Flat Parallel
Coordinates. The second and fourth axis
are non-leaf dimension clusters. Some
data itemed are highlighted in red.

Figure 6.10: Aaup data set in Hierarchi-
cal Parallel Coordinates. The second and
fourth axis are non-leaf dimension clus-
ters. The data bands are decreased 60%.

Figure 6.11: Aaup data set in Flat Scatter-
plot matrices. The second and fourth axis
are non-leaf dimension clusters.

Figure 6.12: Aaup data set in Flat Scatter-
plot matrices. The second and fourth axis
are non-leaf dimension clusters. The diag-
onal plots are used to represent LDODs.
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Figure 6.13: Part of Aaup data set in Flat
Star Glyph. The arms at 72 degree and 216
degree represent non-leaf dimension clus-
ters.

Figure 6.14: Part of Aaup data set in Flat
Star Glyph. The arms at 72 degree and 216
degree represent non-leaf dimension clus-
ters. The outer and inner stick method is
applied to represent LDODs.
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Figure 6.15: Aaup data set in Flat Parallel
Coordinates. The second and fourth axes
are non-leaf dimension clusters. The axis
width method is applied to show GDOD.

Figure 6.16: Aaup data set in Hierarchi-
cal Parallel Coordinates. The second and
fourth axes are non-leaf dimension clus-
ters. The axis width method is applied to
show GDOD.

Figure 6.17: Aaup data set in Flat Scatter-
plot Matrices. The second and fourth axes
are non-leaf dimension clusters. The axis
width method is applied to show GDOD.

Figure 6.18: Aaup data set in Hierarchi-
cal Scatterplot Matrices. The second and
fourth axes are non-leaf dimension clus-
ters. The axis width method is applied to
show GDOD.
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Chapter 7

Implementation of the Visual

Hierarchical Dimension Reduction

7.1 Overview

The proposed VHDR approach was implemented as extensions to the XmdvTool 4.2 sys-

tem. Figure 7.1 shows a high-level diagram of how our extensions fit into the original

XmdvTool system. The new modules introduced were:

� Dimension Cluster Module

This module reads data items or data clusters from a data file or cluster file and

generates a dimension hierarchy using a dimension clustering algorithm. It also

assigns or generates a representative dimension for each dimension cluster in the

dimension hierarchy.

� Dimension Hierarchy Display and Interaction Module

This module visualizes the dimension hierarchy and enables interaction with the

dimension hierarchy by users. Users can visually explore and modify the dimension
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Figure 7.1: A high-level diagram of the modules in XmdvTool

hierarchy through this module. For dimension reduction, the users need to select

some dimension clusters using brushing tools provided by this module.

� Mapping Data and Dissimilarity Representation Module

This module maps data items and data clusters from original high dimension space

to a lower dimensional subspace composed of the representative dimensions of the

dimension clusters selected. It also provides dissimilarity representation. If the flat

and hierarchical display modules use output from this module instead of the original

data items and data clusters, then they generate views in the lower dimensional

subspace.
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7.1.1 Platform

This project is implemented as extensions to the XmdvTool system version 4.2. Similar

to XmdvTool 4.2, it also implemented using C++ and the OpenGL graphics library. Its in-

terface is generated using Tcl/Tk. This project can run on both Windows 95/98/NT/2000

and Unix platforms.
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Chapter 8

Case Studies

We have conducted two performance case studies to illustrate the usefulness of our tool.

In our tests we used a Census-Income data set, a 42 dimensional, 20,000 element data

set derived from part of the unweighted PUMS census data from the Los Angeles and

Long Beach areas for the years 1970, 1980, and 1990. Figures 8.1 and 8.2 show the

hierarchical parallel coordinates and hierarchical scatterplot matrices display of the data

set respectively. It is almost impossible to find any meaningful patterns from them without

dimension reduction.

We use the algorithm described in Chapter 4 to generate the hierarchical dimension

cluster tree. The percentage threshold used is 90%. The original data set is used in the

clustering process. In Section 8.1, we describe how users can explore the hierarchical

dimension cluster tree through flexible interactions with the Sunburst display. In Sec-

tion 8.2, we illustrate how to find patterns from the data set in the reduced dimension

subspaces.
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Figure 8.1: Census-Income Data Set (42
dimensions, 20,000 data items) in Hierar-
chical Parallel Coordinates

Figure 8.2: Census-Income Data Set (42
dimensions, 20,000 data items) in Hierar-
chical Scatterplot Matrices

8.1 Interaction in Sunburst

Figure 8.3 shows the hierarchical dimension cluster tree of the Census-Income data set

in the Sunburst display. We interactively explored this tree by iteratively applying the

following approaches:

� Using the structure-based brush to evaluate the degrees of dissimilarity of the di-

mension clusters in the tree, and to highlight the clusters we are interested in;

� Watching details of certain clusters that we are interested in using detail+context

distortion, rotation, zooming in/zooming out, and panning operations;

� Modifying the tree if any parts of the tree looks unreasonable according to our

experience.

Figure 8.4 shows the result of applying a structure-based brushing operation on the

root node. The maximum dissimilarity allowed in this selection was set to 0.1. The se-

lection result suggests that clusters $23, $52, $49 may be clusters with good correlation
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Figure 8.3: Hierarchical Dimension Clus-
ter Tree of Census-Income Data Set

Figure 8.4: Struture-Based Brushing Ap-
plied to Root Node

of dimensions within them. Hence we un-selected all the clusters, and applied structure-

based brushing to cluster $23 at threshold 0.0 to highlight its leaf nodes. Figure 8.5 shows

all the leaf nodes of cluster $23. It reveals that the leaf dimensions of cluster $23 are

“migration code-change in msa”, “migration code-move within reg”, “migration code-

change in reg”, and “live in this house 1 year ago”. By checking cluster $23 we believe

that it should be a cluster with tight internal relationships according to our knowledge of

the data sematitics. Similarly, we wanted to check cluster $52 in detail. However, we

could not see the complete names of its leaf dimensions from the display since it was

cut by the edge of the canvas (see Figure 8.6). Hence we rotated the display so that

we can see the complete names (see Figure 8.7). From Figure 8.7 we found that clus-

ter $52 is composed of “country of birth mother”, “country of birth father”, and “coun-

try of birth self”. It also seems reasonable to group these dimensions.

Figure 8.8 shows the details of cluster $49 after rotation. It seemed odd to us that

some dimensions, such as “region of previous residence” were put together with dimen-

sions such as “income”. According to our experience, we felt that they were not related.
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Figure 8.5: Details of Cluster $23

Hence we decided to remove some dimensions from cluster $49 and put them into the

root cluster. Figure 8.9 shows the details of cluster $49 after the modification. In Fig-

ure 8.9, it is hard to see the details of the moved nodes since they are direct children of

the root cluster, and thus they occupy a rather small display area and their names clutter

together. Thus we used distortion, zooming in and panning operations and generated a fo-

cus+context view for the moved leaf nodes so that we now can view them in detail within

the context (see Figure 8.10).

8.2 Applying Dimension Reduction to
Multidimensional Displays

As a first experiment, we selected “education”, “age”, “sex”, “weeks worked in year”,

and “income” from clusters that had large dissimilarity among them. We viewed them

as representatives of those clusters and hoped that they could form a subspace that could

reveal the main trend in this data set.

After mapping the data set into the subspace composed by them, we have found some

interesting patterns from the multi-dimensional displays. Figure 8.11 to Figure 8.14 are
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Figure 8.6: Before Rotation. Names of
Highlighted Nodes are incomplete.

Figure 8.7: After Rotation. Names of
Highlighted Nodes are complete.

hierarchical parallel coordinates in this subspace. The first axis (from left to right) in

each figure is education (from under 1 grade (lowest) to Ph. D. (highest)). The second

axis is age (from 0 years old (lowest) to 94 years old (highest)). The third axis is sex

(woman: low, man: high). The fourth axis is weeks worked in year (from 0 (lowest)

to 52 (highest)). The last axis is income (less than 50,000 (low), equal to or more than

50,000 (high)).

Figure 8.11 shows a data cluster that can be interpreted as “a group of well-educated

men who work most of the year and got high income”. Figure 8.12 shows the same cluster

in a higher level of detail. As a counterpart, Figure 8.13 shows a data cluster that can be

interpreted as “a group of not so well-educated men who did not work most of the year

and got low income”. Figure 8.14 shows a data cluster that can be interpreted as “a group

of not so well-educated women who did not work most of the year and got low income”.

As a second experiment, we wanted to verify that “country of birth mother”, “coun-

try of birth father”, and “country of birth self” really have a close relationship among

them. Thus we used these three dimensions to form a subspace and mapped the data set
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into this subspace. Figure 8.15 reveals that they really have a close relationship. We can

hardly find this pattern from Figure 8.15’s counterpart view in the original 42 dimensional

data space (see Figure 8.16).

As a third experiment, we explored the subspace consisting of the dimensions com-

posing the modified cluster $49. We found two patterns from it; most low income people

have low wage per hour and low capital gain (see Figure 8.17) and there are a few people

of high income who have low wage per hour but have high dividends from stocks (see

Figure 8.18).

High dimensional data sets, such as the Census-Income data set in the case studies,

can reveal a wealth of information. It just requires the appropriate tools and the perceptual

abilities of the user. Ours is one such tool.

76



Figure 8.8: Some dimensions should not
be in Cluster $49 according to our intu-
ition.

Figure 8.9: We moved these to become
children of the root node. We cannot see
the details of the moved out nodes in this
view.

Figure 8.10: After distortion, we can see
the details of the moved nodes.
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Figure 8.11: Pattern 1: a group of well-
educated men who work most of the year
and got high income.

Figure 8.12: Pattern 1 in more detail

Figure 8.13: Pattern 2: a group of not so
well-educated men who did not work most
of the year and got low income.

Figure 8.14: Pattern 3: a group of not so
well-educated women who did not work
most of the year and got low income.
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Figure 8.15: Hierarchical Star Glyphs in
Subspace. country of birth mother: 0 de-
gree, country of birth father: 120 degree,
country of birth self: 240 degree. Arms
of the same length mean the same country.

Figure 8.16: Hierarchical Star Glyphs in
Original Space. country of birth mother:
282.9 degree, country of birth father:
274.3 degree, country of birth self: 291.4
degree. Arms of the same length mean the
same country.
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Figure 8.17: Flat Parallel Coordinates
in Subspace. The axes from left to
right are: income, dividends from stocks,
capital gains, wage per hour, and capi-
tal losses. The high and low in the axes
is corresponding to the real number. Pat-
tern 4: most people of low income have
low wage per hour and low capital gain.

Figure 8.18: Hierarchical Star Glyphs
in Subspace. income: 0 degree, div-
idends from stocks: 72 degree, capi-
tal gains: 144 degree, wage per hour: 216
degree, capital losses: 288 degree. A
short arm means a small number and a
long arm means a large number. Pattern
5: a few people of high income have low
wage per hour but they got high dividends
from stocks (the last glyph).
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Chapter 9

Conclusions and Open Questions

9.1 Summary and Contributions

The issue of high dimensional data sets has implications in many research areas, such

as data warehousing, multimedia, document visualization, survey analysis and so on. In

multidimensional visualization, data sets with huge dimensionality result in display clut-

ter. In this thesis, we have proposed a visual hierarchical dimension reduction approach

and applied it to several popular multidimensional visualizations to present data sets with

huge dimensionalities. Dimension reduction is not new. However, the existing dimension

reduction techniques have the drawback of generated subspaces not having any intuitive

meaning. A significant advantage of our visual hierarchical dimension reduction approach

is that the generated lower dimensional space is not meaningless to users, in that:

� According to the hierarchical dimension cluster tree visualization, the users know

what dimensions are displayed in the reduced dimensional displays.

� If the user finds that a cluster contains some dimensions that have nothing to do with

other dimensions in the cluster according to their experience, they can manually re-

move them from this cluster. Thus each cluster could have a clear domain-specific
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practical meaning. This way users can name the representative dimensions with a

“meaningful” name, thus helping to interpret the visualization in the reduced di-

mensional space.

Another significant advantage of our approach is that it integrates automatic and in-

teractive techniques. As a tool to facilitate people in handling data sets, our clustering

approach is automatic so that it avoids trivial and boring manual work during the process.

At the same time, human interactions are encouraged to make use of the knowledge of the

specialists. This combination of automatic and interactive methods is reflected in that:

� Our dimension clustering is an automatic approach, although users can provide their

own hierarchical dimension cluster trees instead of using the one generated by our

system;

� Users can provide their own similarity calculation routines instead of using the

system provided one in the dimension clustering process;

� Users can interactively modify the structure of the hierarchical dimension cluster

tree;

� To select clusters from the dimension hierarchical tree, users can employ a combi-

nation of automatic and manual brushing mechanisms;

� Users can either select their own representative dimension generating methods, or

choose one of the system-provided methods;

� We provide several options to visualize the dissimilarity information of the dimen-

sion clusters in the reduced dimensionality displays.

Besides our contribution in visualization of high dimensional data sets, another con-

tribution is that we have developed improvements to the radial space-filling hierarchy

visualization technique in the aspects of modification, distortion, coloring and brushing.
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Moreover, we have developed a working implementation of this VHDR approach as

extensions of XmdvTool system. This implementation goes through the whole VHDR

approach, including dimension clustering, interactive Sunburst display and visualization

of the mapped data in lower dimensional subspaces using all the existing multidimen-

sional visualization techniques in XmdvTool. This allows us to illustrate that VHDR is

practical and compatible with all the existing multidimensional visualization techniques

implemented in XmdvTool. This implementation will be incoporated in an upcoming

release of XmdvTool 6.0.

Finally, we have conducted several case studies using our implemented system and

found some interesting patterns from high dimensional data sets. The case studies prove

that our approach is useful for exploring high dimensional data sets.

9.2 Open Questions

There are several open questions for this work, such as:

� What’s the maximum number of dimensions and data items our VHDR approach

can handle?

� How helpful is this VHDR approach in visualizing high dimensional data sets com-

pared to other dimension reduction techniques such as PCA, MDS and SOM?

We analyze the first problem for the three main steps of our VHDR approach respec-

tively.

First, let’s consider the dimension clustering algorithm. Since we use data clusters

instead of data items in dissimilarity calculations to scale with large data sets, there is

no actual limit on the number of data items we can handle. However, we need to run

experiments to check to what extent using data clusters instead of data items will affect
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the accuracy of the dimension clustering. Regarding the maximum number of dimensions

we can handle, we can compare our dimension clustering algorithm with a data clustering

algorithm. Dimensions here play a similar role as data items there. Since millions of data

items is trivial for a good data clustering algorithm, we think that there is no practical

limit on number of dimensions we can handle, since if a data set contains thousands of

dimensions, it is considered to be an extremely high dimensional data set in practice.

Second, let’s check the dimension hierarchy visualization. According to our experi-

ence, Sunburst has no problem in visualizing a dimension hierarchy composed of a few

hundred dimensions. However, when visualizing larger hierarchies, the leaf nodes will be

too small to see. However, our interactive tools, such as aggregation, zooming and pan-

ning, and distortion can effectively overcome this problem. So we claim that arbitrarily

large dimension hierarchies can in general be visualized in the second step.

Finally, we take a look at the mapping step. Since choosing how many dimension

clusters to construct the lower dimensional space is completely a decision made by the

users, we also argue that there is no real limit on the maximum number of dimensions that

can by handled with the VHDR approach. Users are in full control in deciding the lower

dimensional subspaces. These subspaces are fully adjustable by them.

Since we can apply this approach to our hierarchical visualization techniques that can

scale with large data sets, such as hierarchical parallel coordinates, hierarchical scatterplot

matrices, hierarchical star glyphs, and hierarchical dimensional stacking, the number of

data items we can visualize is not limited either.

As a conclusion, the first question can be answered by inspection of the strategies

we have applied in our solution approach; we find that there is no practical limit on the

number of dimensions and data items we can handle using the VHDR approach. However,

user evaluations and experiments are of course still needed to validate this claim.
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Regarding the second question, our case studies show that VHDR is useful in find-

ing patterns from high dimensional data sets. However, once again, more cognitively

designed evaluations are needed.

9.3 Future Tasks

In the future, we plan to implement the following tasks:

� implementing and comparing different dimension clustering approaches;

� applying principal component analysis to generate representative dimensions;

� exploring a dissimilarity representation method that could be applied to most visu-

alization techniques;

� implementing brushing in the reduced lower dimensional subspaces;

� evaluating the VHDR approach by user studies and experiments.
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